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Abstract.: In probability theory, researchers always prefer a model hav-
ing simple structure with small estimation cost and higher adequacy for
real life data applications. Therefore, in this study we have developed a
simple power Burr X (PBX) distribution with an additional shape parame-
ter. We have studied the shapes of the developed distribution with respect
to subfamilies depends on the additional parameter. This study reveals
some structural properties of this new model such as moments, stochastic
ordering, quantile function and Rnyi entropy. We have also developed a
location-scale regression model for log power Burr X (LPBX) distribution

to enhance its application in survival analysis. To observe the behavior of
estimated parameters, we have conducted a Monte Carlo simulation study
under maximum likelihood (ML) estimation and observed efficiencies by
means of bias and mean square errors. Three life-time applications from
different industries justified the adequacy, flexibility and potentiality of
PBX distribution as compared to other higher parametric complex gener-
alizations.
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1. INTRODUCTION

Probabilistic distributions have vast role in statistical modeling to explain the behavior
of failure and survival rates of different products. Therefore, new probability models are
typically developed and studied to explain the possible outcomes of real life experiments
as well as for the natural phenomenon. Naturally existed data are not always symmetric.
Therefore, researchers have tried to develop heavy tailed distributions (e.g.[17], [22],[39]
and [50]). The exponential and the Weibull distribution are generally used to model real
world problems such as curing time of a certain disease, survival time with the dose of
any medicine, failure of any electrical appliance, rate of floods, strengths of the laboratory
equipment, time to repair objects, wind speed, wind shield strength, solar energy, water
draining and the rain-fall patterns (see e.g. [3], [11], [14], [40] and [44]).

A system of twelve lifetime distributions was proposed and studied by [10] making use
of Pearson differential equations. Among these 12 distributions, Burr type Il (Blll), Burr
type X (BX) and Burr type XII (BXII) got maximum attention in literature as it effectively
models the failure data due to its flexible failure rate [34]. Moreover, many families of
distribution have also contributed in literature for the extension in Burr family; see exam-
ple ([4] — [6], [12], [15], [24] — [30], [49]). BX is an important continuous probability
distribution. It significantly contributes in medical, hydrology and reliability analysis [18].
The probability density function (pdf) and the cumulative distribution function (cdf) given
by [47] of two parameter BX distribution are,

fly;e,B) = 204621/6%1?{— (ﬂy)2] (1 - eff:p[ — (51/)2})&1 1.1

F(y; o, B) = (1 - emp[ - (ﬁy)QDQ 1.2

where,a > 0 is shape parameter whif¢> 0 is a scale parameter.

The motivation to explore BX distribution is the availability of its non-monotone fail-
ure rate [18] such as decreasing hazard ratexfor 1/2 and bath-tub failure rate for <
1/2. 1t can effectively deal with big data problems [33]. Moreover, it is very effective and
adaptable for demonstrating the reliability strength and lifetime data sets [46]. They also
observed that the two parameter BX distribution has a close relation with the Weibull (WD)
as well as the Rayleigh (RD) distribution and is often named as generalized Rayleigh (GR)
or exponentiated Rayleigh (ER) distribution. Therefore, the BX model and its generalized
forms provide alternatives for these distributions. kRor 1, BX distribution is equiva-
lent to the Rayleigh distribution (see Eqg.1) and for 1 single parameter Burr X (BXI)
distribution can be obtained from exponentiated Weibull distribution [38].

Numerous studies have been conducted from last few years to develop modified or gen-
eralized BX distribution for the enhancement of potentiality of BX model. Recently, [48]
have developed three parameter odd log-logistic Burr X (OLLBX) distribution, [43] pro-
posed the three parameter type | half logistic Burr X (TIHLBX) distribution, [23] proposed
three parameter transmuted Burr X (TBX) distribution, [22] have developed the four para-
meter exponentiated generalized Burr X (EGBX) distribution. These are the recent gener-
alizations of the BX distribution. Other prominent studies are two parameter inverse Burr
X distribution [20], four parameter beta Burr X (BBX) distribution [34], three parameter
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Marshall-Olkin extended Burr X (MOBX) distribution [2], Weibull Burr X (WBX) distri-
bution [18] and six parametric beta Kumaraswamy Burr X distribution [33]. These gener-
alizations have complex structure and have higher estimation cost due to large number of
parameters.

The present study is organized as follows: Power Burr X distribution is proposed in
Section 2. Section 3 explains some structural properties of PBX distribution. In section 4,
we develop the log power Burr X (LPBX) distribution and LPBX regression model under
location-scale method. Section 5 illustrates the statistical inference of PBX model by means
of ML estimation. Four real life applications are given in section 6 to justify the adequacy
and flexibility of model as compared to existing distributions. Section 7 concludes the
study.

2. POWERBURR X (PBX) DISTRIBUTION

The power transformation or Box and Cox power transformation [8] is typically used
to increase the flexibility of the observed modelYiffollows the baseline distributio&,
the transformatio” = Y@ will develop the new distribution function and it is named
as powelG distribution. For example, power Lindley distribution [13] and power Lomax
distribution [37] are derived making use of power transformations. Using similar approach,
power Burr X (PBX) is proposed in this section.

Let a random variabl& follows the Burr X distribution with parametetsand. Then,
the power transformatioft’ = Yo generates the power Burr X (PBX) distribution. The
random variablg” follows the PBX distribution with parametets 5 andd. Symbolically,
itis denoted a§" ~ PBX (a, 3,0). The cdf of PBX distribution is

F(t;a,0,0) = (1 — exp[-(Bt°)*)*  for t>0 (2.3)
And the corresponding pdf is
f(ta, B,0) = 2052062 eap[—(Bt°)%)(1 — exp[-(Bt°)°)"" (2. 4)

where,f is an additional shape parameter. The survival rate function (srf) and the hazard
rate function (hrf) of PBX distribution are given respectively,

S(t;a,3,0) =1—F(t) =1 — (1 —exp[—(6t")?)*  for t>0 (2. 5)
) ) 20320t Lexp[—(Bt?)?](1 — exp[—(Bt?)2])>1
h(t; o, 8,6) = 50 = = (0 = cxp—(B)))" (2. 6)

2.1. Limiting behavior for pdf and hrf of PBX distribution.  This subsection provides
the limiting behavior of pdf as well as the failure rate for PBX distribution. The behavior
of the model is observed for extreme positionsi.e> 0 andt — oo.

Lemma 1: If T follows the PBX («, 3, 6) distribution then the limits for pdf whet
approaches to zero are,

0 if af <1/2
lim f(t) = { 2a8% if af=1/2
=0 00 it af >1/2
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It is evident fromLemmal that the behavior for the pdf of PBX distribution depends on
the combination of both shape paramete=nd6. It is also observed that the pdf of PBX
distribution approaches to zeroas» cc.

Lemma 2: Since random variabl& follows the PBX («, 3, 0) distribution then the
limits for hrf whent approaches to infinity are depends on the value#. df 6 < 1/2,
lim;_,q h(t) approaches to zero while & < 1/2, lim; . h(t) approaches to infinity.
Whené = 1/2, lim;_,, h(t) becomes equal t83?0. As F(0) = 0 for all probabilistic
models, therefore, limiting behavior &{¢) whent — 0 is same as that of the behavior of
pdf.

a b
o O
Nl —— «=1.00,$=1.00,0=050 w7 —— «=040,8=150,0=150
@=1.00, B =150, 6 = 0.20 : -es =050, =150 0 =050
- —- «=100,=150 0=090 2 -—- «=250,$=050 =200
< —— =100 §=1.00,6=150 : —— =150 §=050,0=150
= /_ N = '-f‘_7 B ', /N
% =R Y. \ g JON VAN
k] \_.\\ /\ \ 3 S 4,7 \\ " .\
© K 7/\ \‘\ \ \ L - ~)
s 1y SNl N 0 | N s W
VA \‘\‘\l © A WD
o |/ T NI Ionoooo o S s N
° M T T T T T T ° Y T T T T T T
0.0 0.5 1.0 15 20 25 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
X X

FIGURE 1. pdf curves of PBX distribution at various parameter combinations

2.2. Shapes of the Distribution. The shape of PBX distribution is explored with respect
to its subfamilies in Figure 1. It can be observed that the shape of PBX distribution Figure
1 is mostly positively skewed that depends on the shape parameterdd. Moreover,
Figure 1(a) represents the behavior of PBX at fixeshile Figure 1(b) shows the behavior

of pdf at varying combinations ef andé. Itis observed from the Figure that the model has
exponentially decreasing behavior fef < 1/2, exponentially decreasing starting from y-
axis foraf = 1/2, and uni-modal behavior faxf > 1/2 that is also stated in Lemma 1.

The hrf curves (Figure 2) have monotonically increasing, decreasing, bathtub behavior
and partially upside-down bathtub behavior. This primarily depends on the combination of
« andd. Figure (2a) has curves with bathtub and upside down bathtub shapes while Figure
(2b) has decreasing curves and increasing curves.

2.3. Weighted Representation of PBX distribution. This section provides the weighted
representation of PBX distribution using simple binomial expansion. This representation
simplifies the evaluation of the properties of PBX distribution. Consider the pdf of PBX
distribution given in Eq. (2. 4),

ft;a,8,0) = 2046291529_163019[—(&9)2](1 - eamv[—(Bt‘g)z])o‘_1
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FIGURE 2. hrf curves of PBX distribution at various parameter combinations
By using the binomial expansidn — )™ = 377 ((—=1)*(")t* for [t| < 1, we get

F10) = 20520 e — (51°2) S (1) (* e - k(317

k=0

= 20320121 i(—mk (O‘ ; 1) exp[ — (k+1)(5t%)?]
k=0

ft;a, B,0) = 208%0t> anefcp[ — (k+1)(5t")?] (2.7)
k=0
where,n, = (—1)%(*;"). We will use Eq. (2. 7) for further evaluation of the properties
of PBX distribution.

3. STRUCTURAL PROPERTIES OFPBX DISTRIBUTION

This section explores some important features of the PBX distribution with the help of
structural properties. It contains the moments and the related measures, stochastic ordering,
guantile function and entropies of PBX distribution.

3.1. Moments and Related Measures.Theorem 1: Let the random variablé&' follows
the PBX distribution given in Eq. (2. 7)) then the moment of the distribution is derived as

/ a = i r
= I'il1+— .
,LL,, 57/9 ;) (k + 1)1+r/29 ( + 20) (3 8)
AsT(m) = (= 1)!
Proof: By definition, i, = E(T") = [*_t" f(t)dt
0

//T = 2aﬂ29277k/ twﬂilefﬂp[ —(k+ 1)(5159)2]5”
k=0
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Let,
1/20
(k+1)(Bt?)* =y and t = (mi’m)
dtlel/wdy Ast — 0,y —0and t — oo,y — o0

20(32(k+1))

, © °° a1 _ 5 — 1
9 29 Yy 55 (204+r—1) _ Y=z d
= 203 Z T /0 (ﬁQ(k + 1)) cp(—y) ))1/29

k=0

After simplification, we get

(67 = e o
55 Z (k + 1 (k+ 1) 35 / y' i teap(—y)dy
k= 0

This completes the proof. The raw moments of PBX distribution and further moments
about mean, skewness and kurtosis of the distribution are straightforward.

3.2. Quantile Function. Let p follows the uniform distribution with parameters (0, 1),
then the quantile function of the PBX distribution is evaluated as

tp = [2 (o)) ] -9

By inserting the value op = 0.25,0.50,0.75, we can compute the real solution for the
guartiles of PBX distribution. Moreover, we can easily compute all the percentiles by using
given quantile function. This measurement can also be used to compute the skewness and
kurtosis of the distribution by using Bowley [7] and Moors [35] approach respectively. The
coefficient of Bowley skewness, based on quartiles is given as

Q31+ Q1/a — 2Q1 2

i Q374 — Q14 ( )
Therefore, the coefficient of Moors kurtogis,.) based on octiles is given as
K, — Q378 — Qi/8 + Q78 — Qs 3. 11)

Q374 — Q14

Table 1 represent the quartiles, inter quartile range, the Bowley skewness and Moors kurto-
sis of the PBX distribution forv = 3.0 and = 2.0. It can be observed that all the quatrtiles
decreases by increasing the valu¢doMoreover, the skewness and kurtosis of the distri-
bution decrease by increasifiglt is also an interesting fact that whérapproaches te,

the distribution becomes approximately symmetrical.

Figure 3 represents skewness and kurtosis of PBX distribution for the combination of
shape parameters keeping scale parameter fixgd=at0.5. It can be observed that the
skewness (Figure 3a) and kurtosis (Figure 3b) decrease for increasing values of shape pa-
rametersy andé.
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TABLE 1. Quatrtiles, inter quartile range, skewness and kurtosis of PBX distribution

Measures| @, Q2 Q3 1.Q.R Sk k.
0
0.1 0.0009 0.0095 0.0764 0.0755 0.7717 3.6048
0.3 0.0982 0.2122 0.4244 0.3262 0.3008 1.4227
0.5 0.2485 0.3946 0.5980 0.3494 0.1640 1.2784
0.7 0.3699 0.5146 0.6926 0.3227 0.1029 1.2462
1.0 0.4985 0.6281 0.7733 0.2747 0.0563 1.2342
15 0.6287 0.7334 0.8425 0.2137 0.0199 1.2321
2.0 0.7060 0.7925 0.8793 0.1733 0.0017 1.2315

FIGURE 3. (a) Skewness and (b) Kurtosis of PBX distribution.

3.3. Stochastic Ordering. The uni-variate stochastic ordering is defined as the partial or-
der relation between the probabilities of two random variables of a probability distribution
linked with a commutable space (e.g. [32],[42]). The likelihood ordering of two random
variables followingP BX («, 3, 6) distribution is considered below.

Theorem 2: LetT; follows PBX (a1, 3,61) andTs; follows PBX («w, 3, 62) with their
respective distribution functionf(t) andg(t). Keeping the scale paramefgt) constant,
the ratio between the pdfs is,

a;—1
an0rt2 O leap( (5102)? — (61)7 ) (1= can(  (51)7))
_ 3. 12)

st (1 — eap( (ﬁt92)2)>a2_1

f®)

g(t)
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Assume thaty; = as = o, we get

©) 91t2(01_92)e$p<<ﬁt92)2 - (5t91)2) (1 —eap(— (ﬁtel)Q))a_1
- 0, (1—@1‘p(_(6t92)2)>(¥—1

~

t)

e}
—~

By taking derivatives, itis found 23 > 0for 6, > 6, andd {3 < 0for 6; < 6,. This
implies the existence of likelihood ratio that increases when- 6, and decreases when
0, < 65 (for oy = as = «). This leads to the following theorems.

Theorem 3: If T follows PBX («, 3, 6,) andT5; follows PBX («, 3, 62), thenTy >
Ty for 61 > 05 andT; <,; 15 for #; < 6,. From above theorem, we also conclude that
Ty >4 To for 6, > 0, andTy <, T> for 6; < 6. where,>; is the ordering of random
variables (e.g. [41]). Also, it can be observed that when< 65 there is no likelihood
ratio. We conclude another theorem under similar assumption of fiixed

Theorem 4: If T follows PBX («, 3, 61) andT; follows PBX («, 3, 62), thenTy >,

Ty for 61 > 05 andTy <, Ts for 61 < 0s.

3.4. Rnyi Entropy. Entropy typically deals with the uncertainty, diversity and random-
ness of the system. Rnyi entropy is commonly used due to its vast applications in numer-
ous fields such as econometrics, statistical inference and problem identification in statistics
[19]. By definition, Rnyi entropy is [9]

1
1—-9

Ir(¥) = log(I(¥)) = : 1 ﬂlog[/_oo f”(t)dt}, ford >0and ¥ #1 (3.13)

oo I (a—1)
I(09) = /0 2%%21’9%”(2“)@@( - 19(/3#’)2) (1 — exp( - 0(5#’)2)) dt

By using the binomial expansidn — t)™ = 377 (= 1)*("7)t* for [t| <1, we get

1(19) _ 21904106219919 i(_l)k <19(Oék_ 1)) /oo t’0(29—1)exp _ (k‘ + 19)(ﬁt9)2> dt
0

k=0
Let, ,
1/26
(k+9)(pt?)? =y and t = <ﬁ2(,§+ﬂ)>
‘L
dt = —¥2=1 —dy Ast — 0,y — 0and t — oo,y — o0

20(B2(k+9))
After simplification, we get

(—1)F <19(a - 1)) < 9 — 1>
I(9 219 1 19 29 919 1 o rf9—
" - ,;) k+0) Ak 2
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By putting the value of (¢#) in Eq. ( 3. 13 ) we get,

_ 1 91 0502 - (=D)* (e —1)
_179109{(29) a’p ZM( k )

k=0 (k + )
F(ﬁ -~ 192_91)] (3. 14)

Eq. (3. 14) is the explicit expression for Rnyi entropy of PBX distribution.

Ir (")

4. REGRESSIONMODELING FORLOG-PBX DISTRIBUTION

Let 7" follows the PBX distribution given in Eq. (2. 4). The#, = logT follows
the log power Burr X (LPBX) distribution, the pdf df after parameterization in terms of
p = —logB"? ando = (26)~! can be expressed as

fzya,p,0) = jexp{z (_7 ,u} exp [ —exp {Z;MH

[1 — eap [ - exp[zg“mal (4. 15)

where,a > 0 ando > 0 are the shape parameter whilec R is location parameter. Thus,
if Z~ LPBX(«, u,0o), then the survival function for corresponding pdf given in Eq. ( 2.

4)is .
S(z)=1- [1 — exp l - ewp[t’“‘m (4. 16)

where,—oc0 < Z < oo and—oo < o < oo. The LPBX distribution has more flexible
behavior (Figure 4). It can be used to model negatively skewed data sets.

1 -- «=3000=1.00
© | ---- 0=0.50,6=0.50 AN
S | .=+ «=0750=050 LAY
4 —— «=1256=075 RN
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> ¥ ’ A
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5 | ’,',’/ 1 [
kel '.‘// II \ \ \
o 2 R
) s, \
0, v\
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FIGURE 4. Pdf curves for LPBX distribution (for. = 0)
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Practically, lifetime of variableX; is effected from many variables such as blood pres-
sure, cholesterol level and many others. Therefore, under location and scale modeling tech-

nique, we propose a regression model for LPBX distributionz-et (¢;1,%;2,tj5, ... tjn)"
are the independent variable vector associated yiitrdependent variable;, for j =
1,2,...,n. Consider a sample afindependent observations say, z1), (22, 2), - - ., (2n, Tn),

where each random response is defineas= minlog(t;),log(c;), wherelog(t;) and
log(c;) are the log-lifetime and log-censoring respectively.
Now the regression model for dependent varigh)dor LPBX distribution is given as

Zj = tfv +ox; (4.17)

where,z; is the random error with pdf givenin Eq. (4. 15)= (71,72, 73, - -+ Vn), 0 >

0, is the scale parametet, > 0 is shape parameter argl is the vector of explanatory
variables that is used for modeling the location parametgrs th'y. The log-likelihood
function for the parameters of LPBX distributign= («, o, v7)? can be expressed from
Eq. (4.15)and (4. 16) as

1(6) = qlioga — logo] + 3 (ZJ;“J) By exp<%;“a)

JEF jeEF
Zj — My
+(a—1) Zlog{l — exp(— exp( . >>}
JEF

+jezczog{1 . {1 _exp( . emp(zﬂ;“ﬂ))” (4. 18)

where,q is the observed number of failures whittandC are the set of individuals for
which z; is the log-lifetime. We can obtain the estimates of LPBX regression model by
maximizing the likelihood function given in Eq. (4. 18 ). The estimated survival function

is given as
S(zlt)=1-— {1—exp(—exp(zj(_}ﬂj>>}a (4.19)

For parameter estimation of LPBX regression model, SAS (2004) with NLMixed method
is used. Forr = 1, the regression model for LPBX given in Eq. 4. 15 is equiv-
alent to the regression model of BX distribution. Under regularity conditions of vector
spacep = (a,0,77)T, the asymptotic distribution of — ¢) is multivariate Normal
Nyio{(a,0,4T)T, K(¢)~1}, whereK (¢) is the observed information matrix @b+ 3) x

(p +3) (e.g. [16]).

5. STATISTICAL INFERENCE

5.1. ML Estimation. Maximum likelihood (ML) estimation is extensively used for the
estimation of parameters. The normal approximation of ML estimator contributes analyti-
cally and statistically in large sample theory. The parametefs®K («, 3, 0) distribution

are estimated by using this approach. UgtT5,,T3,...,T, aren identically indepen-
dent random variables following the PBX distribution. The log-likelihood function (L) for
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unknown parameters = («, 3,6)7 is given as

n

L = nlog(2a) + nlogf + 2nlogB + (260 — 1) Z logt; — Z (ﬁt?)2
j=0 5=0

+(a—1) Zn: log (1 - 6xp< - (mf)?)) (5. 20)

=0
The necessary condition to maximize the log-likelihood function given in Eq. 5. 20 is the
existence of its first derivative with respect to estimated parameters and equates it to zero.

Now,
oL &
aa:Z+jz_olog<l_”p(_Uﬁ?ﬁ)) 21

oL - -
g
7=0 J=0 (1 — emp( - (ﬁt?)2>)
L - -
(Z—H = g +2 Z logt; — 2° Z (t3%)logt;
7=0 Jj=0
. 25%?"6%}9( _ (ﬁt?)Z)ngt]‘
tla—1) (5. 23)

2 :
)

Equations (5. 21), (5. 22 ) and (5. 23) can be solved simultaneously to evaluate the
unknown parameters but these equations are not linear as well as have no exact solution.
Therefore, we use nonlinear iterative procedure such as Newton-Raphson method for the
estimation of parameters arithmetically.

Since ML estimators have large sample property, therefore, the ML estimafearef
assumed to follow approximate normal distribution. The mean of this approximation is
and variances and co-variances can be obtained from the inverse of the expected informa-
tion matrix such as/n(¢ — ¢) ~ N(0,V,,), whereV,, = (v;;) = I, () is considered
as the expected information matrix and its inverse will provide variances and co-variances.
One can easily compute the variance co-variances elements by using second derivative of
Eq. (5.21),(5.22)and (5. 23).

5.2. Simulations. Simulation study enables us to understand the behavior of model pa-
rameters by generating the data from pseudo-random sampling. Estimation of parameters
from these samples explore the efficiency of parameters on the bdsissaind M SE.

We have performed a simulation study for the unknown parameters of PBX distribution.
The study contain$0, 000 repetition of experiment and has different sample sizes such as

n = 10,100,300 and500. We have considered two sets for simlulation given as set 1 is

o = 1.50,3 = 1.00 andf = 0.50 and set 2 isx = 1.50,3 = 1.00 andf® = 1.50. The
generated results are given in Table 2.
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It can be seen that the bias, MSE and C.I for all the parameters of PBX distribution
decreases for increasing sample size (Table 2. It is interesting to note that the parameters
have less bias and MSE for small value of new additional shape parafneter

TABLE 2. Bias, MSE and 95% confidence interval for the parameters of
PBX distribution

n ParameterA.E A.B Var MSE Cl
Lower Upper

1.6598 0.1598 0.3445 0.3701 1.4672 1.8523
1.2139 0.3129 2.7528 2.7986 -0.241 2.6697
0.6268 0.1268 0.1319 0.1480 0.5458 0.7037
1.5168 0.0168 0.0234 0.0236 1.5129 1.5206
1.0134 0.0134 0.0150 0.0151 1.0109 1.0158
0.5113 0.0113 0.0057 0.0059 0.5103 0.5211
1.5050 0.0050 0.0074 0.0075 1.5042 1.5057
1.0046 0.0046 0.0048 0.0049 1.0041 1.0050
0.5033 0.0033 0.0018 0.0018 0.5031 0.5034
1.5039 0.0039 0.0043 0.0044 1.5035 1.5042
1.0017 0.0017 0.0027 0.0028 1.0014 1.0172
0.5018 0.0018 0.0011 0.0011 0.5017 0.5019
1.6712 0.1711 0.3431 0.3724 1.4774 1.8649
1.1910 0.1910 0.8158 0.8523 0.7473 1.6343
1.9159 0.4159 1.2843 1.4573 1.1578 2.6739
1.5134 0.0134 0.0229 0.0231 1.5096 1.5171
1.0163 0.0163 0.0153 0.0155 1.0137 1.0188
1.5343 0.0343 0.0510 0.0522 1.5257 1.5428
1.5041 0.0041 0.0075 0.0075 1.5033 1.5048
1.0044 0.0044 0.0047 0.0048 1.0039 1.0048
1.5094 0.0093 0.0167 0.0167 1.5078 1.5109
1.5036 0.0036 0.0045 0.0045 1.5032 1.5039
1.0023 0.0023 0.0028 0.0028 1.0020 1.0025
1.5062 0.0062 0.0099 0.0099 1.5054 1.5069
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6. APPLICATIONS

In this section, the implementation of the PBX distribution is explored. It is compared
with other closely related distributions. For this purpose, three real life data sets are used
(Table 3). Data set 1 contains 100 observations on breaking stress of carbon fibers (in Gba)
[36]. Data set 2 are the gauge lengths of 10 mm ([1],[31]) consisting of 63 observations.
Data set 3 is the rainfall data of Peninsular Malaysia ([21], [45], [51]). It is the average
maximum daily rainfall for 30 years from 1975-2004 of 35 stations. These data sets are
used to compare PBX distribution with other closely related distributions (Table 4, Table 5
and Table 6). These include odd log-logistic Burr X (OLLBX) [48], Marshall-Olkin Bur X
(MOBX) [2], type | half logistic Burr X (TIHLBX) [43], exponentiated generalized Burr X
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TaBLE 3. Descriptive measures for all observed data sets

Min. Q1 Median Mean (@3 Max.
DataSetl1 0.390 1.840 2.700 2.621 3.220 5.560
Dataset2 1.901 2.554 2996 3.059 3.421 5.020
Dataset3 0.703 0.955 1.048 4.137 1.163 109.2
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FIGURES. TTT plots for (a) data set 1, (b) data set 2, (c) and data set 3

(EGBX) [22], Weibull Burr X (WBX) [18] and beta Kumaraswamy Burr X (BKBX) [33]
distribution. Numerous measures are used to observe the goodness of fit such as Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), Kolmogorov-Smirnov
(K-S), Cramer-Von Mises (W*) and Anderson Darling (A*). The results are presented in
Table 4, 5 and 6. While Figure 6 presents the profile likelihood plot for each parameters for
all data sets. For all the three data sets, all the goodness of fit measure such as AIC, BIC,
K-S, A* andW* has minimum value for PBX distribution (Table 4, 5 and 6). Therefore, the
PBX distribution fits well to the three data sets as compared to MOBX, OLLBX, TIHLBX,
EGBX and BKBX distribution. Figure 7 further validates the fitting of the PBX distribution
over the three data sets.

7. CONCLUDING REMARKS

This paper develops an extension of Burr X distribution that is named as power Burr
X. This model can deal with the heavy tailed skewed data sets as well as symmetrical data
sets under some constraints. Various properties such as moments and related measures,
stochastic ordering and Rnyi entropy of PBX distribution are explored. Parameters are
being estimated through ML estimation and Monte Carlo simulation study concludes that
the bias and MSE of estimated parameters reduces with increase in sample size while for
small value of additional shape parameter the bias and MSE are smaller. It is evident from
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TABLE 4. Estimated parameters with goodness of fit measures for data
setl

Data Set 1
PBX MOBX OLLBX TIHLBX EGBX WBX BKBX
1.3171 15584 0.1189 1.2125 1.4626 3.9909 2.0476

<
o
o
@
n

t',j- (0.5967) (0.4171) (1.0488) (0.1061) (0.7716) (0.8175) (0.1265)
e 3 0.3047 0.4604 0.3456 0.0728 0.1940 0.1397 0.3620
i (0.1507) (0.0422) (0.1539) (0.0095) (0.0371) (0.0135) (0.1373)
g, 12044 18203 13726 62681 64399 03838 0.2982
g (0.3025) (1.1811) (0.8469) (0.0002) (0.0546) (0.7917) (0.6313)
g 1.0676 17.774 4.6364
o v ) i i i (0.7657) (3.9732) (3.3977)
g ] ] ] ] ] 2.6441
£ (0.5124)
i 0.3199

P ) ] ] ] ] T (2.4834)

AIC 288.66 289.35 288.84 289.38 290.63 290.54  294.48
BIC 296.47 297.17  296.66 297.20 301.05 300.96 310.11
K-S 0.0643 0.0681  0.0659 0.0688 0.0647 0.0645 0.0644
A* 0.4076 0.4106  0.4103 0.4112 0.4079 0.4078  0.4075
W 0.0694 0.0728 0.0716 0.0739 0.0699 0.0697 0.0696
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FIGURE 6. The profile likelihood plots for all data sets for observed parameters

the three applications from different fields that the model has simple structure with higher
adequacy as that of three parametric models while has low estimation cost and greater
adequacy as compared to higher parametric distributions.
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TABLE 5. Estimated parameters with goodness of fit measures for data
set 2

Data Set 2
Models PBX MOBX OLLBX TIHLBX EGBX WBX BKBX
61.602 11.652 0.1231 77.283 0.5418 37.915 1.9949

ﬁ (0.0004) (3.3040) (0.1278) (1.1954) (0.2910) (3.6074) (0.1892)
e 5 1.0481 0.5414 0.0199 09150 0.2026 0.5369 0.3508
i (0.0657) (0.0723) (0.0058) (0.2083) (0.3707) (0.1443) (0.1961)
g , 06470 07018 17723 03520 58175 03269 7.0351
g (0.0581) (0.6781) (0.0001) (0.1928) (1.7163) (0.0920) (1.0427)
o 53.247 1.8842 0.0924
- i i i i (0.7353) (1.2981) (0.1164)
g ] ] ] ] ] 1.5854
£ (0.0031)
i 30.697

p ) ) ) ) ) ) (1.4662)

AlC 118.66 118.92 121.96 118.85 120.56 121.13  123.52
BIC 125.09 125.35 128.39 125.28 129.13 129.70 136.38
K-S 0.0647 0.0856  0.0998 0.0853 0.0741 0.0768 0.0724
A* 0.3137 0.3509 0.4912 0.3492 0.3213 0.3212 0.3195
W* 0.0465 0.0671  0.0837 0.0669 0.0592 0.0582  0.0517
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FIGURE 7. Fitted pdf with histogram (1st Row) and empirical and fitted
cdf (2nd Row) of PBX model for for all three data sets
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TABLE 6. Estimated parameters with goodness of fit measures for data
set3

Data Set 3
Models PBX MOBX OLLBX TIHLBX EGBX WBX BKBX
1.5240 36.509 0.0897 7.2958 0.1436 12.237 1.1271

o (1.4964) (4.3462) (0.0150) (7.3933) (0.0246) (2.5589) (0.7621)
© 08220 24515 00201 10167 00008 15040 00616
k5 (0.4368) (0.2141) (0.0129) (0.8344) (0.0010) (0.9359) (0.0209)
@, 36800 20619 39439 16825 25107 10651 34.621
S (1.9406) (3.6691) (0.0008) (6.1555) (0.0001) (0.7548) (3.1224)
& ] ] ] 24842 1.2828 25.107
5 (0.00002) (3.6899) (1.8945)
g, ] ] ] ] ] ] 0.6116
£ (0.7513)
i 37.941

P ) ) ) ) ) (3.5127)

AlC -36.58  -35.56 -33.99 -36.85 75.09 -34.86 -28.78
BIC -32.01  -30.98 -29.41 -32.37 81.20 -28.75 -19.62
K-S 0.0659 0.0821 0.0876 0.0772 0.4249 0.0684  0.0673
A* 0.1553 0.1979  0.2670 0.1941 0.9664 0.1617  0.1581
W* 0.0193 0.0301 0.0353 0.0333 1.9740 0.0257  0.0231
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