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Abstract.: In probability theory, researchers always prefer a model hav-
ing simple structure with small estimation cost and higher adequacy for
real life data applications. Therefore, in this study we have developed a
simple power Burr X (PBX) distribution with an additional shape parame-
ter. We have studied the shapes of the developed distribution with respect
to subfamilies depends on the additional parameter. This study reveals
some structural properties of this new model such as moments, stochastic
ordering, quantile function and Rnyi entropy. We have also developed a
location-scale regression model for log power Burr X (LPBX) distribution
to enhance its application in survival analysis. To observe the behavior of
estimated parameters, we have conducted a Monte Carlo simulation study
under maximum likelihood (ML) estimation and observed efficiencies by
means of bias and mean square errors. Three life-time applications from
different industries justified the adequacy, flexibility and potentiality of
PBX distribution as compared to other higher parametric complex gener-
alizations.
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1. INTRODUCTION

Probabilistic distributions have vast role in statistical modeling to explain the behavior
of failure and survival rates of different products. Therefore, new probability models are
typically developed and studied to explain the possible outcomes of real life experiments
as well as for the natural phenomenon. Naturally existed data are not always symmetric.
Therefore, researchers have tried to develop heavy tailed distributions (e.g.[17], [22],[39]
and [50]). The exponential and the Weibull distribution are generally used to model real
world problems such as curing time of a certain disease, survival time with the dose of
any medicine, failure of any electrical appliance, rate of floods, strengths of the laboratory
equipment, time to repair objects, wind speed, wind shield strength, solar energy, water
draining and the rain-fall patterns (see e.g. [3], [11], [14], [40] and [44]).

A system of twelve lifetime distributions was proposed and studied by [10] making use
of Pearson differential equations. Among these 12 distributions, Burr type III (BIII), Burr
type X (BX) and Burr type XII (BXII) got maximum attention in literature as it effectively
models the failure data due to its flexible failure rate [34]. Moreover, many families of
distribution have also contributed in literature for the extension in Burr family; see exam-
ple ([4] − [6], [12], [15], [24] − [30], [49]). BX is an important continuous probability
distribution. It significantly contributes in medical, hydrology and reliability analysis [18].
The probability density function (pdf) and the cumulative distribution function (cdf) given
by [47] of two parameter BX distribution are,

f(y; α, β) = 2αβ2yexp

[
− (

βy
)2

](
1− exp

[
− (

βy
)2

])α−1

(1. 1)

F (y; α, β) =
(

1− exp

[
− (

βy
)2

])α

(1. 2)

where,α > 0 is shape parameter whileβ > 0 is a scale parameter.
The motivation to explore BX distribution is the availability of its non-monotone fail-

ure rate [18] such as decreasing hazard rate forα > 1/2 and bath-tub failure rate forα ≤
1/2. It can effectively deal with big data problems [33]. Moreover, it is very effective and
adaptable for demonstrating the reliability strength and lifetime data sets [46]. They also
observed that the two parameter BX distribution has a close relation with the Weibull (WD)
as well as the Rayleigh (RD) distribution and is often named as generalized Rayleigh (GR)
or exponentiated Rayleigh (ER) distribution. Therefore, the BX model and its generalized
forms provide alternatives for these distributions. Forα = 1, BX distribution is equiva-
lent to the Rayleigh distribution (see Eq.1) and forβ = 1 single parameter Burr X (BXI)
distribution can be obtained from exponentiated Weibull distribution [38].

Numerous studies have been conducted from last few years to develop modified or gen-
eralized BX distribution for the enhancement of potentiality of BX model. Recently, [48]
have developed three parameter odd log-logistic Burr X (OLLBX) distribution, [43] pro-
posed the three parameter type I half logistic Burr X (TIHLBX) distribution, [23] proposed
three parameter transmuted Burr X (TBX) distribution, [22] have developed the four para-
meter exponentiated generalized Burr X (EGBX) distribution. These are the recent gener-
alizations of the BX distribution. Other prominent studies are two parameter inverse Burr
X distribution [20], four parameter beta Burr X (BBX) distribution [34], three parameter
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Marshall-Olkin extended Burr X (MOBX) distribution [2], Weibull Burr X (WBX) distri-
bution [18] and six parametric beta Kumaraswamy Burr X distribution [33]. These gener-
alizations have complex structure and have higher estimation cost due to large number of
parameters.

The present study is organized as follows: Power Burr X distribution is proposed in
Section 2. Section 3 explains some structural properties of PBX distribution. In section 4,
we develop the log power Burr X (LPBX) distribution and LPBX regression model under
location-scale method. Section 5 illustrates the statistical inference of PBX model by means
of ML estimation. Four real life applications are given in section 6 to justify the adequacy
and flexibility of model as compared to existing distributions. Section 7 concludes the
study.

2. POWER BURR X (PBX) DISTRIBUTION

The power transformation or Box and Cox power transformation [8] is typically used
to increase the flexibility of the observed model. IfY follows the baseline distributionG,
the transformationT = Y

1
θ will develop the new distribution function and it is named

as powerG distribution. For example, power Lindley distribution [13] and power Lomax
distribution [37] are derived making use of power transformations. Using similar approach,
power Burr X (PBX) is proposed in this section.

Let a random variableY follows the Burr X distribution with parametersα andβ. Then,
the power transformationT = Y

1
θ generates the power Burr X (PBX) distribution. The

random variableT follows the PBX distribution with parametersα, β andθ. Symbolically,
it is denoted asT ∼ PBX(α, β, θ). The cdf of PBX distribution is

F (t;α, β, θ) = (1− exp[−(βtθ)2])α for t > 0 (2. 3)

And the corresponding pdf is

f(t; α, β, θ) = 2αβ2θt2θ−1exp[−(βtθ)2](1− exp[−(βtθ)2])α−1 (2. 4)

where,θ is an additional shape parameter. The survival rate function (srf) and the hazard
rate function (hrf) of PBX distribution are given respectively,

S(t; α, β, θ) = 1− F (t) = 1− (1− exp[−(βtθ)2])α for t > 0 (2. 5)

h(t;α, β, θ) =
f(t)
S(t)

=
2αβ2θt2θ−1exp[−(βtθ)2](1− exp[−(βtθ)2])α−1

1− (1− exp[−(βtθ)2])α
(2. 6)

2.1. Limiting behavior for pdf and hrf of PBX distribution. This subsection provides
the limiting behavior of pdf as well as the failure rate for PBX distribution. The behavior
of the model is observed for extreme positions i.e.t → 0 andt →∞.

Lemma 1: If T follows thePBX(α, β, θ) distribution then the limits for pdf whent
approaches to zero are,

lim
t→0

f(t) =





0 if αθ < 1/2
2αβ4θ if αθ = 1/2
∞ if αθ > 1/2
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It is evident fromLemma1 that the behavior for the pdf of PBX distribution depends on
the combination of both shape parametersα andθ. It is also observed that the pdf of PBX
distribution approaches to zero ast →∞.

Lemma 2: Since random variableT follows thePBX(α, β, θ) distribution then the
limits for hrf whent approaches to infinity are depends on the values ofθ. If θ < 1/2,
limt→0 h(t) approaches to zero while ifθ < 1/2, limt→∞ h(t) approaches to infinity.
Whenθ = 1/2, limt→∞ h(t) becomes equal to2β2θ. As F (0) = 0 for all probabilistic
models, therefore, limiting behavior ofh(t) whent → 0 is same as that of the behavior of
pdf.

FIGURE 1. pdf curves of PBX distribution at various parameter combinations

2.2. Shapes of the Distribution. The shape of PBX distribution is explored with respect
to its subfamilies in Figure 1. It can be observed that the shape of PBX distribution Figure
1 is mostly positively skewed that depends on the shape parametersα andθ. Moreover,
Figure 1(a) represents the behavior of PBX at fixedα while Figure 1(b) shows the behavior
of pdf at varying combinations ofα andθ. It is observed from the Figure that the model has
exponentially decreasing behavior forαθ < 1/2, exponentially decreasing starting from y-
axis forαθ = 1/2, and uni-modal behavior forαθ > 1/2 that is also stated in Lemma 1.

The hrf curves (Figure 2) have monotonically increasing, decreasing, bathtub behavior
and partially upside-down bathtub behavior. This primarily depends on the combination of
α andθ. Figure (2a) has curves with bathtub and upside down bathtub shapes while Figure
(2b) has decreasing curves and increasing curves.

2.3. Weighted Representation of PBX distribution. This section provides the weighted
representation of PBX distribution using simple binomial expansion. This representation
simplifies the evaluation of the properties of PBX distribution. Consider the pdf of PBX
distribution given in Eq. ( 2. 4 ),

f(t; α, β, θ) = 2αβ2θt2θ−1exp[−(βtθ)2](1− exp[−(βtθ)2])α−1
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FIGURE 2. hrf curves of PBX distribution at various parameter combinations

By using the binomial expansion(1− t)m =
∑∞

k=0(−1)k
(
m
k

)
tk for |t| < 1, we get

f(t) = 2αβ2θt2θ−1exp
[− (βtθ)2

] ∞∑

k=0

(−1)k

(
α− 1

k

)
exp

[− k(βtθ)2
]

= 2αβ2θt2θ−1
∞∑

k=0

(−1)k

(
α− 1

k

)
exp

[− (k + 1)(βtθ)2
]

f(t; α, β, θ) = 2αβ2θt2θ−1
∞∑

k=0

ηkexp
[− (k + 1)(βtθ)2

]
(2. 7)

where,ηk = (−1)k
(
α−1

k

)
. We will use Eq. ( 2. 7 ) for further evaluation of the properties

of PBX distribution.

3. STRUCTURAL PROPERTIES OFPBX DISTRIBUTION

This section explores some important features of the PBX distribution with the help of
structural properties. It contains the moments and the related measures, stochastic ordering,
quantile function and entropies of PBX distribution.

3.1. Moments and Related Measures.Theorem 1: Let the random variableT follows
the PBX distribution given in Eq. ( 2. 7 ) then the moment of the distribution is derived as

µ
′
r =

α

βr/θ

∞∑

k=0

ηk

(k + 1)1+r/2θ
Γ
(
1 +

r

2θ

)
(3. 8)

As Γ(π) = (π − 1)!
Proof: By definition,µ

′
r = E(T r) =

∫∞
−∞ trf(t)dt

µ
′
r = 2αβ2θ

∞∑

k=0

ηk

∫ ∞

0

t2θ+r−1exp
[− (k + 1)(βtθ)2

]
dt
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Let,

(k + 1)(βtθ)2 = y and t =
(

y
β2(k+1)

)1/2θ

dt = y
1
2θ −1

2θ
(
β2(k+1)

)1/2θ dy As t → 0, y → 0 and t →∞, y →∞

µ
′
r = 2αβ2θ

∞∑

k=0

ηk

∫ ∞

0

( y

β2(k + 1)
) 1

2θ (2θ+r−1)
exp(−y)

y
1
2θ − 1

2θ
(
β2(k + 1)

)1/2θ
dy

After simplification, we get

µ
′
r =

α

β
r
θ

∞∑

k=0

ηk

(k + 1)1+
r
2θ

∫ ∞

0

y1+ r
2θ−1exp(−y)dy

This completes the proof. The raw moments of PBX distribution and further moments
about mean, skewness and kurtosis of the distribution are straightforward.

3.2. Quantile Function. Let p follows the uniform distribution with parameters (0, 1),
then the quantile function of the PBX distribution is evaluated as

tp =

[
1
β

(
log

(
1

1− p1/α

)) 1
2
] 1

θ

(3. 9)

By inserting the value ofp = 0.25, 0.50, 0.75, we can compute the real solution for the
quartiles of PBX distribution. Moreover, we can easily compute all the percentiles by using
given quantile function. This measurement can also be used to compute the skewness and
kurtosis of the distribution by using Bowley [7] and Moors [35] approach respectively. The
coefficient of Bowley skewnesssk based on quartiles is given as

sk =
Q3/4 + Q1/4 − 2Q1/2

Q3/4 −Q1/4
(3. 10)

Therefore, the coefficient of Moors kurtosis(kr) based on octiles is given as

kr =
Q3/8 −Q1/8 + Q7/8 −Q5/8

Q3/4 −Q1/4
(3. 11)

Table 1 represent the quartiles, inter quartile range, the Bowley skewness and Moors kurto-
sis of the PBX distribution forα = 3.0 andβ = 2.0. It can be observed that all the quartiles
decreases by increasing the value ofθ. Moreover, the skewness and kurtosis of the distri-
bution decrease by increasingθ. It is also an interesting fact that whenθ approaches toα,
the distribution becomes approximately symmetrical.

Figure 3 represents skewness and kurtosis of PBX distribution for the combination of
shape parameters keeping scale parameter fixed atβ = 0.5. It can be observed that the
skewness (Figure 3a) and kurtosis (Figure 3b) decrease for increasing values of shape pa-
rametersα andθ.
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TABLE 1. Quartiles, inter quartile range, skewness and kurtosis of PBX distribution

Measures Q1 Q2 Q3 I.Q.R sk kr

θ
0.1 0.0009 0.0095 0.0764 0.0755 0.7717 3.6048
0.3 0.0982 0.2122 0.4244 0.3262 0.3008 1.4227
0.5 0.2485 0.3946 0.5980 0.3494 0.1640 1.2784
0.7 0.3699 0.5146 0.6926 0.3227 0.1029 1.2462
1.0 0.4985 0.6281 0.7733 0.2747 0.0563 1.2342
1.5 0.6287 0.7334 0.8425 0.2137 0.0199 1.2321
2.0 0.7060 0.7925 0.8793 0.1733 0.0017 1.2315

FIGURE 3. (a) Skewness and (b) Kurtosis of PBX distribution.

3.3. Stochastic Ordering. The uni-variate stochastic ordering is defined as the partial or-
der relation between the probabilities of two random variables of a probability distribution
linked with a commutable space (e.g. [32],[42]). The likelihood ordering of two random
variables followingPBX(α, β, θ) distribution is considered below.

Theorem 2: LetT1 followsPBX(α1, β, θ1) andT2 followsPBX(α2, β, θ2) with their
respective distribution functionsf(t) andg(t). Keeping the scale parameter(β) constant,
the ratio between the pdfs is,

f(t)
g(t)

=
α1θ1t

2(θ1−θ2)exp

(
(βtθ2)2 − (βtθ1)2

)(
1− exp

(− (βtθ1)2
))α1−1

α2θ2

(
1− exp

(− (βtθ2)2
))α2−1 (3. 12)
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Assume thatα1 = α2 = α, we get

f(t)
g(t)

=
θ1t

2(θ1−θ2)exp

(
(βtθ2)2 − (βtθ1)2

)(
1− exp

(− (βtθ1)2
))α−1

θ2

(
1− exp

(− (βtθ2)2
))α−1

By taking derivatives, it is foundd f(t)
g(t) > 0 for θ1 > θ2 andd f(t)

g(t) < 0 for θ1 < θ2. This
implies the existence of likelihood ratio that increases whenθ1 > θ2 and decreases when
θ1 < θ2 (for α1 = α2 = α). This leads to the following theorems.

Theorem 3: If T1 follows PBX(α, β, θ1) andT2 follows PBX(α, β, θ2), thenT1 ≥st

T2 for θ1 > θ2 andT1 ≤st T2 for θ1 < θ2. From above theorem, we also conclude that
T1 ≥st T2 for θ1 > θ2 andT1 ≤st T2 for θ1 < θ2. where,≥st is the ordering of random
variables (e.g. [41]). Also, it can be observed that whenθ1 < θ2 there is no likelihood
ratio. We conclude another theorem under similar assumption of fixedθ.

Theorem 4: If T1 follows PBX(α, β, θ1) andT2 follows PBX(α, β, θ2), thenT1 ≥lr

T2 for θ1 > θ2 andT1 ≤lr T2 for θ1 < θ2.

3.4. Rnyi Entropy. Entropy typically deals with the uncertainty, diversity and random-
ness of the system. Rnyi entropy is commonly used due to its vast applications in numer-
ous fields such as econometrics, statistical inference and problem identification in statistics
[19]. By definition, Rnyi entropy is [9]

IR(ϑ) =
1

1− ϑ
log(I(ϑ)) =

1
1− ϑ

log

[ ∫ ∞

−∞
fϑ(t)dt

]
, forϑ > 0 and ϑ 6= 1 (3. 13)

I(ϑ) =
∫ ∞

0

2ϑαϑβ2ϑθϑtϑ(2θ−1)exp

(
− ϑ(βtθ)2

)(
1− exp

(
− ϑ(βtθ)2

))ϑ(α−1)

dt

By using the binomial expansion(1− t)m =
∑∞

k=0(−1)k
(
m
k

)
tk for |t| < 1, we get

I(ϑ) = 2ϑαϑβ2ϑθϑ
∞∑

k=0

(−1)k

(
ϑ(α− 1)

k

) ∫ ∞

0

tϑ(2θ−1)exp

(
− (k + ϑ)(βtθ)2

)
dt

Let,

(k + ϑ)(βtθ)2 = y and t =
(

y
β2(k+ϑ)

)1/2θ

dt = y
1
2θ −1

2θ
(
β2(k+ϑ)

)1/2θ dy As t → 0, y → 0 and t →∞, y →∞
After simplification, we get

I(ϑ) = 2ϑ−1αϑβ
ϑ−2
2θ θϑ−1

∞∑

k=0

(−1)k

(k + ϑ)ϑ− ϑ−1
2θ−1

(
ϑ(α− 1)

k

)
Γ
(

ϑ− ϑ− 1
2θ

)
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By putting the value ofI(ϑ) in Eq. ( 3. 13 ) we get,

IR(ϑ) =
1

1− ϑ
log

[
(2θ)ϑ−1αϑβ

ϑ−2
2θ

∞∑

k=0

(−1)k

(k + ϑ)ϑ− ϑ−1
2θ−1

(
ϑ(α− 1)

k

)

Γ
(

ϑ− ϑ− 1
2θ

)]
(3. 14)

Eq. ( 3. 14 ) is the explicit expression for Rnyi entropy of PBX distribution.

4. REGRESSIONMODELING FORLOG-PBX DISTRIBUTION

Let T follows the PBX distribution given in Eq. ( 2. 4 ). Then,Z = logT follows
the log power Burr X (LPBX) distribution, the pdf ofZ after parameterization in terms of
µ = −logβ1/θ andσ = (2θ)−1 can be expressed as

f(z; α, µ, σ) =
α

σ
exp

[
z − µ

σ

]
exp

[
− exp

[
z − µ

σ

]]

[
1− exp

[
− exp

[
z − µ

σ

]]]α−1

(4. 15)

where,α > 0 andσ > 0 are the shape parameter whileµ ∈ < is location parameter. Thus,
if Z ∼ LPBX(α, µ, σ), then the survival function for corresponding pdf given in Eq. ( 2.
4 ) is

S(z) = 1−
[
1− exp

[
− exp

[
z − µ

σ

]]]α

(4. 16)

where,−∞ ≤ Z ≤ ∞ and−∞ ≤ µ ≤ ∞. The LPBX distribution has more flexible
behavior (Figure 4). It can be used to model negatively skewed data sets.

FIGURE 4. Pdf curves for LPBX distribution (forµ = 0)
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Practically, lifetime of variableXj is effected from many variables such as blood pres-
sure, cholesterol level and many others. Therefore, under location and scale modeling tech-
nique, we propose a regression model for LPBX distribution. Lettj = (tj1, tj2, tj3, . . . , tjn)T

are the independent variable vector associated withjth dependent variableZj , for j =
1, 2, . . . , n. Consider a sample ofn independent observations say(z1, x1), (z2, x2), . . . , (zn, xn),
where each random response is define aszj = minlog(tj), log(cj), wherelog(tj) and
log(cj) are the log-lifetime and log-censoring respectively.

Now the regression model for dependent variableZj for LPBX distribution is given as

zj = tTj γ + σxj (4. 17)

where,zj is the random error with pdf given in Eq. ( 4. 15 ),γ = (γ1, γ2, γ3, . . . , γn), σ >
0, is the scale parameter,α > 0 is shape parameter andtj is the vector of explanatory
variables that is used for modeling the location parametersµj = tTj γ. The log-likelihood
function for the parameters of LPBX distributionφ = (α, σ, γT )T can be expressed from
Eq. ( 4. 15 ) and ( 4. 16 ) as

I(φ) = q[logα− logσ] +
∑

j∈F

(
zj − µj

σ

)
−

∑

j∈F

exp

(
zj − µj

σ

)

+ (α− 1)
∑

j∈F

log

[
1− exp

(
− exp

(
zj − µj

σ

))]

+
∑

j∈C

log

{
1−

[
1− exp

(
− exp

(
zj − µj

σ

))]α}
(4. 18)

where,q is the observed number of failures whileF andC are the set of individuals for
which zj is the log-lifetime. We can obtain the estimates of LPBX regression model by
maximizing the likelihood function given in Eq. ( 4. 18 ). The estimated survival function
is given as

S(z|t) = 1−
[
1− exp

(
− exp

(
zj − µ̂j

σ̂

))]α̂

(4. 19)

For parameter estimation of LPBX regression model, SAS (2004) with NLMixed method
is used. Forσ = 1, the regression model for LPBX given in Eq. 4. 15 is equiv-
alent to the regression model of BX distribution. Under regularity conditions of vector
spaceφ = (α, σ, γT )T , the asymptotic distribution of(φ̂ − φ) is multivariate Normal
Np+2{(α, σ, γT )T ,K(φ)−1}, whereK(φ) is the observed information matrix of(p+3)×
(p + 3) (e.g. [16]).

5. STATISTICAL INFERENCE

5.1. ML Estimation. Maximum likelihood (ML) estimation is extensively used for the
estimation of parameters. The normal approximation of ML estimator contributes analyti-
cally and statistically in large sample theory. The parameters ofPBX(α, β, θ) distribution
are estimated by using this approach. LetT1, T2, T3, . . . , Tn aren identically indepen-
dent random variables following the PBX distribution. The log-likelihood function (L) for
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unknown parametersϕ = (α, β, θ)T is given as

L = nlog(2α) + nlogθ + 2nlogβ + (2θ − 1)
n∑

j=0

logtj −
n∑

j=0

(
βtθj

)2

+ (α− 1)
n∑

j=0

log

(
1− exp

(
− (

βtθj
)2

))
(5. 20)

The necessary condition to maximize the log-likelihood function given in Eq. 5. 20 is the
existence of its first derivative with respect to estimated parameters and equates it to zero.

Now,
∂L

∂α
=

n

α
+

n∑

j=0

log

(
1− exp

(
− (

βtθj
)2

))
(5. 21)

∂L

∂β
=

2n

β
− 2β

n∑

j=0

(
t2θ
j

)
+ (α− 1)

n∑

j=0

2βt2θ
j exp

(
− (

βtθj
)2

)

(
1− exp

(
− (

βtθj
)2

)) (5. 22)

∂L

∂θ
=

n

θ
+ 2

n∑

j=0

logtj − 2β2
n∑

j=0

(
t2θ
j

)
logtj

+ (α− 1)
n∑

j=0

2β2t2θ
j exp

(
− (

βtθj
)2

)
logtj

(
1− exp

(
− (

βtθj
)2

)) (5. 23)

Equations ( 5. 21 ), ( 5. 22 ) and ( 5. 23 ) can be solved simultaneously to evaluate the
unknown parameters but these equations are not linear as well as have no exact solution.
Therefore, we use nonlinear iterative procedure such as Newton-Raphson method for the
estimation of parameters arithmetically.

Since ML estimators have large sample property, therefore, the ML estimates ofϕ̂ are
assumed to follow approximate normal distribution. The mean of this approximation isϕ
and variances and co-variances can be obtained from the inverse of the expected informa-
tion matrix such as

√
n(ϕ̂ − ϕ) ∼ N(0, Vn), whereVn = (vij) = I−1

n (ϕ) is considered
as the expected information matrix and its inverse will provide variances and co-variances.
One can easily compute the variance co-variances elements by using second derivative of
Eq. ( 5. 21 ), ( 5. 22 ) and ( 5. 23 ).

5.2. Simulations. Simulation study enables us to understand the behavior of model pa-
rameters by generating the data from pseudo-random sampling. Estimation of parameters
from these samples explore the efficiency of parameters on the basis ofbias andMSE.
We have performed a simulation study for the unknown parameters of PBX distribution.
The study contains10, 000 repetition of experiment and has different sample sizes such as
n = 10, 100, 300 and500. We have considered two sets for sim1ulation given as set 1 is
α = 1.50, β = 1.00 andθ = 0.50 and set 2 isα = 1.50, β = 1.00 andθ = 1.50. The
generated results are given in Table 2.
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It can be seen that the bias, MSE and C.I for all the parameters of PBX distribution
decreases for increasing sample size (Table 2. It is interesting to note that the parameters
have less bias and MSE for small value of new additional shape parameterθ.

TABLE 2. Bias, MSE and 95% confidence interval for the parameters of
PBX distribution

n ParametersA.E A.B Var MSE
C.I

Lower Upper

Set 1

10
α 1.6598 0.1598 0.3445 0.3701 1.4672 1.8523
β 1.2139 0.3129 2.7528 2.7986 -0.241 2.6697
θ 0.6268 0.1268 0.1319 0.1480 0.5458 0.7037

100
α 1.5168 0.0168 0.0234 0.0236 1.5129 1.5206
β 1.0134 0.0134 0.0150 0.0151 1.0109 1.0158
θ 0.5113 0.0113 0.0057 0.0059 0.5103 0.5211

300
α 1.5050 0.0050 0.0074 0.0075 1.5042 1.5057
β 1.0046 0.0046 0.0048 0.0049 1.0041 1.0050
θ 0.5033 0.0033 0.0018 0.0018 0.5031 0.5034

500
α 1.5039 0.0039 0.0043 0.0044 1.5035 1.5042
β 1.0017 0.0017 0.0027 0.0028 1.0014 1.0172
θ 0.5018 0.0018 0.0011 0.0011 0.5017 0.5019

Set 2

10
α 1.6712 0.1711 0.3431 0.3724 1.4774 1.8649
β 1.1910 0.1910 0.8158 0.8523 0.7473 1.6343
θ 1.9159 0.4159 1.2843 1.4573 1.1578 2.6739

100
α 1.5134 0.0134 0.0229 0.0231 1.5096 1.5171
β 1.0163 0.0163 0.0153 0.0155 1.0137 1.0188
θ 1.5343 0.0343 0.0510 0.0522 1.5257 1.5428

300
α 1.5041 0.0041 0.0075 0.0075 1.5033 1.5048
β 1.0044 0.0044 0.0047 0.0048 1.0039 1.0048
θ 1.5094 0.0093 0.0167 0.0167 1.5078 1.5109

500
α 1.5036 0.0036 0.0045 0.0045 1.5032 1.5039
β 1.0023 0.0023 0.0028 0.0028 1.0020 1.0025
θ 1.5062 0.0062 0.0099 0.0099 1.5054 1.5069

6. APPLICATIONS

In this section, the implementation of the PBX distribution is explored. It is compared
with other closely related distributions. For this purpose, three real life data sets are used
(Table 3). Data set 1 contains 100 observations on breaking stress of carbon fibers (in Gba)
[36]. Data set 2 are the gauge lengths of 10 mm ([1],[31]) consisting of 63 observations.
Data set 3 is the rainfall data of Peninsular Malaysia ([21], [45], [51]). It is the average
maximum daily rainfall for 30 years from 1975-2004 of 35 stations. These data sets are
used to compare PBX distribution with other closely related distributions (Table 4, Table 5
and Table 6). These include odd log-logistic Burr X (OLLBX) [48], Marshall-Olkin Bur X
(MOBX) [2], type I half logistic Burr X (TIHLBX) [43], exponentiated generalized Burr X
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TABLE 3. Descriptive measures for all observed data sets

Min. Q1 Median Mean Q3 Max.
Data Set 1 0.390 1.840 2.700 2.621 3.220 5.560
Data set 2 1.901 2.554 2.996 3.059 3.421 5.020
Data set 3 0.703 0.955 1.048 4.137 1.163 109.2

FIGURE 5. TTT plots for (a) data set 1, (b) data set 2, (c) and data set 3

(EGBX) [22], Weibull Burr X (WBX) [18] and beta Kumaraswamy Burr X (BKBX) [33]
distribution. Numerous measures are used to observe the goodness of fit such as Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), Kolmogorov-Smirnov
(K-S), Cramer-Von Mises (W*) and Anderson Darling (A*). The results are presented in
Table 4, 5 and 6. While Figure 6 presents the profile likelihood plot for each parameters for
all data sets. For all the three data sets, all the goodness of fit measure such as AIC, BIC,
K-S,A∗ andW ∗ has minimum value for PBX distribution (Table 4, 5 and 6). Therefore, the
PBX distribution fits well to the three data sets as compared to MOBX, OLLBX, TIHLBX,
EGBX and BKBX distribution. Figure 7 further validates the fitting of the PBX distribution
over the three data sets.

7. CONCLUDING REMARKS

This paper develops an extension of Burr X distribution that is named as power Burr
X. This model can deal with the heavy tailed skewed data sets as well as symmetrical data
sets under some constraints. Various properties such as moments and related measures,
stochastic ordering and Rnyi entropy of PBX distribution are explored. Parameters are
being estimated through ML estimation and Monte Carlo simulation study concludes that
the bias and MSE of estimated parameters reduces with increase in sample size while for
small value of additional shape parameter the bias and MSE are smaller. It is evident from
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TABLE 4. Estimated parameters with goodness of fit measures for data
set 1

Data Set 1
Models PBX MOBX OLLBX TIHLBX EGBX WBX BKBX

E
st

im
at

ed
P

ar
am

et
er

s
(S

.E
)

α
1.3171 1.5584 0.1189 1.2125 1.4626 3.9909 2.0476

(0.5967) (0.4171) (1.0488) (0.1061) (0.7716) (0.8175) (0.1265)

β
0.3047 0.4604 0.3456 0.0728 0.1940 0.1397 0.3620

(0.1507) (0.0422) (0.1539) (0.0095) (0.0371) (0.0135) (0.1373)

θ
1.2044 1.8203 1.3726 62.681 6.4399 0.3838 0.2982

(0.3025) (1.1811) (0.8469) (0.0002) (0.0546) (0.7917) (0.6313)

γ - - - -
1.0676 17.774 4.6364

(0.7657) (3.9732) (3.3977)

δ - - - - - -
2.6441

(0.5124)

p - - - - - -
0.3199

(2.4834)
AIC 288.66 289.35 288.84 289.38 290.63 290.54 294.48
BIC 296.47 297.17 296.66 297.20 301.05 300.96 310.11
K-S 0.0643 0.0681 0.0659 0.0688 0.0647 0.0645 0.0644
A* 0.4076 0.4106 0.4103 0.4112 0.4079 0.4078 0.4075
W* 0.0694 0.0728 0.0716 0.0739 0.0699 0.0697 0.0696

FIGURE 6. The profile likelihood plots for all data sets for observed parameters

the three applications from different fields that the model has simple structure with higher
adequacy as that of three parametric models while has low estimation cost and greater
adequacy as compared to higher parametric distributions.
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TABLE 5. Estimated parameters with goodness of fit measures for data
set 2

Data Set 2
Models PBX MOBX OLLBX TIHLBX EGBX WBX BKBX

E
st

im
at

ed
P

ar
am

et
er

s
(S

.E
)

α
61.602 11.652 0.1231 77.283 0.5418 37.915 1.9949

(0.0004) (3.3040) (0.1278) (1.1954) (0.2910) (3.6074) (0.1892)

β
1.0481 0.5414 0.0199 0.9150 0.2026 0.5369 0.3508

(0.0657) (0.0723) (0.0058) (0.2083) (0.3707) (0.1443) (0.1961)

θ
0.6470 0.7018 17.723 0.3520 5.8175 0.3269 7.0351

(0.0581) (0.6781) (0.0001) (0.1928) (1.7163) (0.0920) (1.0427)

γ - - - -
53.247 1.8842 0.0924

(0.7353) (1.2981) (0.1164)

δ - - - - - -
1.5854

(0.0031)

p - - - - - -
30.697

(1.4662)
AIC 118.66 118.92 121.96 118.85 120.56 121.13 123.52
BIC 125.09 125.35 128.39 125.28 129.13 129.70 136.38
K-S 0.0647 0.0856 0.0998 0.0853 0.0741 0.0768 0.0724
A* 0.3137 0.3509 0.4912 0.3492 0.3213 0.3212 0.3195
W* 0.0465 0.0671 0.0837 0.0669 0.0592 0.0582 0.0517

FIGURE 7. Fitted pdf with histogram (1st Row) and empirical and fitted
cdf (2nd Row) of PBX model for for all three data sets
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TABLE 6. Estimated parameters with goodness of fit measures for data
set 3

Data Set 3
Models PBX MOBX OLLBX TIHLBX EGBX WBX BKBX

E
st

im
at

ed
P

ar
am

et
er

s
(S

.E
)

α
1.5240 36.509 0.0897 7.2958 0.1436 12.237 1.1271

(1.4964) (4.3462) (0.0150) (7.3933) (0.0246) (2.5589) (0.7621)

β
0.8221 2.4515 0.0201 1.0167 0.0008 1.5040 0.0616

(0.4368) (0.2141) (0.0129) (0.8344) (0.0010) (0.9359) (0.0209)

θ
3.6800 20.619 39.439 16.825 25.107 1.0651 34.621

(1.9406) (3.6691) (0.0008) (6.1555) (0.0001) (0.7548) (3.1224)

γ - - - -
24.842 1.2828 25.107

(0.00002) (3.6899) (1.8945)

δ - - - - - -
0.6116

(0.7513)

p - - - - - -
37.941

(3.5127)
AIC -36.58 -35.56 -33.99 -36.85 75.09 -34.86 -28.78
BIC -32.01 -30.98 -29.41 -32.37 81.20 -28.75 -19.62
K-S 0.0659 0.0821 0.0876 0.0772 0.4249 0.0684 0.0673
A* 0.1553 0.1979 0.2670 0.1941 0.9664 0.1617 0.1581
W* 0.0193 0.0301 0.0353 0.0333 1.9740 0.0257 0.0231
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