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Abstract. This paper attempts to carry out a study on a specific type 
of time-fractional differential equation called Benjamin-Bona-Mahony-
Burger (BBM-Burger). This equation describes the mathematical model
of unidirectional transmission of low-amplitude long waves through frequency-
dependent dispersive media. To go ahead the research, optimal homotopy 
asymptotic method (OHAM) and its new version (NOHAM) are applied
to find analytic approximations to the BBM-Burger equation using the 
symbolic Maple package. Moreover, convergence of the both methods are 
addressed. The approximate results of the proposed methods are com-
pared with the exact solution of BBM-Burger equation. What we learn 
from the results of applying OHAM and NOHAM on the BBM-Burger 
equation, is the high satisfactory accuracy. However, NOHAM produces 
an approximate solution with lower computational cost, than OHAM.

AMS (MOS) Subject Classification Codes: 34K28; 57T20.
Key Words: Optimal homotopy asymptotic method, New version of optimal homotopy

asymptotic method, Convergence analysis, Benjamin-Bona-Mahony-Burger equation, Ca-
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1. INTRODUCTION

Fractional differential equations (FDEs) play a crucial role in mathematical modeling 
of various problems relative to many scientific areas like mathematics and nonlinear dy-
namical systems [2,10]. Leibniz and Hopital (1695) first introduced the basic idea of FDE, 
where the orders of derivatives and integrals can take integer or rational numbers in the in-
terval [0, 1]. Since then, there have been published a lot of studies pertinent different aspects 
of fractional calculus. Lakshmikantham and Vatsala [15], examined the basic theory and
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initial value problem using the operators of Riemann-Liouville fractional calculus. Another
research conducted by Diethelm and Ford [4], a series of analytic questions were proposed
on the existence and uniqueness of numerical solutions obtained by FDEs. In addition to
the studies on the theoretical aspects of FDEs, numerous researches have been conducted to
develop various numerical approaches for finding analytic approximate solutions for non-
linear systems of FDEs. Some of these approaches are as follows; finite difference [29],
homotopy analysis [17], homotopy asymptotic [22], variational iteration [20], polynomial
least squares [3], (G

′
/G)-expansion [28], and others [13, 14, 25, 27]. Homotopy analysis

method (HAM), introduced by S. Liao [16] is originated from homotopy concept, which
relates to a fundamental concept in the mathematical area of topology. Many researchers
have applied HAM to find an approximed solution to linear and non-linear functional prob-
lems, successfully [6, 8, 23]. Marinca and herisanu, used classical HAM and Homotopy
Perturbation Method (HPM) to introduce a new approach called optimal homotopy asymp-
totic method (OHAM) [18], which removes any need to h-curves study. In comparison with
HAM, its optimal form (OHAM) has two distinct advantages: the first one is to accelerated
the convergence to the series solution, and the second one is to provide the possibility of
adjusting of the convergence region, using an auxiliary function. In the similar area of re-
search, Ali et al. published a paper which proposed an improvement of OHAM based on
initial condition, auxiliary functions, controlling parameters of convergence, and homotopy
theory [1]. It is important to mention that, hereafter this extended form of OHAM, will be
called NOHAM. During recent years, many researchers have shown the effectiveness of
homotopy based on utilizing of this concept on the methods for solving many differential
and integral equations. [9, 21]. However, the application of NOHAM is not yet inves-
tigated for solving the systems of nonlinear FDEs like Benjamin-Bona-Mahony-Burger
(BBM-Burger). Therefore, in this study, the time-fractional differential equation of BBM-
Burger is analyzed to approximate its analytic solution by optimal homotopy asymptotic
method (OHAM) and its new extended form (NOHAM). All calculations are performed by
Maple symbolic package. Fundamentally, the BBM-Burger equation is served to model the
propagation of long waves with small-amplitude in nonlinear frequency-dependent disper-
sive systems. In fact, BBBM-Burger is an extended form of the Kortewegde Vries (KdV)
equation, a mathematical description of the wave propagation in shallow water surfaces.
Generally, both of BBM-Burger and KdV equations are classified as wave breaking mod-
els [11,26]. Since the KdV equation is not applicable to some physical systems, the BBM-
Burger is developed to explain the mathematical unidirectional transmission of long-wave
signals in a certain frequency-dependent (dispersive) medium [11,13,24]. The mathemati-
cal description of the BBM-Burger equation, of integer order, is given by

ut − uxxt − βuxx + uux + γux = 0, x ∈ [xL, xR]. (1. 1)

where the coefficients β and γ represent positive constants and [xL, xR] is a domain in-
terval. The time-fractional version of BBM-Burger equation is developed for analyzing
the dynamic behavior of physical systems. Similar to [12], time-fractional form of BBM-
Burger equation is as follows

Dα
t u− uxxt + ux + (

u2

2
)x = 0, t > 0, 0 < α ≤ 1, (1. 2)
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where α represents the order of fractional derivative with respect to the time, ranging in the
interval of (0, 1] . For the time-fractional BBM-Burger equation, the initial condition and
exact solution for α = 1, are given by Eqs.( 1. 3 ) and ( 1. 4 ), respectively [5]

u(x, 0) = sech2(
x

4
), (1. 3)

u(x, t) = sech2(
x

4
− t

4
). (1. 4)

The results of implementation of these approaches are compared with those of New homo-
topy analysis transform method (FHATM) [12], and the exact solutions.

2. BASIC DEFINITIONS OF FRACTIONAL CALCULUS

In this section, some basic definitions of fractional calculus will be explained briefly.

2.1. Definition. A real-valued function f(κ) with κ > 0 can be defined on the space Cµ,
µ ∈ R if there is a real number ρ > µ such that f(κ) = κpf1(κ), where f1(κ) ∈ C[0,+∞)
and it is defined on the space Cn

µ , if f (n) ∈ Cµ for n ∈ N.

2.2. Definition. The Riemann-Liouvilles integral of fractional order α ≥ 0 of a continu-
ous function f ∈ Cµ with µ ≥ −1 is given as

Jαf(κ) =
1

Γ(α)

∫ κ

0

(κ− s)α−1f(s)ds, α > 0, (2. 5)

J0f(κ) = f(κ). (2. 6)

By considering f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ ≥ −1, the main properties of the operator
Jα are listed as the following

JαJβf(κ) = Jα+βf(κ), (2. 7)

JαJβf(κ) = JβJαf(κ), (2. 8)

Jακγ =
Γ(γ + 1)

Γ(α+ γ + 1)
κα+γ . (2. 9)

2.3. Definition. The fractional-order derivative of f(κ) is defined, in caputo sense, as fol-
lows

Dαf(κ) =
1

Γ(m− α)

∫ κ

0

(κ− s)m−α−1fm(s)ds, (2. 10)

for m− 1 < α ≤ m,m ∈ N, κ > 0, f ∈ Cm
−1.

2.4. Lemma. By assuming, m−1 < α ≤ m,m ∈ N, f ∈ Cm
−1, and µ ≥ −1 the following

properties will be set
DαJαf(κ) = f(κ), (2. 11)

(JαDα)f(κ) = f(κ)− Σm−1
n=0 f

(n)(0+)
κk

n!
. (2. 12)
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3. BASIC PRINCIPLES OF THE PROPOSED TECHNIQUES

3.1. OHAM. The fundamental idea of OHAM is mainly based on the homotopy theory in
topology [7,18,19]. Suppose the following fractional equation with the initial and boundary
conditions

Φ(u(κ)) + f(κ) + Ψ(u(κ)) = 0, B(u(κ)) = 0, (3. 13)

where κ is an independent variable, Φ, u(κ), f(κ), and Ψ represent a linear type operator,
an unknown function, a known function, and a nonlinear type operator, respectively. Also,
B(u(κ)) = 0 stands for a boundary operator.
An optimal homotopy H(φ(κ; q)) : R × [0, 1] −→ R is constructed in order to satisfy a
deformation equation of zero-order as the following

H(φ(κ; q)) = (1− q)[Φ(φ(κ; q)) + f(κ)] (3. 14)
= H(q)[Φ(φ(κ; q)) + f(κ) + Ψ(φ(κ; q))], B(φ(κ; q)) = 0,

where q shows an embedding parameter in the interval [0, 1], H(κ, q, ci) is an auxiliary
function with nonzero and zero outputs, respectively for q ̸= 0 and q = 0, u0(κ) represents
the initial condition of u(κ), and φ(κ; q, ci) is an unknown function. By inserting q = 0
and q = 1 into Eq. ( 3. 14 ), the following functions are obtained

φ(κ; 0, ci) = u0(κ), (3. 15)

φ(κ; 1, ci) = u(κ). (3. 16)

Therefore, φ(κ; q, ci) will change continuously from the initial condition u0(κ) to u(κ)
with an increase in the amount of q from 0 to 1.
By putting q = 0 into Eq. ( 3. 14 ), the initial condition of u0(κ) is determined as a possible
solution for the problem defined by
Zeroth order problem:

Φ(u0(κ)) + f(κ) = 0, B(u0(κ)) = 0. (3. 17)

Lets state the definition of auxiliary function, H(κ, q, ci) as the following

H(κ, q, ci) = qH1(κ, ci) + q2H2(κ, ci) + ..., (3. 18)

one should notice that the auxiliary functions Hi(κ, ci), i = 1, 2, ..., , depends only upon κ
and ci. By expanding φ(κ; q, ci) in powers of q, the following expansion is obtained

φ(κ; q, ci) = u0(κ) + Σ∞
m=1um(κ, c1, c2, ...., cm)qm. (3. 19)

By putting Eqs.( 3. 15 )-( 3. 19 ) into Eq.( 3. 14 ) and equating the coefficients of the terms
with identical powers of q, the mth-order problem subjected to B(um(κ)) = 0 is defined
as

Φ(um(κ)) = Φ(um−1(κ)) (3. 20)
+Σm

j=1cj [Φ(um−j(κ)) + Ψ(um−j(κ)) + δjmf(κ)], m = 1, 2, 3, ...,

where δjm is the Kronecker delta.
Solving Eq. ( 3. 20 ) gives various approximates solutions um(κ, c1, c2, ..., cm),but there

exist still m unknown auxiliary parameters (c1, c2, c3, ..., cm) in the obtained solutions. It
is assumed that the auxiliary parameters (c1, c2, c3, ..., cm), are appropriately determined
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to establish the convergence of series ( 3. 19 ) at q = 1. Hence, putting Eqs. ( 3. 15 ) and (
3. 16 ) into Eq. ( 3. 19 ) for q = 1 gives the solution u(κ) as

u(κ, c1, c2, c3, ...) = u0(κ) + Σ∞
m=1um(κ, c1, c,c3, ..., cm). (3. 21)

The mth order approximate solution can be calculated by

û(κ, c1, c2, c3, ...) = u0(κ) + Σn
m=1ûm(κ, c1, c,c3, ..., cm). (3. 22)

After putting Eq. ( 3. 22 ) into Eq. ( 3. 13 ), the following residual is obtained as

R(κ, ci) = Φ(û(κ, ci)) + Ψ(û(κ, ci)) + f(κ), i = 1, 2, 3, · · · . (3. 23)

By supposing that R(κ, ci) = 0, the exact solution will be û(κ, ci). However, such a case
could not be true for a nonlinear equation. the functional J(ci) can be minimized using the
least squares technique

J(ci) =

∫ b

a

R2(κ, ci)dκ, (3. 24)

where a and b are two real values relating to the given problem. The optimal values of
ci(i = 1, 2, ...,m) will be determined based on the following conditions

∂J

∂c1
=

∂J

∂c2
=

∂J

∂c3
= ... =

∂J

∂cm
= 0. (3. 25)

The approximate solution at the level m will be determined simply.

3.2. NOHAM. The main idea of NOHAM is based on OHAM. Consider the same boundary-
value problem as defined

Φ(u(κ)) + f(κ) + Ψ(u(κ)) = 0, B(u(κ)) = 0, κ ∈ R, (3. 26)

where κ, f(κ),Φ, u(κ),Ψ, and B are as pre-defined. Suppose that u0(κ) is an initial ap-
proximation of u(κ) such that

Φ(u0(κ)) + f(κ) = 0, B(u0(κ)) = 0. (3. 27)

The function φ(κ; q, ci) can be rewritten as the following form

φ(κ, q, ci) = u0(κ) + qu1(κ, ci), (3. 28)

where q is an embedding parameter over the interval of [0, 1]. Thus, the approximate
solution of the first order is calculated by

û(κ, ci) = u(κ, ci) = u0(κ) + u1(κ, ci), B(û(κ, ci)) = 0, (3. 29)

where c1, c2, ..., cn represent auxiliary parameters, which can be determined eventually. A
family of equations can be defined as follows

H[Φ(φ(κ; q, ci)) + f(κ),H(κ, ci),Ψ(φ(κ; q, ci))] =

Φ(u0(κ)) + f(κ) + q[Φ(u1(κ, ci))−H(κ, ci)Ψ(u0(κ))]. (3. 30)

Now, an auxiliary function H(κ, ci) is defined as

H(κ, ci) = H1(κ, ci) +H2(κ, ci) +H3(κ, ci) + · · · . (3. 31)

Note that Eq. ( 3. 30 ) satisfies the following properties
H[Φ(φ(κ; 0, ci)) + f(κ),H(κ, ci),Ψ(φ(κ; 0, ci))]

= Φ(u0(κ)) + f(κ) = 0,
(3. 32)
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H[L(φ(κ; 1, ci)) + f(κ),H(κ, ci), N(φ(κ; 1, ci))]

= H(κ, ci)[Φ(û(κ, ci)) + f(κ) + Ψ(û(κ, ci))] = 0,
(3. 33)

where H(κ, ci) ̸= 0 represents an auxiliary function needs some explanations.
From Eqs. ( 3. 28 ) and ( 3. 29 ), the following equations are obtained

φ(κ, 0, ci) = u0(κ), φ(κ, 1, ci) = û(κ, ci). (3. 34)

The following functions can be defined from Eqs. ( 3. 30 ) and ( 3. 31 )

Φ(u1(κ, ci)) = H(κ, ci)Ψ(u0(κ)),

B(u1(κ, ci)) = 0, i = 1, 2, ..., n.
(3. 35)

By comparing the coefficients of two terms q0 and q1 in Eq. ( 3. 30 ), we obtain equation
u0(κ), determinate by Eq. ( 3. 27 ), and u1(κ, ci) as following

Φ(u1(κ, ci)) = H(κ, ci)Ψ(u0(κ)), B(u1(κ, ci)) = 0, i = 1, 2, ..., n. (3. 36)

The general form of the nonlinear operator is rewritten as follows

Ψ(u0(κ)) = Σm
i=1hi(κ)gi(κ), (3. 37)

where hi(κ) and gi(κ) represent known functions, which are defined based on the function
u0(κ) and the nonlinear operator Ψ. Also, m is an integer. The equation of ( 3. 36 )
consists the summation of two solutions, the solution of homogeneous form and a particular
solution of non-homogeneous. Hence, the solution of Eq. ( 3. 36 ) is found by summing
the two mentioned solutions, although it may be selected only from particular solutions in
exceptional cases. Let the unknown function u1(κ, cj) be defined by

u1(κ, cj) = Σm
i=1Hi(κ, hj(κ), cj)gi(κ), B(u1(κ)) = 0, (3. 38)

or

u1(κ, cj) = Σm
i=1Hi(κ, gj(κ), cj)hi(κ), B(u1(κ)) = 0,

j = 1, 2, ..., n,
(3. 39)

where Hi(κ, hj(κ), cj) is a linear mixture of several functions hi, several terms from cor-
responding homogeneous equation, and some unknown parameters cj for j = 1, 2, ..., n.
Also m represents an arbitrary chosen integer. Now, if h1 represents a polynomial func-
tion as h1 = κ3, then Hi(κ, hj(κ), cj) can be considered as a mixture of polynomials:
Hi(κ, hj(κ), cj) = c1κ+ c2κ

3+ c3κ
5+ · · · . When h1 represents a trigonometric function

as h1sin(κ), then Hi(κ, hj(κ), cj) = c1sin(κ)+c2cos(κ)+c3sin(2κ)+ · · · . In a similar
way, if h1 represents a logarithmic function, then Hi(κ, hj , cj) = c1ln(κ) + c2κln(κ) +
c3κ

2ln(2κ) + · · · , where Hi and m can be determined using various ways. The solution
u1(κ, cj) calculated by Eq. ( 3. 38 ) is not considered as a complete approximate solution
for Eq. ( 3. 26 ), but û(κ, ci) in Eq. ( 3. 29 ) is the approximate solution of Eq. ( 3. 26
). The similar considerations could be valid for Eq. ( 3. 39 ), where the parameters hi

and gi are interchangeable. Now, the complete solution of Eq. ( 3. 26 ) can be achieved
by determining the optimal auxiliary parameters ci (for i = 1, 2, ..., n) and substituting the
values of u0(κ) and u1(κ, ci) into Eq. ( 3. 29 ).
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4. CONVERGENCE ANALYSIS OF THE OHAM AND NOHAM

Suppose that {un}∞n=0 is a sequence of approximate solutions. If ∃0 < δ < 1 the series
Σm−1

k=0 uk(κ) converges if ∥uk+1∥ ≤ δ∥uk∥,∀k ≥ k0 for some k0 ∈ N.
in Eq.(3.23) u1(κ), u1(κ) can be decomposed as follows

u1(κ) = c1Y1(κ) + c2Y2(κ) + · · · . (4. 40)

From Eq.(4.1), we have

V1 = c1Y1(κ), (4. 41)

V2 = c2Y2(κ),

...

If ∃0 < δ < 1, the series Σm−1
k=0 Vk(κ) given in Eq.(3.19) converges if ∥Vk+1∥ ≤

δ∥Vk∥,∀k ≥ k0 for some k0 ∈ N.

Proof. The sequence {Sn}∞n=0 is defined as

S0 = u0, (4. 42)
S1 = u0 + V1,

S3 = u0 + V1 + V2,

...
Sn = u0 + V1 + V2 + ...+ Vn,

...

In order to make {Sn}∞n=0 a Cauchy sequence acting in the Hilbert space R, the follow-
ing relationships are considered

∥Sn+1 − Sn∥ = ∥Vn+1∥ ≤ δ∥Vn∥ ≤ δ2∥Vn−1∥ ≤ δn−k0+1∥Vk0
∥. (4. 43)

Now, for every n,m ∈ N, n ≥ m > k0

∥Sn − Sm∥ = ∥(Sn − Sn−1) + (Sn−1 − Sn−2) + ...+ (Sm+1 − Sm)∥
≤ ∥Sn − Sn−1∥+ ∥Sn−1 + Sn−2∥+ ...+ ∥Sm+1 − Sm∥

(4. 44)

(Triangle inequality)

≤ δn−k0∥Vk0
∥+ δn−k0−1∥Vk0

∥+ ...+ δm−k0+1∥Vk0
∥

= (
1− δn−m

1− δ
)δm−k0+1∥Vk0∥,

(4. 45)

This implies that limn,m−→∞∥Sn−Sm∥=0 (because 0 < δ < 1 ). Hence, it can be con-
cluded that {Sn}∞n=0 is a Cauchy sequence over the Hilbert space R, and also the se-
ries Σm−1

k=0 Vk(κ) converges absolutely. A similar convergence analysis is carried out for
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OHAM, but its only difference from NOHAM is that the partial summation is considered
as Sn = u0 + u1 + u2 + ...+ un. □

5. APPLICATION OF THE PROPOSED METHODS

Two approximation methods called OHAM and NOHAM are used to compute approxi-
mate solutions for time-fractional BBM-Burger equation with the initial condition ( 1. 3 )
and an exact solution ( 1. 4 ). The OHAM and NOHAM approximations will be studied in
the following subsections.

5.1. Numerical solution of BBMB equation by OHAM. Having chosen the linear oper-
ator Φ = Dα

t , the zero-order equation ( 3. 17 ) is solved for obtaining an initial approxi-
mation u0(x, t) as follows

Dα
t (u0(x, t)) = 0, u(x, 0) = sech2(

x

4
). (5. 46)

From Eq. ( 5. 46 ), we have

u0(x, t) = sech2(
x

4
). (5. 47)

The following problems are resulted from Eq. ( 3. 20 ), of the order m = 1, 2, 3, ...
First-order problem:

Dα
t (u1(x, t)) = Dα

t (u0(x, t)) + c1[D
α
t (u0(x, t))−Dxxt(u0(x, t)) (5. 48)

+Dx(u0(x, t)) + (
u0(x, t)

2

2
)x],

Second-order problem:

Dα
t (u2(x, t)) = Dα

t (u1(x, t)) + c1[D
α
t (u1(x, t))−Dxxt(u1(x, t)) (5. 49)

+Dx(u1(x, t)) + (u0(x, t)u1(x, t))x] + C2[D
α
t (u0(x, t))

−Dxxt(u0(x, t)) +Dx(u0(x, t)) + (
u0(x, t)

2

2
)x],

...

Having the solutions to Eqs. ( 5. 47 )-( 5. 49 ), first few approximations to the solution
will be obtained

u1(x, t) = c1[−
1

2
sech2(

x

4
)tanh(

x

4
)− 1

2
sech4(

x

4
)tanh(

x

4
)]

tα

Γ(α+ 1)
, (5. 50)

u2(x, t) = −1

8

1

cosh8(x8 )Γ(2α+ 1)Γ(α+ 1)
[(−2Γ(α+ 1)t2α−1αc21 + (5. 51)

4 tαΓ(2α+1)c21+4tαΓ(2α+1)c1+4tαΓ(2α+1)c2)sinh(
x
4 )cosh

5(
x

4
)−2t2αΓ(α+

1)c21cosh
6(
x

4
)+ (−2t2α−1αΓ(α+1)c21+4tαΓ(2α+1)c21+4tαΓ(2α+1)c1+ tαΓ(2α+

1)c2)sinh(
x

4
)cosh3(

x

4
)−5t2αΓ(α+1)c21cosh

4(
x

4
)+15Γ(α+1)t2α−1αc21sinh(

x

4
)cosh(

x

4
)+
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TABLE 1. The auxiliary parameters c1 and c2 for different values of α.

α c1 c2

0.9 -0.4547763321 0.1192881889
0.95 -0.4798779592 0.1100369157
1 0.6636407613 -2.683876449

4Γ(α+ 1)t2αc21cosh
2(
x

4
) + 7Γ(α+ 1)t2αc21],

...

In this research, a three terms approximation for u(x, t) is considered. By substituting
the solutions of zero−order, first−order, and second−order into Eq. ( 3. 24 ) and using the
least square technique, the parameters c1 and c2 are determined for different values of α ,
as indicated in Table 1.

5.2. Numerical solution of BBM-Burger equation by NOHAM. Having chosen the lin-

ear operator Φ = Dα
t and the nonlinear operator Ψ = −uxxt +ux +(

u2

2
)x, the zero-order

equation ( 3. 27 ) is solved to obtain the initial approximate solution u0(x, t) as follows

Dα
t (u0(x, t)) = 0, u(x, 0) = sech2(

x

4
). (5. 52)

From Eq. ( 5. 52 ), we get

u0(x, t) = sech2(
x

4
). (5. 53)

By substitution of Eq. ( 5. 53 ) into the nonlinear operator Ψ, one has

Ψ(u0(x, t)) = (−1

2
tanh(

x

4
))(sech2(

x

4
) + sech4(

x

4
)). (5. 54)

From Eq. ( 5. 54 ), two functions (g1 and h1) can be recognized as follows

g1 = −1

2
tanh(

x

4
), (5. 55)

and

h1 = sech2(
x

4
) + sech4(

x

4
). (5. 56)

From Eqs. ( 5. 55 ) and ( 5. 56 ), we get

H(x, t, ci) = H1(x, t, h1, ci) = c1+c2t
2sech2(

x

4
)+c3t

4sech4(
x

4
)+c4t

6sech6(
x

6
)+· · · .
(5. 57)

First order solution:

Φ(u1(x, t, ci)) = H(x, t, ci)Ψ(u0(x, t)), (5. 58)
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TABLE 2. The auxiliary parameters ci for different values of α.

α c1 c2 c3 c4

0.2 0. 0.369303448 2.085133762 0.9495574777
0.5 0. -1.952142501 3.505701573 -1.765458663
0.9 -0.4112405815 1.265729819 -2.253063080 1.254883075
0.95 -0.4315915721 1.402326431 -2.515599124 1.415785941
1 -0.4517697494 1.533422322 -2.767869457 1.573215223

By substituting four terms of Eq. ( 5. 57 ), and Eq. ( 5. 54 ) in Eq. ( 5. 58 ), we obtain

Dα
t (u1(x, t, ci)) = −1

2
c1tanh(

x

4
)(sech2(

x

4
) + sech4(

x

4
)) (5. 59)

−1

2
c2t

2tanh(
x

4
)(sech4(

x

4
) + sech6(

x

4
))− 1

2
c3t

4tanh(
x

4
)(sech6(
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Therefore, we get
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By substituting u0(x, t) and u1(x, t) into Eq. ( 3. 29 ), approximate solution is obtained
as follows

u(x, t, ci) = sech(x

4
)− 1

2
c1tanh(
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4
) + sech4(

x

4
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Γ(α+ 1)
(5. 61)
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Now, the auxiliary parameters c1, c2, c3, and c4 are determined by using least squares
technique for different values of α, as in Table 2.

6. RESULTS, COMPARISON, AND DISCUSSION

To validate the accuracy of the proposed techniques (OHAM and NOHAM), their ap-
proximation results are evaluated with the exact solutions of BBMB equation. Figure
1 represents the OHAM and NOHAM approximate solutions for different values of α
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TABLE 3. Exact and approximate solutions at different points (x, 0.1)
and α = 1.

x Exact OHAM Abs (OHAM) NOHAM Abs (NOHAM)
0 0.9993752604 0.9993686456 0.6614802e-5 1. 0.6247396e-3
0.1 1. 0.9999415132 0.5848681e-4 0.0004907742 0.4907743e-3
0.2 0.9993752604 0.9992686002 0.1066602e-3 0.9997275827 0.3523223e-3
0.3 0.9975041608 0.9973542007 0.1499601e-3 0.9977122604 0.2080996e-3
0.4 0.9943960268 0.9942086492 0.1873776e-3 0.9944529602 0.5693343e-3
0.5 0.9900662909 0.9898481679 0.2181230e-3 0.9899640996 0.1021913e-3

TABLE 4. Exact and approximate solutions by OHAM, NOHAM, and
FHATM, for α = 1.

x t Exact OHAM NOHAM FHATM
20 0.01 0.0001825 0.0001825 0.0001824 0.0001828
15 0.01 0.0022210 0.0022210 0.0022210 0.0022247
10 0.01 0.0267237 0.0267305 0.0267002 0.0267690
20 0.001 0.0001817 0.0001817 0.0001817 0.0001817
15 0.001 0.0022110 0.0022110 0.0022111 0.0022114
10 0.001 0.0266053 0.0266060 0.0265401 0.0260985

(α = 0.9, α = 0.95 and α = 1) and the exact solution (α = 1 ) at t = 0.1. In Fig.1
(a) and (b), it is seen that the accuracy of OHAM and NOHAM approximate solutions in-
creases as the values of α approaches to 1. It is also seen, from Fig 1, that the approximate
solutions of OHAM and NOHAM are in a very good agreement with the exact solution.
Moreover, Figure 2 displays three-dimensional graphical plots of the exact and approxi-
mate solutions for α = 1.

Also, the numerical values of the exact, approximate solutions, and absolute errors for
α = 1 are presented in Table 1. In figures 3 and 4, absolute errors of the two approaches, at
a fixed value of t, t = 0.1, are plotted for different values of α. One can learned from these
two figures that the methods are accurate at the beginning there are some perturbations,
but as time passes the errors get close to zero. In comparison to OHAM, the solution
convergence of NOHAM is achieved faster at low iterations because NOHAM uses an
optimal auxiliary function with convergence control parameters (see section 5). In the
OHAM and NOHAM approximations, the solution can be improved by considering more
auxiliary parameters in the function H(ξ, ci).

Comparison of approximate solution with exact solution, and other techniques [12] is
presented in Table 4. According to the Table 4, it is clear that the results obtined from two
methods OHAM and NOHAM, have better convergence.
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(a)

(b)

FIGURE 1. Comparison of the approximate solutions of OHAM (a) and
NOHAM (b), with exact solution for different values of α.

7. CONCLUSION

In this paper, a time-fractional BBM-Burger equation was solved by two approximation
techniques called OHAM and NOHAM. The effectiveness of the techniques (OHAM and
NOHAM) are also validated by comparing their results with the exact solution. It is clear
from the calculated results that the proposed techniques can approximate the BBM-Burgers
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FIGURE 2. 3D graphical plots of the exact and approximate solutions
for α = 1.

exact solutions with high accuracy. However, NOHAM produces the approximation results
with lower computational cost than OHAM. Finally, one can conclude that the proposed
techniques can be considered as powerful tools for solving nonlinear partial differential
equations, like BBM-Burger, with high accuracy and low computational cost.
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FIGURE 3. Absolut errors of OHAM for different values of α.
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