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Abstract 
The existence of outliers and structural breaks in time series data offer 

challenges to data analysts in model identification, estimation and 

validation. Detection of outliers of a different nature and structure is the 

focus of the current study. To analyze the impact of structural breaks and 

outliers on model identification, estimation and their inferential analysis, we 

use two data generating processes; MA (1) and ARMA (1, 1). The 

performance of the test statistics for detecting additive outlier (AO), 

innovative outlier (IO), level shift (LS) and transient change (TC) is 

investigated using simulations. For evaluation, power of test, empirical level 

of significance, empirical critical values, misspecification frequencies, 

and sampling distribution of estimators for the two models are calculated. 

The empirical critical values are found higher than the theoretical cut-off 

(C); empirical power of the test statistics is not satisfactory for small sample 

size, large C and large model coefficients. The confusion between LS, AO, 

TC, and IO assuming different C and sample sizes is also explored. Further, 

empirical evidence is noticed that for Pakistan using 3-stage iterative 

procedure to detect multiple outliers and structural breaks. It is found that 

neglecting shocks lead to wrong identification, biased estimation, and excess 

kurtosis.  

Keywords: discordant observations, structural breaks, simulation analysis, 

additive outlier, innovative outlier, transient change, level shift, iterative 

procedure 
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1. Introduction 

Time series variables are extensively used to study aggregate 

fluctuations in the characteristics of any phenomenon. Occurrence of 

sudden events causes short and long term changes in the behavior of 

the phenomena under study. As the knowledge about the causes of 

aggregate fluctuations is in interest of policy makers, the occurrence of 

outliers or discordant observations2 and structural breaks is also of great 

interest. Outliers and structural break detection, and their impact on 

modeling time series data have been investigated extensively in the 

literature. Several methods to handle the issue of outliers have been 

devised based on diagnostic, robust and Bayesian approach. The 

widely used diagnostic approach, initially estimates the model and its 

parameters using maximum likelihood estimation (MLE) method and 

then the residuals are analyzed to detect outliers iteratively. This 

procedure was initially proposed by Fox (1972).  

Tsay (1986) and Chang Tiao, and Chen (1988) worked on 

detection and estimation of unknown outliers and structural breaks 

using iterative procedure.  It was later modified by several contributors 

including Pena (1990), Tsay (1988), Balke (1993), Balke and Fomby 

(1994), Louni (2008), Chen and Liu (1993), Kaiser and Maravall 

(2001) and many others. Afterwards, Chen and Liu (1993) modified it 

for joint outlier detection and parameter estimation. Additive outliers 

(AO), innovative outliers (IO), level shift(LS) and transient change(TC) 

are commonly considered types of outliers. For the detection of these 

different types of outliers, various test statistics are widely used as 

suggested by Tsay (1986). However, these test statistics show varying 

performance in different time series structures.  

Main objective of this study is to examine the widely differing 

properties of the test statistics for detecting outliers and structural 

                                                           
2We have used the term outliers and discordant observations interchangeably for indicating the 

anomalous observations. 
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breaks under finite sample behavior. Another objective is to analyze the 

behavior of time series data having structural breaks and outliers and to 

identify the best possible model in the presence of various types of 

disturbances. This is achieved by focusing on the performance of these 

test statistics for different choices of parameters in MA(1) and ARMA 

(1, 1) models through simulations. The choice of these two models is 

postulated on the argument that these commonly used nonlinear models 

provide parsimonious representation of data, make easier to spot trend 

and remove short term noise along with AR(1) model. The 

performance of these test statistics for outlier detection in AR(1) 

process is already evaluated by Urooj and Asghar (2017), while now 

we look at existence, impact and detection of various types of outliers 

in some nonlinear models. We evaluate the performance of test 

statistics in detecting the outliers in some nonlinear models via 

simulations. Further, empirical analysis is carried on some monthly 

time series of Pakistan which are expected to be more sensitive to 

macroeconomic, social, political and environmental uncertainty 

yielding high variance and more outliers. This is to assess the 

performance of Chen and Liu (1993) procedure in terms of incidence 

of misidentification, intensity of masking and swamping effect in case 

of Pakistan. Lack of profound relevant literature also motivates us to 

detect outliers in time series data for Pakistan.  

This study contributes to the existing literature in several ways. 

Firstly, simulation study examines the sampling distribution of 

estimators of the nonlinear contaminated series. Secondly, the 

vulnerability to spurious outliers and appropriateness of the cutoff 

points are judged through empirical level of significance and empirical 

critical values. Empirical power of test analyzes sensitivity of the test 

statistics for outliers. Count for misspecification frequencies discovers 

the vulnerability to masking of outliers. Thirdly, we also study the 

behavior of the decaying parameter (𝛿) in correctly detecting TC. 

Lastly, the application of Chen and Liu (1993) procedure for the case of 

Pakistan identifies discordant observations, effects of discontinuities, 

and provides robust estimates of the model. Hence, better insight 

enables effective forecasting and policy formulation. 

Section 2 explores the impact of four types of outliers on MA 

(1) and ARMA (1, 1) models, their autocorrelation functions (ACF), 

estimates and residuals. Section 3 describes simulation experiment in 
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detail. The patterns noted under empirical level of significance, 

empirical critical values, empirical power of test statistics, properties of 

sampling distribution in the presence of one outlier and behavior of δ in 

detection of TC are discussed in Section 4. Section 5 elaborates the 

empirical analysis of outlier and structural break detection for Pakistan. 

Finally, the key findings and conclusion are in section 7.  

2. Impact of Outliers on MA(1) and ARMA (1, 1) Model3 

Examining the impact of AO, TC, IO and LS on the stylized 

characteristics of MA(1) and ARMA(1,1) process, we initiate for 

the observed contaminated with outliers series as 

  𝑧𝑡 =  𝑦𝑡 + 𝐴𝑡                                      (1) 

where 𝜙(𝐵)Φ(𝐵𝑠)∇𝑑∇𝑠
𝐷𝑦𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝑎𝑡

4 is an outlier free time 

series and 𝐴𝑡 = 𝜔𝑖𝑣𝑖(𝐵)𝐼𝑡
(𝑇)

, 𝐼𝑡
(𝑇)

 is an indicator variable as 𝐼𝑡
(𝑇) =

1 𝑎𝑡 𝑡 = 𝑇 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,  𝜔𝑖  is the magnitude of ith outlier, 

𝑣𝑖(𝐵) determines the dynamics of outliers for 𝑖 = 𝐴𝑂, 𝐼𝑂, 𝐿𝑆, 𝑇𝐶. All 

other terms are defined as per usual notation (See Urooj; 2016). Using 

the residuals after computing MLE for the model parameters on 𝑧𝑡, 

𝑣𝑖(𝐵) and 𝜔𝑗  are estimated based upon iterative calculation of  𝜂𝑖 =

max𝑡𝜆𝑡|�̂�𝑖(𝑡1)| > 𝐶5, for a possibility of type i outlier at t1 with  

�̂�𝑖(𝑡) =
�̂�𝑖

𝜌𝑖𝜎𝑎
  ; 𝑡 = 1,2, … , 𝑛 ;  

where 

 𝜌𝐴𝑂
2 = (1 + 𝜋1

2 + ⋯ + 𝜋𝑛−𝑇
2 )−1, 𝜌𝐿

2 = (1 + 𝜂1
2 + ⋯ + 𝜂𝑛−𝑇

2 )−1,  𝜌𝑇𝐶
2 =

 (1 + 𝛽1
2 + ⋯ + 𝛽𝑛−𝑇

2 )−1, 𝜌𝐼𝑂
2 = 16 

  These test statistics are originally suggested by Tsay 

(1988), later used in three stage outlier detection procedure by 

                                                           
3Detail derivations are not included due to space issue. 
4The uncontaminated MA(1) model is 𝑦𝑡 =  𝑎𝑡 + 𝜃1𝑎𝑡−1 and  ARMA (1,1) 

model is 𝑦𝑡 =  𝜙1𝑦𝑡−1 + 𝑎𝑡 + 𝜃1𝑎𝑡−1 
5 C is predetermined critical value/ cut-off chosen at 3, 3.5 or 4. 𝛿 ,0 < 𝛿 < 1 is 

a prespecified constant determining the speed of decay as proposed in Tsay 

(1988) and Chen et al. (1993).   

6 𝜂(𝐵) = 1 − 𝜂1𝐵 − 𝜂2𝐵2 − ⋯ =
𝜋(𝐵)

1−𝐵
, 𝛽(𝐵) = 1 − 𝛽1𝐵 − 𝛽2𝐵2 − ⋯ =

𝜋(𝐵)

1−𝛿𝐵
,  

, 
1

1−𝛿𝐵
= 1 + 𝛿𝐵1 + 𝛿2𝐵2 + 𝛿3𝐵3 + ⋯ 
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Chen and Liu (1993) and subsequently by Kaiser and Maravall 

(2001).  

AO is an exogenous change occurring at point T such 

that1 ≤ 𝑇 ≤ 𝑛. It affects the observed series at one point, say t=T. 

In the presence of IO, the series has an endogenous change in the 

noise process at some point T for 1 ≤ 𝑇 ≤ 𝑛, the observed series 

with MA(1) model is affected at T and T+1 points while for 

ARMA(1,1) models the occurrence of IO affects the time series up 

to next few lags depending upon the weights 𝜓(𝐵). In the presence 

of LS, the series has a modification in its level or mean value at 

time T (such that for1 ≤ 𝑇 ≤ 𝑛), which lasts till the end depending 

upon the magnitude 𝜔𝐿𝑆. The TC is a special kind of level shift 

which dies out exponentially. In the presence of TC, the series has 

a temporary modification in its level starting at time T (such that 

for 1 ≤ 𝑇 ≤ 𝑛) and dies out gradually. The occurrence of TC 

affects the time series for several lags depending upon the decay 

parameter 𝛿 with the size of outlier with magnitude 𝜔𝑇𝐶. This 

decay is sharper in ARMA(1,1) than MA(1). For Brevity purpose, 

we have excluded the detailed algebraic manipulations of these 

findings (for detail see Urooj; 2016 and Urooj& Asghar; 2017). 

Following the impact of outliers on the autocorrelation function 

(ACF) of MA (1) and ARMA (1, 1) model; we have observed that 

in some cases the impact depends on the model specification as 

well along with the type of outlier while in other, it does not. The 

presence of AO makes the autocorrelation function downward 

biased. In the presence of large sized AO, the autocorrelation 

function is pushed toward zero. The impact of AO on any model 

does not involve model parameters and its specification. The 

sample ACF of MA (1) and ARMA (1, 1) process gets downward 

biased due to IO, however, the nature of bias depends upon the 

model parameters. The ACF approaches to zero for very large IO. 

The ACF with LS is upward biased. Large LS pushes the ACF 

toward unity. In the presence of TC, the ACF is upward biased and 

for large sized TC, it is dragged toward the decay parameter. 

However, for large sample size or small outlier size the bias in 

ACF reduces and the impact of all types of outliers fades away. 

Studying the effects of different types of outliers on the 

estimates of coefficients, reveals that the observed series 𝑧𝑡 having 
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MA(1) as data generating process will yield the MLE for 𝜃1 

affected by the outliers in inverse proportion. The ARMA(1,1) 

yield estimation of additional parameter due to outliers. Exploring 

the impact of various outliers on the residuals of MA(1) and 

ARMA(1,1) model, the AO affects the residuals of MA(1) model 

up to few lags with the magnitude proportionate to the size of 

MA(1) coefficient. In ARMA(1,1) model, the AO affects the 

residuals up to few lags with the magnitude equals to the die down 

size of MA(1) coefficient with a constant value equals to the 

difference between AR(1) and MA(1) coefficients. The IO affects 

the residuals only at point ‘T’ with other residuals remain 

unaffected. This holds for both models. The LS affects the 

residuals at all points on and after ‘T’. However, the impact on 

residuals with LS for MA(1) and for ARMA (1,1) model 

respectively are given as 

  𝑒𝑡 = {

𝑎𝑡                                                  𝑓𝑜𝑟 𝑡 <  𝑇,

𝑎𝑡 + 𝜔𝐿(1 − ∑ 𝜃1
𝑘
𝑗=0 )   

𝑓𝑜𝑟 t ≥ 𝑇 + 𝑘  ;

 𝑘 = 1,2, … , (𝑛 − 𝑇)
                  (2) 

and 

 𝑒𝑡 = {

𝑎𝑡                                                                           𝑓𝑜𝑟 𝑡 <  𝑇,

𝑎𝑡 + 𝜔𝐿[ (1 + ∑ 𝜃1
𝑗𝑘

𝑗=1 ) − 𝜙1(1 + ∑ 𝜃1
𝑗−1)𝑘

𝑗=1 ]  
𝑓𝑜𝑟 t ≥ 𝑇 + 𝑘  ;

 𝑘 = 1,2, … , (𝑛 − 𝑇)
         (3) 

The residuals for 𝑧𝑡 with TC depends upon the decay 

parameter 𝛿 as 0 < 𝛿 < 1, i.e. closer the 𝛿 to 1, the slower is the 

decay and the TC behaves similar to LS. While if 𝛿 is closer to 

zero, the faster will be the decay and the TC gets closer to AO. For 

MA(1), the residuals form 

 𝑒𝑡 = {

𝑎𝑡                          𝑓𝑜𝑟 𝑡 < 𝑇

𝑎𝑡 + 𝜔𝑇𝐶 ∑ 𝛿𝑘−𝑗𝜃1
𝑗  𝑘

𝑗=0

𝑓𝑜𝑟 t ≥ 𝑇 + 𝑘  ;

 𝑘 = 0,1,2, … , (𝑛 − 𝑇)
                    (4) 

And for ARMA (1,1), it is 

     𝑒𝑡 = {

𝑎𝑡                                                                                                       𝑓𝑜𝑟 𝑡 < 𝑇
𝑎𝑡 + 𝜔𝑇𝐶                                                                                            𝑓𝑜𝑟 𝑡 = 𝑇

     𝑎𝑡 + 𝜔𝑇𝐶(∑ 𝛿𝑘−𝑗𝜃1
𝑗𝑘

𝑗=0 − 𝜙1 ∑ 𝛿𝑘−1−𝑗𝜃1
𝑗𝑘−1

𝑗=0 )  
𝑓𝑜𝑟  t ≥ 𝑇 𝑜𝑟 𝑡 = 𝑇 + 𝑗 

𝑎𝑛𝑑 𝑗 = 1,2, … 𝑛 − 𝑇

     (5) 
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3. Research Operationalization 

As noted, different types of outliers affect the time series models in 

distinct form making it necessary to detect these outliers along with 

their type, magnitude and adjust them before any further analysis. For 

investigation of magnitude and dynamic effect of outliers on selected 

time series and the performance of test statistics for detection of 

outliers, we have used Monte Carlo simulation experiments on MA(1) 

and ARMA(1,1) process. The process is repeated for a total of 5000 

iterations in CRAN-R for all combinations of the length of 

series(n):{50, 100, 150}, cut-off(𝐶):{3,3.5,4}, 

Outlier size (𝜔): {3𝜎, 5𝜎}, parameters 𝑓𝑜𝑟 𝑀𝐴(1); 𝜃= {0.1, 

0.2, 0.4, 0.6, 0.8, and 0.9} and for ARMA (1, 1): (𝜙 = 0.7, 𝜃 = 0.7), 

(𝜙 = 0.2, 𝜃 = 0.8), (𝜙 = 0.4, 𝜃 = 0.4) and (𝜙 = 0.8, 𝜃 = 0.8) are 

used. The analysis designed under hypothesis testing specifies null 

hypothesis (H0) that no outlier is present and alternative hypothesis (H1) 

as outlier/ structural break is present in the series. The analysis under 

H1 is conducted for each type of break by calculating empirical power 

of test as relative frequency of correct detections. Then, the estimated 

90th, 95th and 99th percentiles of the sampling distribution of test statistic 

𝜂𝑖  are calculated to provide insight of the patterns and behavior of the 

test statistics. We also follow the impact of outliers on estimation of 

parameters by following the sampling distribution of estimators of 

parameters. Lastly, correct index detection for the efficiency of the test 

statistics is noted. Under the null hypothesis (H0), empirical level of 

significance is calculated as relative frequency of false outlier detection. 

Secondly, empirical critical values are calculated enabling us to 

determine if the three cut-offs(C) used are empirically valid. 

4. Performance of Test Statistics in MA (1) and ARMA (1, 1) 

Model 

The graphical view from Figure 1 indicates the impact of the four types 

of outliers on the simulated MA(1) and ARMA(1,1) processes affected 

by an outlier of magnitude 𝜔 = {3, 5}at T= (n/2)+1 respectively. 

These outliers and their impacts, are located, identified, and estimated 

through the test statistics defined on likelihood ratio test criterion in 

section 3. Now we evaluate the performance of these statistics under 

different scenarios. 
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Figure1(a): MA (1) Model with and without Outliers 

 
Figure1(b): ARMA (1) Model with and without Outliers 

4.1. Sampling Distribution of Estimators in the Presence of Outlier 

In order to study the impact of outliers on estimation, we observe the 

sampling distribution of estimators when MA (1) and ARMA (1, 1) 

models are affected by one outlier. 

4.1.1. Sampling Distribution of �̂�; Case of MA (1) Model 

The existence of various types of outliers in MA (1) process affects the 

sampling distribution variantly. AO causes downward bias in sampling 

distribution of 𝜃 which increases with increase in  𝜃 values indicating if 
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MA(1) parameter has stronger impact to be carried to next lag; the AO 

has greater adverse effect. LS causes a constant bias irrespective of θ, n 

and C, such that 𝐸(𝜃) ≈ 0.92 is noted for 𝜔𝐿𝑆 = 5𝜎 and in case of 

𝜔𝐿𝑆 = 3𝜎 we get 𝐸(𝜃) ≈ 0.82. TC causes a bias of varying nature. 

At small values of  𝜃, the bias is small and positive while for large 

values of 𝜃 the bias is negative and large. In the presence of IO, the 

sampling distribution of 𝜃 does not show any bias till θ=0.6 but for 

higher values of θ an upward bias is noted, even 𝐸(𝜃) >1 is observed at 

𝜃 = 0.8, 0.9 for all combinations of n, C and 𝜔. The sampling 

distribution of 𝜃 is non-normal in the presence of all outliers except for 

an IO at for θ>0.6 and n>100.  

Negatively skewed sampling distribution of 𝜃 is noted for LS, 

TC and IO but is positively skewed for AO in majority cases. Finally, 

mesokurtic sampling distribution of 𝜃 is noted in the presence of IO, 

LS, and TC but leptokurtic in case of AO. The efficiency of various test 

statistics in terms of correct index detection of outliers, works 

satisfactory in case of all outliers except LS with 𝜔𝐿𝑆 = 5𝜎 and small 

cut-offs. Correct index detection at 𝜔𝐿𝑆 = 5𝜎 remains on average 

about 65% only. In case of all outliers of size 𝜔 = 3𝜎 no good 

performance is noted (See Table 1(a, b, c, d)). 

4.1.2. Sampling Distribution of θ ̂; Case of ARMA(1,1) Model 

The simulation exercise shows that AO, LS and TC causes huge 

downward bias, not much affected by the cut-offs(C), on sampling 

distribution of 𝜃 in ARMA(1,1) model. The bias due to LS is not even 

affected by sample size; however, the bias due to AO reduces while 

that due to TC increases as the size of sample increases. In the presence 

of IO, the sampling distribution of 𝜃 shows almost no bias for all 

combinations of n, C and 𝜔. The RMSE and standard error (SE) of the 

sampling distribution of 𝜃, in the presence of AO, IO, LS and TC, are 

not affected by C. Moreover, these remain unaffected by sample size 

under AO and LS, however, for IO these become decreasing function 

while in case of TC these become increasing function of sample size. 

The sampling distribution of 𝜃 appears leptokurtic and non-normal in 

the presence of outlier of any kind except IO for 𝜙 = 0.8, 𝜃 = 0.2 at 

n= 150, C=3, 𝜔 = 5𝜎 and 𝜙 = 0.4, 𝜃 = 0.4 at 𝑛 =  150, 𝐶 =
3.5, 𝜔 = 5𝜎 only. The efficiency of test statistics in terms of correct 

index detection under the presence of AO, IO, LS and TC is very high 
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for 𝜔 = 5𝜎 but poor for 𝜔 = 3𝜎 which improves marginally as 

sample size increases (See Table 2). 

4.1.3. Sampling Distribution of �̂� ; Case of ARMA(1,1) model 

The sampling distribution of �̂� under ARIMA(1,1) process show 

downward bias in presence of AO, minor downward bias under IO, 

large upward bias of constant nature under LS and negligible upward 

bias under TC which remains unaffected by the cut-offs and outlier 

size. IO and LS remain unaffected by sample size while bias under AO 

and TC reduces as sample size increases. The sampling distribution of 

�̂� is non-normal, leptokurtic and negatively skewed at all combination 

of n, C, and 𝜔 for all outliers with exceptions as with (𝜙 = 0.4, 𝜃 =
0.4), n= 150, c= 3 for 𝜔𝐼𝑂 = 5𝜎 the sampling distribution does not 

yield significant JB results and for TC, the sampling distribution of 𝜙 ̂is 
mesokurtic. The SE and RMSE of sampling distribution are not 

affected by sample size, cut-off, and size of outliers under AO and LS 

while for IO and TC, these reduce as sample size increases and increase 

as cut-offs increases (See Table 3). 

4.2. Empirical Level of Significance 

Empirical level of significance is calculated as relative frequency of 

detection of any false outlier in an outlier free series. 

4.2.1. Case of MA (1) model 

The empirical significance level falls as θ increases but for high and 

moderately sensitive detections only. As the sample size increases, the 

empirical level of significance increases. As evident from Table 4, the 

increase in sample size causes more erroneous detections. 

Table 4: Empirical Level of Significance for MA(1) Model 
C=3 C=3.5 C=4 

  n=50 n=100 n=150 n=50 n=100 n=150 n=50 n=100 n=150 

MA(1) T=26 T=51 T=76 T=26 T=51 T=76 T=26 T=51 T=76 

θ =0.1 0.104 0.21 0.335 0.015 0.034 0.056 0.001 0.007 0.005 

θ =0.2 0.128 0.225 0.3 0.021 0.038 0.066 0.003 0.004 0.007 

θ =0.4 0.084 0.224 0.316 0.017 0.036 0.048 0.006 0.004 0.008 

θ =0.6 0.105 0.207 0.304 0.015 0.036 0.055 0.003 0.002 0.002 

θ =0.8 0.076 0.177 0.255 0.013 0.03 0.042 0.004 0.004 0.008 

θ =0.9 0.08 0.191 0.271 0.007 0.021 0.043 0.002 0.004 0.008 
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When θ and C are small. The rate of change in level of significance 

due to a change in the sample size is very sharp. With the increase 

in sample size, at lower levels of C and θ, the empirical level of 

significance increases by more than 22% while it rises to 40% or 

0.44 units for large values of C and θ indicating highly negative 

impact of sample size on test statistics’ performance. In absolute 

terms as C is raised to a less sensitive point, the empirical level of 

significance falls remarkably and indicates better performance. In 

comparison with the nominal significance level (α), the empirical 

level of significance is higher and unsatisfactory at all θ and n for 

C=3. However, in less sensitive detections, the empirical level of 

significance reduces sharply and even falls below the nominal 

level of significance (α=0.05). 

4.2.2. Case of ARMA(1,1) Model 

Empirical level of significance shows interesting behaviour under 

ARIMA(1,1) model. It falls as n increases for parameter 

combinations (𝜙 = 0.7, 𝜃 = 0.7) and (𝜙 = 0.2, 𝜃 = 0.8) while it 

decreases with the increase in n for (𝜙 = 0.4, 𝜃 = 0.4) and (𝜙 =
0.8, 𝜃 = 0.8). This quantity also shows relation with C i.e. at less 

sensitive detection of outliers; it rises. We see, from Table 5, that 

the increase in sample size causes more variation when C is small. 

It attains less than 0.05 level at several combinations of C and 

sample size especially at C=3.5 indicating inefficient performance 

of test statistics for outlier detection at large cut-offs. The varying 

behaviour of empirical level of significance for different values of 

θ and ϕ show the dependency on model parameters. 

Table 5: Empirical Level of Significance for ARMA(1,1) Model 

 
C=3 C=3.5 C=4 

 
n=50 n=100 n=150 n=50 n=100 n=150 n=50 n=100 n=150 

ARMA(1,1) T=26 T=51 T=76 T=26 T=51 T=76 T=26 T=51 T=76 

θ=0.4, φ=0.4 0.120 0.018 0.003 0.225 0.044 0.005 0.335 0.072 0.010 

θ =0.7, φ =0.7 0.076 0.213 0.330 0.015 0.041 0.061 0.002 0.006 0.008 

θ =0.2, φ =0.8 0.126 0.265 0.358 0.024 0.049 0.044 0.003 0.006 0.008 
θ =0.8, φ =0.2 0.090 0.184 0.282 0.013 0.030 0.057 0.002 0.003 0.008 

4.3. Empirical Critical Values 

The empirical critical values, under different ARMA (p,q) processes, as 

suggested under simulation experiment, are higher than 3. 

4.3.1. Case of MA (1) Model 
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The simulation exercise shows that the sampling distribution of false 

detection is more concentrated in MA(1) process than those under 

AR (1) model (Urooj and Asghar; 2017). Comparing the 

theoretical cutoffs with empirical critical values indicates that the 

cutoffs can be raised a little to get less false detections. However, the 

empirical critical values are not much influenced by the change in the 

magnitude of the parameter θ but show variation over theoretical 

cutoffs (See Table 6). 

Table 6: On Average Empirical Critical Values for MA(1) Model 

 

90% 95% 99% 

n=50 3.97 4.0706 4.2172 

n=100 3.9178 4.0889 4.355 

n=150 4.0833 4.245 4.505 

average 3.9904 4.1348 4.3591 

Note: Detailed tables of Empirical Critical values can be obtained on demand. 

4.3.2 Case of ARMA (1, 1) model 

Under ARMA (1, 1) model, the empirical critical values are influenced 

by the cut-offs, sample size and parameter values i.e θ and ϕ. For C=3; 

the empirical critical value on average lies around 3.8, for C=3.5 it is 

around 4.32 while at C=4, it is on average, more than 4.5(approx.) (See 

Table 7). 

Table 7: Empirical Critical Values for ARMA(1,1) Model   
Upper quantiles for false detection, c=3 

 

n=50 n=100 n=150 

ARMA(1,1) T=26 T=51 T=76 
  0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

θ=0.4, φ=0.4 3.016 3.220 3.674 3.242 3.422 3.830 3.367 3.536 3.930 

θ=0.7, φ=0.7 0.000 3.084 3.446 3.594 3.760 4.127 3.651 3.802 4.195 
θ=0.2, φ=0.8 3.661 3.834 4.228 3.654 3.938 4.312 3.653 3.802 3.875 

θ=0.8, φ=0.2 3.590 3.740 4.060 3.652 3.840 4.150 3.674 3.813 4.183 

4.4. Power of Test Statistics 𝛈𝐣;  𝐣 = 𝐀𝐎, 𝐈𝐎, 𝐋𝐒, 𝐓𝐂 

Empirical power of the test statistics in the presence of a single outlier 

is studied as another yardstick of performance. It indicates the 

sensitivity of the statistical test in detecting changes (outliers) and is 

measured as relative frequency of rejecting the null of no outliers when 

in fact it is false. 

4.4.1. Case of MA(1) Model 

In case of AO, for 𝜔𝐴𝑂 = 5𝜎, the empirical rejection frequency is not 

satisfactory for all levels of θ, n and C. At C=3 and small θ values, the 
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power of 𝜂𝐴𝑂  𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 50%. The power of  𝜂𝐴𝑂 increases 

remarkably as θ increases but shows very small improvement for n = 

100 and falls at n=150. It shows high fluctuations in case of small sized 

outlier i.e. over 32% to 90%. The performance of 𝜂𝐴𝑂 for small AO 

remains less than 50% by and large. Misspecification frequencies 

indicating masking of outliers show that AO go largely unchecked as 

“no outliers” for small sized outlier. These cases are extremely high at 

C=3.5 and C=4 making the performance of  𝜂𝐴𝑂 questionable (See 

Table 8(a)). AO also confounds with IO and TC very frequently at all 

levels of ω, n, C and θ. However, the confusion with IO reduces many 

folds as θ increases. 

 For large IO (𝜔𝐼𝑂 = 5𝜎), the empirical power of 𝜂𝐼𝑂 is 

relatively better than that of 𝜂𝐴𝑂. Table 8(b) shows that the empirical 

power of 𝜂𝐼𝑂 varies over 53% to 97% at C=3 but reduces sharply for 

less sensitive cut-offs (C=4). In the case of Small IO (𝜔𝐼𝑂 = 3𝜎), the 

empirical power of 𝜂𝐼𝑂 is very poor like that of 𝜂𝐴𝑂. A rise in MA(1) 

parameter has a positive impact on empirical power of 𝜂𝐼𝑂. For 𝜔𝐼𝑂 =
5𝜎, the increase in sample size has negligible impact on empirical 

power of 𝜂𝐼𝑂, while it falls for small IO. Large IO is frequently 

detected as AO for small θ and large n. As n, C, and θ increases, the 

perplexity between AO and true IO fades away. Despite of the presence 

of IO, several iterations skip declaring “no outlier”. This confusion 

reduces in case of large IO, small sample size, high cut-offs except at 

n=150 and large θ. Few erroneously detected TC are also observed 

(See Table 8(b)). 

Performance of 𝜂𝐿𝑆 is very strong, attaining higher empirical 

power than 𝜂𝐼𝑂 and  𝜂𝐴𝑂. With the increase in θ, the empirical power 

of 𝜂𝐿𝑆 increases, but for 𝜃 > 0.6, it declines yet remains high. 𝜂𝐿𝑆is 

not much affected by the sample size and cut-offs except for C=4 

where it reduces to 65%(approx.). It performs poor in small sized 

outlier and gets even worse at n=50 and C=4. The LS is usually missed 

as “no outlier” i.e. all test statistics remains insignificant. However, for 

large sample size and sensitive cutoffs, only few cases of LS masked as 

TC, IO and AO are noted. The empirical power of  𝜂𝑇𝐶  is a function of 

sample size, θ, cutoffs and outlier size. For 𝜔𝑇𝐶 = 5𝜎, 𝜂𝑇𝐶  performs 

well for large series, 𝐶 = 3 and small θ, but the empirical power drops 

to very low with a rise in θ, increase in cutoffs and small outlier. 

4.4.2. Case of ARMA(1,1) Model 
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Empirical power of  𝜂𝐴𝑂 for 𝜔𝑇𝐴𝑂 = 5𝜎  in ARMA(1,1) shows 

satisfactory performance at C =3. It remains greater than 85% with 

small n and increases further for large n. As the cut-off increases, the 

empirical power of  𝜂𝐴𝑂 drops sharply. For small AO (𝜔𝐴𝑂 = 3𝜎), the 

performance weakens showing high fluctuations and remains less than 

78% by and large. AO gets mostly masked with IO, TC and is skipped 

as ‘no outlier’ for all 𝜔𝐴𝑂 and large n (See Table 9 (a), Table 9(b)). The 

confusion with IO reduces as for large cut-off but show no impact of 

sample size, with ‘no outliers’ at C=3 and the confusion with TC does 

not show clear relation with n and C. The empirical power of 𝜂𝐼𝑂is 

satisfactory for 𝜔𝐼𝑂 = 5𝜎 at C=3 only. It falls as low as 7% for small 

(𝜔𝐼𝑂 = 3𝜎) which is undesirable. Negative impact of increase in cut-

off(C) and little impact of increase in sample size on empirical power 

of 𝜂𝐼𝑂 is noted IO is largely confused with TC or is missed out as “no 

outliers”. This confusion increases as C and n increases and for small 

sized outlier. Empirical power of 𝜂𝐿𝑆 is low at all sample sizes and is 

not much affected by the sample size and cut-off. It is mostly confused 

with “no outliers” along with only few instances of misidentification as 

TC, IO and AO. The empirical power of  𝜂𝑇𝐶  is a function of sample 

size, performing well for large series. TC is highly masked as IO even 

for large outlier. It is also perplexed with AO. For small sized 

TC(𝜔𝑇𝐶 = 3𝜎), the performance of 𝜂𝑇𝐶  is not impressive at all 

combinations of n and C. 

4.5. Behavior of 𝛅 in Transient Change 

The performance of 𝜂𝑇𝐶  for various choices of δ has also been studied. 

In MA(1) process, for extreme values of δ, 𝜂𝑇𝐶  performs very poor. At 

𝛿 = 0, 𝜂𝐴𝑂 and 𝜂𝑇𝐶  yield exactly same values in almost 30% of 

iterations. Secondly, instead of detection of TC, IO has been detected 

frequently and there are some cases of “no outlier” identified at all 

combinations of parameters. Unlike the confusion with AO, the 

erroneous detections as IO and “no outliers”, show negative association 

with sample size and θ. As 𝛿 value is raised to some non-zero number, 

the confusion between 𝜂𝐴𝑂 and 𝜂𝑇𝐶  vanishes off, but no significant 

decrease in the number of erroneously detected IO and “no outlier” 

cases. The percentage of correct detections of TC increases gradually 

with an increase in δ. At 𝛿 = 0.6, for the combinations {n=50, 𝜃 =
0.1}, and {n=150, 𝜃 = 0.1, 0.2}; 𝜂𝑇𝐶  attains an empirical rejection 

frequency of about 80% or more. Beyond these values of θ, the 
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empirical power falls very sharply even below 50%. Improved 

performance of 𝜂𝑇𝐶  is observed for sensitive detections at 𝛿 = 0.8 

with small values of θ and large n. Similarly, high empirical power is 

also noted at 𝛿 = 0.9 for all values of θ and n. However, at δ=1, the 

power of 𝜂𝑇𝐶  drops to zero with  𝜂𝑇𝐶 = 𝜂𝐿𝑆 in several iterations. Here 

“no outlier” cases are also too many. We conclude that the test statistics 

of 𝜂𝑇𝐶  for detecting TC performs adequat only for the choices of 𝛿 =
0.8 and 𝛿 = 0.9. The confusion between 𝜂𝑇𝐶  and 𝜂𝐼𝑂 noted 

throughout the simulations must also be considered whenever an outlier 

detection procedure is applied in practice. (See Table 10(a, b)). 

5. Empirical Analysis  

Structural changes in various frontiers are contributed not only due 

to variations in several factors but also due to many unanticipated 

events like floods, earthquakes, epidemics, large scale energy 

crises etc. These structural changes appearing in form of outliers 

and structural breaks are in keen interest of policy makers and 

researchers. To gain insight, the exploration of outliers for Pakistan 

provides an ideal case study. The empirical study conducted on 

some monthly time series for Pakistan is applying three-stage 

outlier detection procedure suggested by Chen and Liu (1993). The 

iterative testing procedure provides consistent estimates of the 

model covering entire sample as well as consistent estimates of the 

true number of breaks (for details see Urooj; 2016 and Chen & 

Liu; 1993). This procedure is based upon the test statistics whose 

performance is observed in earlier sections. The analysis with 

structural breaks for Pakistan, proves useful and provides evidence 

of the presence of variations in several social, environmental, 

geographical and economic aspects which needs to be taken into 

consideration when modeling the macroeconomic, socio and 

ecological growth nexus for policy makers.  

 We examine 5 monthly measured time series of Pakistan 

(See Figure 2). Two of these series span over February1995 to 

February 2015, the gold prices span over December 2000 to 

February 2015, while the net effective exchange rate extends over 

January1980 to February2015 and KSE-100 closing prices range 

over June1994 to September2020 due to availability of data (See 

Table11).The data are taken from IFS, World Bank, SBP reports 

and metrological department.  
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Figure 2: Monthly Time Series Data with Outliers 

Looking at Table 11 for the descriptive statistics for the 

variables under study indicates large variations over full range of 

data. The skewness statistic indicates positive asymmetric behavior 

of all variables except in gold prices meaning that during sample 

period, there were more decreases in gold prices than large 

increases. In addition, negative excess kurtosis results in 

significant JB indicating a non-Gaussian distribution, while Ljung-

Box Q statistics test for autocorrelation up to 24 lags indicates 

existence of autocorrelation in all series. These series also indicate 
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existence of annual unit root with no requirement for seasonal 

differencing. Hence, an ARIMA process to capture the dynamic 

structure and to generate white-noise residuals is suggested.  

5.1. Outlier Detection and Intervention Model 

The results in form of parameter estimates, their standard errors, 

residual’s standard errors, skewness and kurtosis of residuals for with 

and without outlier detection are listed in Table 12. All the series show 

significant evidence of excess kurtosis and skewness. The JB test for all 

series indicates that the initial model estimation (without outliers) 

generates non-Gaussian residuals. However, it falls remarkably in 

‘with-outlier’ analysis for all series even supports the possibility of 

Gaussian residuals in case of NEER. We generalize that outliers if 

neglected may lead to excess kurtosis, skewness of residuals and 

significant JB test making standard statistical theory based on Gaussian 

distribution redundant. Comparing the results of initial identified model 

with those obtained incorporating the outliers via Three-stage Chen and 

Liu (1993) procedure under Table 12 shows that the error variance of 

the originally identified model is greater than that under the 

intervention analysis. Not only the values of estimated parameters 

change but also the standard error of all estimated parameters reduces. 

The results under the Chen and Liu procedure for joint estimation of 

outliers give significant evidence (at C=3.5) of outliers and structural 

breaks in all series. These identified outliers explain substantial 

proportion of volatility in majority of the series. The proportion of 

variation explained by outliers, as suggested by Balke and Fomby 

(1994) is calculated as: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = 1 − [
𝑣𝑎𝑟(�̂�)

𝑣𝑎𝑟(𝑦)
]             

(6) 

where 𝑦𝑜𝑢𝑡̂  is the fitted value obtained from the model with outliers 

and y is the observed series. 

The last column of Table 12 gives the proportion of variation 

explained by outliers. It is evident that the outliers for a series may have 

explained as low as 6.02% of total variation and for some other series 

may have explained as high as 39.77% of the total variation. In case of 

NEER, the proportion of variation explained due to outliers is about 

6.02% and for gold prices it is 39.77%, highlighting the importance of 
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outliers/ breaks in explaining the dynamics of the time series under 

study. Thus, the identification and estimation of possible outliers along 

with other features of time series are very important and necessary. 

Among the outliers identified, AO are most common, several 

LS are detected while few TC are identified. In general, clustering of 

outliers within series are noted at several instances where different 

series have outliers at or near the same date. The types of outliers in 

these cases may or may not match. Table 13 presents the outliers found 

in each series, their type and size as well as the date at which they have 

occurred in chronological order, as it is more viable to observe the 

patterns of outliers across time and series. There appear to be a 

clustering of outliers within series. It is well documented in literature 

that majority of outliers are associated with business cycle, particularly 

recession. However, since all business cycles are not same, so, is the 

behavior of outliers during these cycles requiring in-depth analysis. 

These joint occurrences also point toward the possibility of some 

political and economic events occurring in the country. The clustering 

of outliers across time is evident in Urea prices series at 2004 (June, 

July) then in 2004 (November, December). Within the clusters of 

outliers, the types of outliers identified may vary as in Urea prices the 

two outliers at June and July 2004 are AO and IO while the successive 

outliers at November and December 2004 are identified as LS and TC. 

The theory of outlier detection postulates LS to be a permanent break 

while TC is the break that decays off. Their successive existence 

requires exploration as this may be an issue of biased initial model 

identification or an incidence of misidentification as the graphical view 

of the series indicates possible LS. It may be a shortfall in the Chen and 

Liu procedure as mentioned by Sanchez and Pena (2003) but needs 

further exploration. Hence, along with the statistical exploration of the 

issue, evidence between the occurrence of these outliers and their 

historical perspective may prove helpful. The outlier detection 

procedure when applied to the monthly data of wheat results in two 

significant outliers i.e. AO at June 2010 and LS at July 2010. The 

intervention model for price of wheat for initially detected model as 

SARIMA (0,1,1)(0,0,0)12 is written as 

∇ ln(𝑝𝑤ℎ𝑒𝑎𝑡) = 𝑎𝑡 − 0.2826𝑎𝑡−1 − 0.1426𝐼𝑡
2010𝑀6 +

0.2108 (
1

1−𝐵
) 𝐼𝑡

2010𝑀7                                                                 (7) 
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Similarly, an intervention model for gold prices with three AOs can be 

written as  

∇ ln(𝑝𝑔𝑜𝑙𝑑) = 𝑎𝑡 − 0.4152𝑎𝑡−1 − 0.1077𝐼𝑡
2006𝑀5 +

 0.0680𝐼𝑡
2008𝑀7 − 0.0949𝐼𝑡

2008𝑀10                                                 (8) 

 

The intervention models for other series are listed in Table 13. 

 

6. Conclusions 

The extensive simulation experiment identifies that the sampling 

distributions of estimators for the parameter of contaminated series are 

biased, skewed and non-normal. The outliers need to be large for the 

method to have decent power. For small sized outliers, 𝜂𝐿𝑆 give 

average performance while other test statistics show poor performance. 

For sensitive detections (C=3), the empirical level of significance is 
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higher than the nominal level of significance; selection of slightly 

higher cutoffs(C) may help in reducing the chances of false detections. 

However, large cutoffs as identified under null hypothesis are not much 

supported in terms of power of the test statistics. Misspecifications 

among AO, IO and TC are also observed. The skipping in form of “no 

outlier” indicates the weakness of test statistics and appears frequently 

large cutoffs and for small outliers. Hence, outlier size needs to be large 

to have good performance of statistics. The decaying parameter should 

be used as high as 0.85 or 0.9 or δ should be estimated via some 

nonlinear estimation technique for satisfactory performance of test 

statistics of TC. This indicates that there is need to revisit the test 

statistics for TC and IO. 

The empirical analysis has shown that neglecting the presence 

of outliers affects the identification, estimation and results in poor 

statistical analysis. The detection and removal of outliers and structural 

breaks reduces the residual’s excess kurtosis, skewness and JB test 

remarkably. The analysis has identified several statistically significant 

shocks in all series under study. The possibility of incidence of 

misidentification, masking and swamping effects in identified outliers 

needs further exploration. It seems important to use the critical 

information being translated in these indicators in form of outliers and 

structural breaks. Connecting the indicated discordant observations 

with historical evidences helps in better understanding of past policies 

and designing effective policies in future. 
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