Punjab University Journal of Mathematics
(ISSN 1016-2526)
Vol. 52(10)(2020) pp. 55-82

The Fuzzy Cross-Entropy for Picture Hesitant Fuzzy Sets and Their Application in
Multi Criteria Decision Making

Tahir Mahmood, Zeeshan Afi
L2 Department of Mathematics and Statistics
International Islamaic University Islamabad, Pakistan,
Email: tahirbakhat@iiu.edu.pk,zeeshan.phdmal02@iiu.edu.pk

Received: 21 January, 2020 / Accepted: 17 July, 2020 / Published online: 10 October, 2020

Abstract.: In this article, we exploit the cross-entropy of picture hesi-
tant fuzzy set is established by distinguishing the cross-entropy of picture
fuzzy set and hesitant fuzzy set. First, many measurement concepts are
established and their basic properties are studied. Further, two measures,
which are based on the established picture hesitant fuzzy cross-entropy,
are established for evaluating multi-criteria decision making problems in
the environment of picture hesitant fuzzy sets. For both approaches, an
optimization model is pioneered to examine the weight vector for multi
criteria decision making problems with incomplete information on criteria
weights. In a last, we give an example to express practical and effective-
ness. The comparison of the proposed measures with existing measures is
also discussed.
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1. INTRODUCTION

Multi criteria decision making has been utilized in the establishment of a multi-modal
force recognition system involving multi-criteria with varying weights of importance. The
theory of a fuzzy set was investigated by Zadeh [1], characterized by only positive grade are
restricted to [0,1]. FS has achieved more success because of its capability of coping with
complications and troubles. This proves a strong tool for expressing human knowledge
[2-5]. However, in some practice cases, the concept of FS cannot cope with complications
and uncertainty because of the lack of knowledge of the problem. Therefore, Atanassove
[6] investigated the intuitionistic fuzzy set contains positive and negative grades, whose
sum is bounded to [0,1]. IFS is regarded as a more improved way to cope with complex
and awkward information. Although, Garg and Kumar [7] established exponential distance
measures and TOPSIS methods for the interval-valued intuitionistic fuzzy set. Alcantud et

55



56 Tahir Mahmood and Zeeshan Ali

al. [8] established aggregation of finite chains based on the intuitionistic fuzzy set. VIKOR
method was established by Zhang et al. [9] and Konwar and Debnath [10] established the
intuitionistic fuzzy membership metric. Further, Sen and Et [11] explored the intuitionistic
fuzzy norm linear space. For more work related to the fuzzy set, we may refer to [12-14].
The grade of a neutral cannot be discussed in intuitionistic fuzzy set. However, a neutral
grade is used in many real-life scenarios, such as polling stations, human beings give opin-
ions having more answers of a kind: positive, abstinence, negative and refusal/neutral. For
example, in a democratic voting system, 100 people have appeared in the election and the
election commission issued only 100 ballot paper. One person can take only one ballot pa-
per for giving his/her vote and is only one candidate. Basically, the result is dived into four
groups like vote for candidate 50, abstinence in vote 20, vote negative candidate 20, and
refusal vote is 10. The “abstinence in vote” shows that ballot paper is white which contra-
dicts both “vote for a candidate” and “vote negative candidate” but it considers the vote and
the “refusal of voting” means bypassing the vote. Therefore, Cuong [15] investigated the
picture fuzzy set contains positive, abstinence and negative grades, whose sum is bounded
to [0,1]. Picture fuzzy set is regarded as a more improved way to cope with complex and
awkward information. Although, Zeng et al. [16] established the linguistic picture fuzzy
TOPSIS methods and picture fuzzy aggregation operators were established by Garg [17].
The notion of picture fuzzy aggregation operators was established by Wei [18]. Wang et
al. [19] established the picture fuzzy Muirhead mean operators. After intuitionistic fuzzy
set, the picture fuzzy set has achieved more attention from researchers and it is utilized in
the environment of decision making [20-22] problems.

Hesitancy occurs in many real-life problems. To handle such types of problems, the hes-
itant fuzzy set was explored by Torra [23], as a powerful modification of fuzzy set, that
allows multiple positive grades is associated with each preference information for coping
with an awkward and complicated situation. Keeping the advantages of hesitant fuzzy set,
researchers widely explored the concept for pattern recognition [24-26], medical diagnosis
[27-30], similarity measures [31], and decision making [32-34] problems.

Picture fuzzy set has utilized successfully in various fields but in some practical cases,
the picture fuzzy set cannot work effectively. For example, when a decision-maker pro-
vides for positive, abstinence, negative grades in the form of a finite subset of [0,1], then
the condition of existing methods cannot hold. For handling such types of situations, the
picture hesitant fuzzy set was established by Ullah et al. [35], which is more generalized
than an existing drawback. Picture hesitant fuzzy set is a successful tool for describing the
uncertainty and awkward kinds of information in the fuzzy set theory. Basically, picture
hesitant fuzzy set contains three degrees is called positive, abstinence, and negative are
the form of a subset of [0,1]. The condition of the picture hesitant fuzzy set is that the
sum of the maximum of a positive degree, a maximum of abstinence degree, and maximum
of negative degree is bounded to [0,1]. Picture hesitant fuzzy set has achieved more atten-
tion like: Wang and Li [36] established the aggregation operators based on picture hesitant
fuzzy sets. Jan et al. [37] established the generalized similarity measures based on picture
hesitant fuzzy sets. Ahmad et al. [38] established the similarity measures based on picture
hesitant fuzzy sets.
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When a decision-maker provides the grade of truth, the grade of abstinence and the grade of
{0.4,0.3},

falsity in the form of a subset of unit interval such tHat{0.11,0.01}, |, then the exit-
{0.02,0.01}

ing notions [1, 6, 15, 23], are cannot deal it effectively, for coping with such kind of issues,

the notion of picture hesitant fuzzy set was explored. Although fuzzy set is a valid form

to express the uncertain evaluation information, it cannot solve several complex situations

in real life. For more effective expression of the evaluation information, many generalized

forms of fuzzy set were proposed [5-10]. Keeping the advantages of the picture hesitant

fuzzy set can express the uncertainty and complexity of human opinions in practice; fur-

thermore, the positive, neutral, negative, and refusal membership degrees are represented

by several possible values that are given by decision makers, in this article the explored

work is summarized is follow as:

(1) The notion of cross-entropy of picture hesitant fuzzy set is established by distin-
guishing the cross-entropy of picture fuzzy set and hesitant fuzzy set. First, many
measurement concepts are established and their basic properties are studied. Fur-
ther, two measures, which are based on the established picture hesitant fuzzy cross-
entropy, are established for evaluating multi criteria decision making problems in
the environment of picture hesitant fuzzy sets.

(2) For both approaches, an optimization model is pioneered in order to examine the
weight vector for multi criteria decision making problems with incomplete infor-
mation on criteria weights. In last, we give an example to express the practically
and effectiveness.

(3) The comparison of the proposed measures with existing measures are also dis-
cussed in detail.

Besides, the predominance of the picture hesitant fuzz model over a portion of the current
models is shown in Table 1.

Table 1. Comparison of picture hesitant fuzzy sets model with existing models in literature.

Model | Uncertainly | falsity | hesitations | Degrees | Strong Refusal
in the | Condi- grades
form of | tion
subset

FSs v X X X X X

HFSs V X X V/ X X

IFSs v v N X X X

IHFSs V/ / V/ X V X

PFSs v v N X X N

PHFSs | v v v v v v

The aim of this article is to follow as, In section 2, we recall some concepts of picture
fuzzy sets, hesitant fuzzy sets, picture hesitant fuzzy sets, cross-entropy, and the properties
are discussed. In section 3, the cross-entropy measures based on picture hesitant fuzzy sets
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are explored. In section 4, the concept is divided for evaluating multi-criteria decision-
making problems using the picture hesitant fuzzy numbers, where the criteria weights are
not completely known. Further, we resolve some numerical examples to show the reliability
and efficiency of the proposed measures. The compassion o the proposed measures with
existing measures are also conducted. The conclusion is discussed in section 5.

2. NOTATIONS AND PRELIMINARIES

In this section, the ideas of picture fuzzy sets, hesitant fuzzy sets, picture hesitant fuzzy
sets, cross-entropy, and the properties are discussed. Throughout this article, X represents
the finite fixed set.

Definition 2.1. [15] A picture fuzzy sePprs 0on X is an object with the following form:

Ppps = {(MPPFS ('73) ’APPFS (JJ) ’NPPFS (l‘)) HEGES X}

WhereMp, .o, Apprgs Npepps : X — [0, 1] represents the positive, abstinence and nega-
tive grades, with a conditiod < Mp, ... (z) + Appps (2) + Npa,g (x) < 1. The refusal
grade of picture fuzzy set is given by:

TPprs (I) =1- (MPPFS (l‘) + APPFS (.23) +NPPFS (m))
The triplet(Mp,. . (), App s (2) , NP, g (2)) represents the picture fuzzy numbers.

Definition 2.2. [23] A hesitant fuzzy sét;rs on X is an object with the following form:
Prps = {(x’MPHFS (I)) SRS X}
WhereM p,, ... is a set of values in [0,1], presented the positive grade.

Definition 2.3. [35] A picture hesitant fuzzy s s 0n X is an object with the following
form:

Ppurs = {(aPPHFS (I) 76PPHFS (1‘) » YPpuFs (I)) HEES X}
Whereap,, s, Brpyurs @8Ndyp., .o are finite non-empty sets of values in [0, 1], repre-
senting the positive, abstinence and negative grades, with a condition
0 <max (appyps () + max (Bppyps (@) + max (vp,,ps (2)) < 1. The refusal grade
of picture hesitant fuzzy set is given by:

TPpurs (@) = 1- (MPPHFS (z) + APpyrs (z) +NPPHFS (2)), where Mp,,; .5 €
aPPHFS7APPHFS € ﬂPPHFs7NPPHFs € YPpurs> TPrurs (‘T) € 5PPHFS (I) The triplet
(Ppyrs (), BPeprs (), YPpnre (X)) represents the picture hesitant fuzzy numbers.

Definition 2.4. [35] LetPPHstl = QPppps_1 ({E) ’ﬂPPHFS—l (.ZIZ) y YPpHFS—1 (:17) andPPHstg =
OPpyps_2 (X)) BPours_s (X)), YPpurs_o (x) be two picture hesitant fuzzy numbers. Then
1) gDHFS—l ® Ppars—2 = f0) 1
1
- MPpyps_at
@ MPppyps_a— Av

MPPHFS—l € APpyrs_1s M M
Ppurs—1/'Y'Ppars—2

'MPPHFS—2 € APpyps_2

A A
APPHFS—I c 6PPHFS—17 Ppurs—1YPpars—2 »

- APPHFS—Q € BPPHFS—?

NPPHFS—l ‘NPPHFS—Z
NPPHFS—l € YPpurs_1s

Pprurs—2 € VPpups_»
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2) BPHFSA ® PpHFSs—2 =

Mp Mp
€ a PHFS—1" PHFS—2
MPPHFS—l Ppurs—1>

1
MPPHFS—Q € APpyps_» O
- @ APPHFS 1+
Ap
APpyrs_1 € BPpups_1s PHFS—2"

>

Ap Ap
'APPHFS—Z G/QPPHFS—2 (@) PHES=1 PHES=2

=

« NPPHFS 1+
@

>

Ppaurs—2—

NPPHFS—I € YPpurs_1s N,
Ppurs—1-

Npoyrs_2 € VPpups_»

3 e)PP‘HFSA =

Ppurs—2

15}
1— 1-Mp
g MPpurs_1€“Ppurs_1 PHES—1

1
b
AE) .
APprs—1€0Ppyps_1 Prurs—1 > %’

N
NPpups—1€7Ppars—1 PHFS—1

4 9 =
(4) BPurs-y a )
M
< MPpurs—1€%Pparps_1 PpHFs-1
5]
1- 1- AP .
APpyrs_1SBPpyrs_1 PHFS—1 s

15}
1— 1—-Np
Nepprs—1€7Pprps—1 PHFS-1

3. THE CROSSENTROPY MEASURES FORPICTURE HESITANT Fuzzy NUMBERS

In this section, we explore the concept of cross-entropy measures based on picture hes-
itant fuzzy numbers and their properties. The proposed measures are described below.

Definition 3.1. LetPpyrs_1 = (apPHFS_l (Cﬂ) ’ﬂPPHFS—l (x) s YPpars_1 (Z)) and
Prrrs—2 = (0Ppurs s (T) s BPpurs_s () s YPrurs_. (€)) be two picture hesitant fuzzy
numbers. Then the cross-entroPy¥; (Ppurs—1, Ppurs—2) is denoted and defined as:

CE,: PHFN x PHFN — R*

CFEy (Ppurs—1, Prurs—2) =

maivMPPHFS—l €Ppyps_1

TMUNMpp s 2€XPprps s

MPPHFS—] +
10g2 ( QMPPHFS—I )

MPpyps_1TMPprps_s

max'APPHFS—l €BPprrs—1

mZnAPPHFS—2eﬁPPHFS—2

APp s +
10g2 ( 2APpyps_1 )

'APPHFS—l +'APPHFS—2
mamNPPHFS—l

€YPpHFS—1
NN Py ps 2 €Y Pprps—a

Pprrs—1

10g2 ( 2NPpyps_1 )

NPPHFS—I +NPPHFS—2
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Which holds the following conditions:
(1) CE\ (Ppars—1,Prurs—2) > 0;
(2) CE\ (Pprars—1,Ppurs—2) =0iff Pprrs—1 = Ppurs—2;
(3) CE1 (PSyps_1,PSups—2) = CEv (Ppurs—1, Ppars—2),
WherePPqHstl = (fyPPHFS—l (CL‘) 7ﬁPPHFS—1 (33) yXPpyrs_1 (33))

Definition 3.2. LethHFS_1 = (OszHFS*1 (;z:) 7/8PPHFS—1 (l’) s YPprFs—1 (m)) and

Prrrs—2 = (OpPpyrs s (T) s BPpurs_s (2) s YPeurs_. (€)) be two picture hesitant fuzzy
numbersp > 1. Then the cross-entropy Es (Ppurs—1, Ppurs—2) is denoted and de-
fined as:

CE,: PHFN x PHFN — R*
CEs (Ppurs—1, Prurs—2) =

N 1

‘O‘PPHFS—l‘

manPPHFS—Q €Ppyps_2

+
ZMP car Mpoyps_
PHFS—1 PHFS—1 log, ( 2MpPpyrs_1 )

Mppyps_1TMPpyps_s
1

|BPPHFS—1 |

S =

mznAPPHFS—? €BPpyFrs_2

—+
ZAP €Bp QAPP Spl
PHFS—1 PHFS—1 1 ( HFS—1 )

'APPHFS—l +'APPHFS—2
1 1

|’YPPHFS—1‘

MNNPpypg_ 2 €ETPPHFS—2

Z NPPHFS—l
NPpyps—1€EPpars—1 ( 1og2 ( 2NPpyrs_1 )

NPPHFS—I +NPPHFS—2

Which holds the following conditions:

(1) CE; (Ppurs—1, Ppars—2) > 0;

(2) CE2 (Ppars—1,Ppars—2) =0iff Ppgps—1 = Ppars—2;

(3) CE; (PSyps_1,PSups—2) = CE2(Ppars—1, Ppars—2),
WherePgHFS—l = (,‘YPPHFS—l ((E) ’/8PPHFS—1 (‘E) yOPpyps_1 (:C))
Theorem 3.3. The proposed measuré&F; (Ppyrs—1, Pprrs—2) and

CEs (Ppurs—1,Pprrs—2) are a picture hesitant fuzzy cross-entropy, and satisfy the
above three conditions.

Proof: The conditions of def. 3.1 and def.3.2 can be examined and the proof of the other
definitions is similar.

(1) ItisclearthatCEy (Ppurs—1, Ppurs—2) > 0andCE; (Ppurs—1, Ppars—2) >
0.

(2) If Ppprs—1 = Pprars-2, thenaPPHFS—l (LL‘) = QPpgps_2 (CE) 7ﬂPPHFS—1 (LL‘) =
ﬁPPHFS—2 (SL’) and,yPPHFS—l (:E) = VYPpurs—2 (‘r) Then

CE:\ (Ppurs—1,Ppars—2) =
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and

o

MATMppyps 1 EXPpyps 1

MMM ppyps_2€2%Ppyps_s
MPPHFS—I

10g2 ( 2MPpyps_1 )

Mppgps_1tMPpyps_1

maxAPPHFS—l €BPpyps_1

mznAPPHFS—2€ﬁPPHFS—2

Ppars—1

10g2 ( 2‘APPHFS—1 )

Aprpyrs—1tAPprFs_1

MATNppyps—1 EVPprEs—1
TUNN Ly ps 2 €YPPHPS—2

Ppurs—1

10g2 < 2NPPHFS—1 )

NPPHFS—1+NPPHFS—1

= maxMPPHFS—leaPPHFS—l (0) +
ma:r‘APPHFS—leﬁPPHFS—l (O) +

mal.NPPHFS—le’yPPHFS—l (0) =0

CEy Ppyrs—1,PpHFs—2

1

“PpHFs—1

2Mp
10g2 PHFS—1

(o]
o .
min
o MPprps_2S“Ppurps_2
PM MPpyrs—_1
Ppurs—1S°PpHrs—1 G B

MPpurs—1TMPpars_

1
Bp
o PHFS—1

min
APprrs—2PPprrs—_2

(o]
PA 5 APprrs_1
Ppurs—1PPpars_1 B ) 2APoHES 1
0g2

APpyps_1TAPpHRrs_1
1

P
o PHFS—1

min
o NPpups—2 'Ppurs_2
PN PpHFS—1
Ppurs—1SPpups—1 8 & . 2NPpyrs—1
082

Nppurs—1TNPpups—1

1
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(1) LetCEy Ppurs—1,PrpaFrs—2

1

o 1 1
o PPHFs-1 1,
o "MPpyps 2€“Ppurs 2 1 "
PMP cop E 8 A’;izlaHFs—l [] g E
PHFS—1 PHFS—1 logs PpHFS—_1
MPpyrs—1TMPpaps_»

1

(o] a1
o BPpyrs—1 1
min p
o APprrs 2€PPpHrs 2 1 +
P APpurs—1 E
A en -
Ppurs—1-"PPHFS—1 B R

logg 2APPHFS—1
APpyrs—1TAPpHurs_2

1

"PpHFs—1

o 1
o min 1p
o NPpups—2 "Ppurs—2 4
P NPpgrs—1 g
N, € -
Ppurs—1S"PPHFS—1 8 =

log, 2NPpurs—1
Nppurs—1TNPpups—_2

1

“PpHps—1

o 1 1
1,
© min ca P
o Ppurs—2~“PPHFS—2 1 +
pM MPpyrs—1 [ g
PpHFS—1S*PPHFS—1 8 log 2MPo g FS_1 =
? Mprpurs—2TMPpurs_1
o 1 1%
o BPpars—1 1
i P
min
= APprrs—2PPpurs_2 1 +
PA APpgrs—1 g
Ppars—1SPPpars_1

o
8 ]

2Ap TR
logy PHFS—1

APpars—2TAPprrs_1
1

3=

P
PHFS—1 1
m

o
o P
n

o NPprps_2€Ppurs_2 1
pN c NPprrs_1 [ E

Ppars—1S"PPHFS—1 B ) 2NPpyrs_1 I

0g2 +
Ppurs—2 " Ppurs—1

>0 B

c c
=CE2 Ppyps_1,Ppurs—2

Hence the proof of the results is completed.

Definition 3.4. Let Pprrrs—1 = (Ppyps_ 1 (2)  BPonrs—1 (T) s YPpurs_. (x)) and
Pprrs—2 = (aPPHFS—Z (LL') 7ﬁPPHFS—2 (!l?) y YPpHaFS—2 (LL')) be two picture hesitant fuzzy
numbers. Then the cross-entraP¥s (Pprrs—1, Ppars—2) is denoted and defined as:

CE;: PHFN x PHFN — R*

CEs (Ppurs—1, Prars—2) =
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MATMppyps 1 €E%Ppyps 1

MMM ppyps_2€2%Ppyps_s

MPPHFS—I ) +

log ( 2MPpyrs_1
2 Mppyps_1TMPppps_s

maxAPPHFS—l €BPpyps_1

mznAPPHFS—2€ﬁPPHFS—2

Ppprs—1 +
log ( 2‘APPHFS—1 )
2 Arpyps—1TAPpEFs_2

MATNppyps—1 EVPprEs—1
TN Ly ps 2 € PPrRs—2

Ppurs—1

2Np
lo ( PHFS—1 )
&2 NPPHFS—1+NPPHFS—2

MAT 7Py pg 1 €0Ppyps 1

TN e,y ps 2€0PprRg_o

7r123'PHFS—1
Uy _
10g2 ( PHFS—1 )

TPpars—1 1T Ppars_2

Which holds the following conditions:

(1) CEs (Ppurs—1,Ppurs—2) > 0;

(2) CE3 (Ppurs—1,Pprurs—2) =0iff Ppyps—1 = Ppurs—2;
() CEs (Pfyps_1: Pfups—2) = CBs (Ppurs—1, Ppurs—2),

C —
WherePPHstl - (,YPPHFS—I (Z‘) 7ﬁPPHFS—1

Definition 3.5. Let Ppryrs—1 = (Ppyrs_ s (2), BPonrs—1 (Z) s VPpurs_. (x)) and

('73) yO&Pprps_1 (Z‘))

Ppars—2 = (aPPHFS—Z (.’IJ) 7ﬁPPHFS—2 (il?) y YPpHFS—2 (LL')) be two picture hesitant fuzzy

numbersp > 1. Then the cross-entrofy £y (Pprrs—1, Pprrs—2) is denoted and de-

fined as:

CEy: PHFN x PHFN — R*

CEy(Ppurs—1, Prars—2) =
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11
L p

o a1
o “PrPHFs-1
min
o MPprps 2 “Ppurs_2
PM MPpyrs—_1 ¥
PpaFrs—1S*PPHFS 1 8 log 2MPpurs—1
2
MPpurs—1TMPpurs_2
o o
BPpars—1
min
APprrs—2PPpurs_2
pA APprrs—_1 ¥ E
Ppurs—1PPpurs_1 8 2APby RS _1

‘d\'—‘

logy
APpurs—1TAPpars_2
1

=

’YPPHFS 1

ml-‘

o
"NPpyps_2€7Ppurs_2 1
PN NPPHFS—l ¥ E
PpHFS—1S"PPHFS_1 8 2NPpyFs_1

logy

Nepprs—1 T NPpurs_2
1

=

*PpHFS—1

X R

>0 B

)>(TT‘O|—‘

o
min
o "Ppurs—2“°Ppurs—2
P 5 TPpHFS—1
TPpuFs-1S°PPHFS-1 B 2T Pp g ES_1

logg

"PpupS—1V"PPHFS—2

Which holds the following conditions:

(1) CE4 Ppups—1,PPurs—2 20
(2) CE4 Ppgrs—1,Ppurs—2 =0ff Ppyps_1 = PpHurs—2;
(@) CEs PSyps_1,PSyps—>» =CE4 Ppups—_1,PpHFs—2 .

C _ .
wherePSy ps_1 = VPpyrs_1 (@):BPprrg_1 (®):0Ppypg_q ()

Theorem 3.6. The proposed measuré&Fs (Ppyrs—1, Pprrs—2) and
CE, (Ppurs—1,Ppurs—2) are a picture hesitant fuzzy cross-entropy, and satisfy the
above three conditions.

Proof: The conditions ofle f.3.1 andde f.3.2 can be examined and the proof of the other
definitions is similar.

(1) ItisclearthatCEs (Ppurs—1, Ppars—2) > 0andCEy (Ppurs—1, Ppars—2) >
0.

(2) If Ppurs—1 = Ppurs—2, thenaPPHFS—l (x) = QPpyps_2 (33) 7ﬂPPHFS—1 (x) =
6PPHFS—2 (l’) and’yPPHFS—l (I) = VPpurs—2 (I) Then

CFEs(Ppurs—1,Ppars—2) =
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MATMppyps 1 €E%Ppyps 1
MMM ppyps_2€2%Ppyps_s
MPPHFS—I

2Mp
lo ( PHFS—1 )
62 Mppgps_1tMPpyps_1

maxAPPHFS—l €BPpyps_1
mznAPPHFS—2€ﬁPPHFS—2

Ppars—1

10g2 ( 2‘APPHFS—1 )

Aprpyrs—1tAPprFs_1

MATNppyps—1 EVPprEs—1

TN Ly ps 2 € PPrRs—2

|
|
|

2Np
lo ( PHFS—1 )
&2 NPPHFS—1+NPPHFS—1

MAT 7Py pg 1 €0Ppyps 1
TN e,y ps 2€0PprRg_o

TPpyrs—1

10g2 ( 2TPpyps—1 )

TPpaFs—1TT™PpaFs_1

= MATMpp iy ps_1 €Ppyps— (0)

1
MALApppyps_1 €BPpps_1 (0) +
MATN Py ps—1 €EYPPIFs—1 (O) +
MAT7pp g 1 €0Pp g1 (0) =0
and

CEy(Ppurs—1,Ppurs—2) =

o 1

o . 11

o ‘FPPHFs-1 1,
o T MPppps 2 €“Ppaps o 1 +
PM E MPpyps—1 ] é
Ppurs—1S*Ppurs—1 B log, 2MPo g FS—1 %
MPpyrs—1TMPparps_1
1 :

BPpaps—1

(o] a1
o min 1p
o APpprs—2PPpurps—2 4 L
P APpyrs—1
A €s - !
Ppurs—1°Ppups-1 8 B8 2APpyps—1 =

logy
APpurps_1TAPpurs_1
o 1 11
P
TP
o rrurs 1,
o NPprps_2€ Ppurs_2 1 +
PN PpHFrs—1 ¥ g
PpuFs—1"Ppars—18 B8 2NPpFs—1 X

logg
Nepurs—1 T NPpurs_1

1

=

*PpHFS—1

o
o
min
E P g "Pprrs—2 PPHFS 2
27 p
"Ppurs—1°Ppurs_1 PHES—1

Tp _logsy
PHES—1 "Ppups—1 1t PPHFS -1

>mﬁr-\
>0 B
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1
Il
o

1 1 1
=(0)? +(0)? + (0)P + (0)
(1) LetCEy Ppgrs—1,PPHFs—2 =

o 1

I a1 1
ap
) PHFS—1 1,
min
o MPprups—2S*Ppurs—2 1 +
|:>J\/1 MPpyrs—_1 ' g
Ppurs—1S*PpHrs—1 8 Jog MPpups—1 =
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Hence the proof of the results is completed.
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Definition 3.7. Let Prurs—1 = arpyrs 1 (2):BPrurs 1 (T),VPpurs_, (x) and
PpuFs—2= QPpyps_ 5 (T),BPpurs_o (), YVPpurs_o (x) be two picture hesitant fuzzy num-
bers. Then the cross-entro@yEs (Pprurs—1, Prars—2) is denoted and defined as:

CEs: PHFN x PHFN — R*

CEs (Ppars—1, Ppars—2) =
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(1) CEs (PpaFrs-1,Ppars—2) > 0;
(2) CEs (Pprrs—1,Prars—2) =0iff Ppurs—1 = Ppars—2;
) CEs PSyps—_1,PSurs—o =CEs(Pprurs_1,Prurs_2),
wherePEHFs_l = VPpprs-_1 (x) yBPprps_1 () yXPppps_1 (z) .
Definition 3.8. LetPpyrs_—1 = QPprrs_1 (z) 2 BPpurs_1 (z) s YPpHFS_1 (z) andPpurs—2 =

OPpyps—s (X) s BPours_o (X)), YPpurs_o () be two picture hesitant fuzzy numbeps> 1.
Then the cross-entropy Fs (Prurs—1, Ppurs—2) is denoted and defined as:

CFEs: PHFN x PHFN — R™
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Which holds the following conditions:

(1) CEB¢ Ppurs—1,Ppaurs—2 20;

(@) CE¢ Ppurs—1,Ppurs—2 =0ffPpyrps_1 = PpHurs—2;
@) CB¢ Pfyps_1,PSurps—2 =CEs Ppurs—1.Ppurs_2
where Py pg_y = YPpyrs—1 (&) PPpyps_1 (&) @Ppypg_q (@) -

Theorem 3.9. The proposed measuré&:s (Pprurs—1, Ppars—2) and

CEs (Ppurs—1, Ppars—2) are a picture hesitant fuzzy cross-entropy, and satisfy the above three
conditions.

Proof: Straightforward. (The proof of this theorem is similar to the proof ofttherrem3.1)

Definition 3.10. LetPpyrs_1 = APprps_1 (:I,‘) ’BPPHFS—l (x) sy YPpHFS_1 (:17) andeHFs_2 =

APpyrs_2 (T) s BPpurs_s (T), YPpurs_o () be two picture hesitant fuzzy numbers. Then the
cross-entropYC E7 (Ppurs—1, Ppurs—2) is denoted and defined as:

CE;: PHFN x PHFN — R*
CE7 (Ppars—1,Ppars—2) =
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Which holds the following conditions:

(1) CE7 (Ppurs—1,Ppars—2) > 0;
(2) CE7 (Pprrs—1,Ppars—2) =0iff Ppurs—1 = Ppurs—a;
(3) CE? PEHFS_I, Pngs_Q = CE? (PPHF‘S’flyPPHF572)1

Wherep}gHstl = VPpurs-1 (JS) 7/8PPHFS—1 (1‘) yXPppps_1 (1‘) .

Definition 3.11. LethHps_1 = OPpprs_1 (.’E) ’BPPHFS—I (:C) sy YPpHFS_1 (l’) andeHFs_g =

aPpyps_ s (T), BPpurs_o (), YPpurs_, () be two picture hesitant fuzzy numbeps > 1.
Then the cross-entropy Es (Ppurs—1, Ppars—2) is denoted and defined as:

CEs: PHFN x PHFN — R*

CEs (Ppurs-1, Ppurs—2) =
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Which holds the following conditions, far< ¢ < 2,p > 1:

(1) CEs (Ppurs—1,Ppurs—2) > 0;
(2) CEs (Pprurs—1,Ppurs—2) =0iff Ppurs—1 = Ppurs—2;
() CEs Pfyps—1,Piurs—2 = CEs(Ppurs—1, Prurs—2),

Wherengstl = YPpurs—1 (:17) 76PPHFS—1 (m)7aPPHFS—1 (m) .

Theorem 3.12. The proposed measuré&ir; (Pprurs—1, Ppurs—2) and

CEs (Ppurs—1, Prurs—2) are a picture hesitant fuzzy cross-entropy, and satisfy the above three
conditions.

Proof: Straightforward. (The proof of this theorem is similar to the proof oftitweorem3.1)

Definition 3.13. Let Ppyrs—1 = QPprrs_1 ($) ,ﬁpPHFS_l (:E) s YPPHFS -1 (m) andPpyrs—_o =
OPpyrs—s (X) s BPours_o (X)), YPpurs_o (€) be two picture hesitant fuzzy numbers. Then the
cross-entropYC Fg (Ppurs—1, Ppurs—2) is denoted and defined as:

CEy: PHFN x PHFN — R*

CEy (Ppurs-1, PPHrs—2) =
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Which holds the following conditions:

(1) CEy (Ppurs—1,Ppars—2) > 0;
(2) CEg (Ppurs—1, Ppurs—2) =0iff Ppurs—1 = Ppurs—2;
(3) CEQ PIQHFS—I’ P}ngs_Q = CEQ (PPHstlv PPHFS*Q);

WherePgHFS—l = YPpurs—1 (:17) 76PPHFS—1 (x)7aPPHFS—1 (m) .

Definition 3.14. Let Prrrs—1 = @prppps_1 (Z),BPpurs_1 (), YPpups_, () @andPprrps—2 =
OPpyrs_s (X) s BPours_o (Z), YPpurs_o () be two picture hesitant fuzzy numbeps> 1.
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Then the cross-entropy Evo (Ppurs—1, Ppurs—2) is denoted and defined as:

CEio: PHFN x PHFN — R*

CEvo (Ppars—1, Prars—2) =
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We choose the values @ = (1 4+ g)In(1+¢q) — (24 ¢) (In(2 4 g) — In2). The symmetric discrimination information measure for
picture hesitant fuzzy numbers is follow as:

*
CE; Ppprs—1,Ppurs—2

=CE; Ppyrs—1,Ppurs—2 +CE; Ppurs—2,Ppurs—1

Theorem 3.15. The proposed measuré&y(Pprrs—1, Ppurs—2) and

CE1 (Ppars—1, Ppars—2) are a picture hesitant fuzzy cross-entropy, and satisfy the above three
conditions.

Proof: Straightforward. (The proof of this theorem is similar to the proof oftitxerem3.1)

4. MULTI CRITERIA DECISION MAKING METHODSBASED ON CROSSENTROPY MEASURES
OF PICTURE HESITANT FUzzY NUMBERS

Multi criteria decision making ranking problems with picture hesitant fuzzy information depend
alternatives, represented Bprrs—; (1 = 1,2,3,...,n) wiltg respect tan criteria expressing by
Ci(j= 1,2,3...,@. The Weightly,ectors fow; € [0,1], [, w:; = 1 with a conditionw; <

w; < wj suchthat ' w >1, 7  w; < 1. The picture hesitant fuzzy numbers is defined

by

Ppurs—ij = QPppps_i; (@), BPpyps_i; (£),YPpurs_i; () . The steps of the algorithm is
follow as:

Step 1: We construct the decision matrix whose every entities in the form of picture hesitant fuzzy
numbers.

Step 2: We calculate the weight vector, for this first we choose the positive and negative ideal solution
such thatPpositive ideat = (1,0,0) and Pyegative idear = (0,0,1). Then we use the following
formula such that

CE] (Ppurs—ij, PPars—ij)

= CFE1 (PpuFS—ij, PPositive ideal) + CE1 (Pprositive ideal, PPHFS—ij5)
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Step 3: We examine the closeness of the negative ideal and alternatives by using the following equa-
tions, such that

X ij
G (PpurN—j) = . w;Gij, Gij = m

The linear programming model is of the form:

> > XK
maxG = G (Ppurn—j) = wiGij

Step 4: Rank the alternative and examine the best one.
Step 5: The end.

(1) (a) Anillustrate example

A company has decided to choose a pool of alternatives from several foreign countries based on
preliminary surveys. In this survey, we find a suitable candidate countries, which is represented
by a1, a2,as andas. During the assessment, four factors including, Politics and Policycz:
Infrastructurecs: Rggsource and,: Econagly. The weight vector for above alternatives and their
E 0.15 < w; £0.3, =
0.15 < wy < 0.25,
= 025<w; <04, =
T 03<wys <045
The steps of the algorithm is follow as:
Step 1: First we construct the decision matrix whose every entities in the form of picture hesitant
fuzzy numbers, which is utilized in the form of table 2

P
attributes i.e H = suchthat 7 w; = 1.
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Table 2. Original decision matrix, whose every entries in the form of picture hesitant fuzzy number.

Symbols 61 1] C2 Cs Ca
{0.3,0.4} O 110 T10° T
{071} ’ {0.01,0.4}, {0.03,0.04} , {0.3,0.4},
a1 g 0.1.0.2 § @ {013}, A| @ {023}, A | @ {01,023}, A
e {0.13,0.21} {0.1,0.22} {0.23,0.22}
Q . 1 Q | O T
10.13,0.14}, L ® v 93 0,247, 10.03,0.04}, {0.23,0.21},
1y, Eg A 001}, &g A
as 011, 0:13, < {0.11}, 0.1,0.02, {0.14},
0195 {0.1,0.12} o 0.12 Lo 021,022}
O T | O T
(0.03,0.04] (03,04}, 0.1%),&12 ’ {0{36,?}4}, -
as @ {023}, A |@ {01,023}, A B 0.1 23 §§ 0.1,0.2 R
{0.1,0.22} {0.23,0.22} 101,23} , 002
o 1 o {0.1,0.32} 4 0.22
o} T o T
{0:03,0.04%, {0.23,0.21} 10.03,0.04}, {0.23,0.21},
{0.01}, @ 014 A {0.01}, @ 0.14 A
aa 0.1,0.02, oo, 0.1,0.02, 051,052
0.12 {0.21,0.22} 0.12 {0.21,0.22)

Step 2: We calculate the weight vector, for this first we choose the positive and negative ideal solution
such thatPpositive ideat = (1,0,0) and Pnegative ideat = (0,0,1). Then we use the following

formula such that

M
CE{ Ppurs—11,Ppositiveideal = CE1 PpaHFS—11, Ppositive ideal +CE1 Ppositive ideals PPHFS—11

2x0.3

2x04

=max min 0.3log, 0341 ,min  0.4log, 04+1 +
max min 0.1log, g T_Sé +
8 ' 9
< min 0.llog, 2%%1 min 0.2log, 2552 =
max _ -
: min 0.22log, 23522 -
+max min lo & min lo & +0+4+0
%2 03+1 82 04+1

= max (—0.67,—0.097) — 0.06+
max (—0.06, —0.14, 0.066) + max (0.19,0.15)
—0.097 — 0.06 + 0.066 + 0.19 = 0.099

And similarly fOI’CEik (PPHFS—117 PNegative ideal) = 1.052
Step 3: We examine the closeness of the negative ideal and alternatives by using the following equa-
tions, such that

CE} (Ppars—11, Ppositive ideal)
CEY (Ppars—11, Prositive ideal) +
CE} (Ppars—11, PNegative ideal)

0.099

=—— =0.0942
0.099 + 0.952 0.09420
G2 =0.023,G13 = 0.0423, G14 = 0.03, G21 = 0.032,

G2 = 0.0243, G23 = 0.0445, G24 = 0.0562, G3; = 0.31,
Gz2 = 0.024,G33 = 0.0671, G34 = 0.0779,
Ga1 = 0.012,G42 = 0.23,G43 = 0.03, G44 = 0.651
The linear programming model is of the form:
mazrG = 2.9487Tw1 + 2.6077w>

+2.7233ws + 3.4084w,
0.15,0.15,
0.375,0.325

Gll -

w =
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Step 4: Rank the alternative and examine the best one.
G1 (a1) = 0.04319, G2 (a2) = 0.04347
G3 (a3) = 0.1, G4 (CL4) = 0.259
Ga(as) > Gs(az) > G2 (a2) > G1 (a1)
HenceG, (a4) is the best strategy. For= g = 2.
Step 5: The end.
The comparative analysis of the explored measures with some other existing measures is follow as:
the generalized distance and similarity measures based on picture hesitant fuzzy set was explored by
Jan et al. [37] and some similarity measures based on picture hesitant fuzzy set were presented by
Ahmad et al. [38]. The comparison between explored measures with existing measures [37, 38] is

discussed in table 3.
Table 3. Comparison between explored work with some existing works.

Methods Similarity Values Ranking Values

Jan et al. [37] G ((11) = 0.04353, G (az) = | Gy (CL4) > G ((13)
00439, 2 GQ (az) 2 G1 (al)
G3 (ag) = 0.98, G4 (a4) =
0.246

Ahmad et al | G, ((11) = 0.04820, G (a2) = | Gy (CL4) > Gs ((13)
[38] 0.0495, 2 Gz (az) 2 G1 (a1)
Gg (ag) = 0.13, G4 (a4)
0.273

Proposed Mea-| G1 ((11) = 0.04319, G2 (az) = | G4 (a4) > Gg ((13)
sures 0.0434, > G2 (az2) > G1(a1)
Gg (ag) = 0.1, G4 (a4) =
0.259

From the above analysis, it is clear that the all existing works [37, 38] and the explored measure are
provides the same results, which is discussed in table 3. The best alternaiivéds). When we
consider the positive, abstinence and negative grade in the form of singleton set, then the established
work is reduced into picture fuzzy set. The explored work is more general than existing drawbacks
because of its structure.

5. CONCLUSION

In this article, we exploit the cross-entropy of picture hesitant fuzzy set is established by distin-
guishing the cross-entropy of picture fuzzy set and hesitant fuzzy set. First, many measurement con-
cepts are established and their basic properties are studied. Further, two measures, which are based
on the established picture hesitant fuzzy cross-entropy, are established for evaluating multi-criteria
decision making problems in the environment of picture hesitant fuzzy sets. For both approaches,
an optimization model is pioneered in order to examine the weight vector for multi criteria decision
making problems with incomplete information on criteria weights. In last, we give an example to
express the practically and effectiveness. The comparison of the proposed measures with existing
measures are also discussed in detail. We aim to broaden our study in the future with the analysis
of (1) Complex g-rung orthopair fuzzy sets, (2) Complex bipolar Neutrosophic sets, (3) Fuzzy rough
soft sets and (4) Fuzzy rough Neutrosophic sets. The existing methods are discussed in [39-50] are
also utilized in the environment of proposed approaches.
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