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Abstract.: Intensity inhomogeneity or bias field in natural and medical
images make image processing challenging. In this paper we have in-
troduced a novel technique in which we first estimate the bias field using
multi-scale filtering. Based on the bias field, the bias field corrected image
is obtained which is used for accurate segmentation. For segmentation, a
convex functional is proposed which is also suitable for multi-region seg-
mentation. The proposed formulation is extended to vector-valued images
and texture images. For comparison, the results are compared with state of
the art models both qualitatively and quantitatively which validate strong
enactment of the proposed formulation.
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1. INTRODUCTION

Segmentation aims to automatically divide an observed image into useful segments of
features with sharp boundaries such as buildings, desks, people, trees, organs, cars or what-
ever are within a picture [22, 7, 8, 11, 15, 3, 17, 18, 5, 16, 6, 19]. In this paper, our main
concern is multi-region image segmentation in presence of intensity inhomogeneity. The
presence of intensity inhomogeneity in a given image greatly effects the performance of
image segmentation models [9]. For piecewise smooth ideal image one can use Chan-Vese
(CV) model [8] which is special case of Mumford Shah model [15]. The CV minimization
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model is as follow:

FCV (c1, c2, C) = λ1

∫

inside(C)

|u0(x)− c1|2dx + λ2

∫

outside(C)

|u0(x)− c2|2dx,

+ µ length(C) (1. 1)

On the other hand, several recent works can be seen in the literature which extend the CV
model for segmenting images with intensity inhomogeneity [1, 20, 21, 2, 14, 12, 9]. A
well known example is the local binary fitting model (LBF) model [12] which proposes the
following functional of minimization:

FLBF
ε (φ, f1, f2) = µ

∫

Ω

δ(φ)|∇H|dx + ν

∫

Ω

(|∇φ| − 1)2dx (1. 2)

+ λ1

∫ [ ∫
Kσ(x− y)|u0(y)− f1(x)|2H(φ(y))dy

]
dx

+ λ2

∫ [ ∫
Kσ(x− y)|u0(y)− f2(x)|2(1−H(φ(y)))dy

]
dx

whereKσ is the gaussian kernel having standard deviationσ, u0 is given image,f1 and
f2, are the smooth functions which fits the given image locally inside and outside of the
contour C respectively, are given by:

f1(x) =
Kσ(x) ∗ I(x)Hε(φ(x))

Kσ(x) ∗Hε(φ(x))
, f2(x) =

Kσ(x) ∗ I(x)(1−Hε(φ(x)))
Kσ(x) ∗ (1−Hε(φ(x)))

. (1. 3)

In practical applications, the standard deviation of the Gaussian kernel plays an important
role. It functions as a scale parameter that regulates the scalability of the area from the
small neighborhood to the whole image domain[12]. It must be chosen according to the
images. Too small a standard deviation will lead to an undesirable outcome, while too large
a standard deviation can result in high computational costs. On the other hand the well-
known Li-Kim model [13] for multi-region segmentation proposes the following functional
of minimization

FLK(c1, c2, φ) = λ1

∫

Ω

(u0 − c1)2φHc(1 + φ)dx

+ λ2

∫

Ω

(u0 − c2)2φHc(1− φ)dx

(1. 4)

where

Hc(z) =
1 + z

2
, (1. 5)

is not designed for images with intensity variation in the objects and background. Similar
is the behavior of the latest Wu-He model [22] which minimize as follows:

FWH(φ, c1, c2) = λ

∫

Ω

(u0 − c1)2

c2
1

(φ + 1)2dx,

+
∫

Ω

(u0 − c2)2

c2
2

(φ− 1)2dx, (1. 6)
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whereλ > 0.
For bias field correction and joint segmentation Li et al proposed model [10] which mini-
mize as follows:

FBF (φ, b, c) =
∫ ∫

Kσ(x− y)|u0(y)− b(x)c1|2M1(φ(y))dy
)

dx +
∫ ∫

Kσ(x− y)|u0(y)− b(x)c2|2M2(φ(y))dy
)

dx (1. 7)

whereM1(φ(x)) =H(φ(x)), M2(φ(x)) =1−H(φ(x)) andb is the bias field.
By minimization the energy functionalFBF (φ, b, c) with respect tob we obtained:

b̂ =
(u0J

1) ∗Kσ

J2 ∗Kσ
, (1. 8)

In the same way minimization of̂c = (ĉ1, ĉ2) is given by:

(a) Initial guess (b) BF Result
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(f) Plot of corrected image

Figure 1: Satisfactory performance of the BF model in an ideal given image where bias field is slowly
varying.

ĉi =

∫
Ω

(b ∗Kσ)u0(x)Mi(φ)dx∫
Ω

(b2 ∗Kσ)Mi(φ)dx
, i = 1, 2. (1. 9)
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It is assumed that the bias fieldb is window-wise constant and smoothly varying function.
The BF model works efficiently when given images are in complete concordance with its
assumptions. This phenomenon can be witnessed in Fig. 1. That is, when bias fieldb is
smoothly varying function over image domain and the bias field free version of given image
is piece-wise constant. However, the BF model may not work well when neither bias field
b is smoothly varying function (i.e when it is not neighborhood wise constant) or the ideal
bias field free image is not piece-wise constant. This phenomenon can be witnessed in Fig.
17. In other words, the segmentation process in the BF model is dependent on bias field
estimation and vice versa. Thus if segmentation is not accurate then the bias field is also
not accurate and converse is also true. Thus in this paper we have introduced a novel tech-
nique in which we first estimate the bias field using multi-scale filtering. Based on the bias
field, the bias field corrected image is obtained which is used for accurate segmentation.
For segmentation, a convex functional is proposed which is also suitable for multi-region
segmentation. The proposed formulation is extended to vector-valued images and texture
images. For comparison, the results are compared with state of the art models both quan-
titatively and qualitatively which validate robust enactment of the proposed formulation.

(a) Initial guess (b) BF Result
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Figure 2: Unsatisfactory performance of the BF model in a given image where bias field is not slowly
varying.
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The organization of the remainder of this paper is as follows. In section 2 we discuss
our proposed model. In 3 we extend our model for segmenting textural images. In section
4 we give experimental evidence of the proposed model. Finally, conclusion is made in
section 5.

2. THE PROPOSEDMETHOD

In this section we give step by step basic idea behind our technique for estimation of
bias field and segmentation of images with intensity inhomogeneity.

2.1. Bias Field Estimator. In order to tackle intensity inhomogeneities or bias field in
image segmentation, our technique is based on a well-known multiplicative image model

u0 = bJ + N,

where the desired clean imageJ is corrupted byN additive noise andb intensity inhomo-
geneity, the obtained image isu0. When the factor of noise is ignored, the obtained image
u0 is representation in the form

u0 = bJ. (2. 10)

In order to get the ideal imageJ from Eq. 2. 10 , the bias fieldb or at least its ap-

SD=82

(a) Given imageu0

SD=20

(b) Relatively correctedJ

Figure 3: Given figure demonstrates the given image and relatively corrected image.

proximation must be known and vice versa. The main difference between a given im-
ageu0 and bias corrected imageJ is that the intensities within each tissue/object become
quite homogeneous inJ . To measure homogeneity in intensities of objects/tissues, vari-
ance (Var) or standard deviation (SD) can be employed. The lesser Var and SD indicate
the consistency/homogeneity in intensities in regions of a given image. This phenomena
can be witnessed in Fig. 3, where the object/region (a triangle) in given imageu0 (Fig.
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3(a)) has higher intensity inhomogeneity or bias field as compared to triangular region in
J (Fig. 3(b)). Consequently the region inu0 has large SD which is 82 than the SD inJ
which is 20. Thus one key to bias field correction or intensity inhomogeneity reduction is
local Var or local SD minimization. For local region or patch in a given image we con-
sider a circular neighborhood with radius (say)r centered at each pointx ∈ Ω defined by
N(x) = {y ∈ Ω :| x− y |≤ r}. We denote the local variance and local mean in neighbor-
hoodN(x) by V arN(x) andµN(x). Now by scaling property of variance and considering
given imageu0 as random variable, we can write

V arN(x)(
u0

a
) =

V arN(x)(u0)
a2

(2. 11)

wherea is any real number. Left hand side of Eq. ( 2. 16 ) is variance of the scaled image
u0

a
, scaled with some constanta in an arbitrary patch/neighbourhoodN(x), whereas the

right hand side is the variance of the original imageu0 divided bya2. It clearly illustrates

that the variance of the scaled image
u0

a
is less than the variance ofu0. That is,

V arN(x)(
u0

a
) < V arN(x)(u0) (2. 12)

In other words, if a given bias field effected imageu0 is properly scaled then its intensity

variation in objects/regions will be minimum and in this way the resultant image(
u0

a
) will

be having relatively less intensity inhomogeneity. It is important to point out that the scaling
constanta is not fixed over all image domain, in fact it is varying over image domain but
constant in every neighborhoodN(x). To find a suitable value for the scaling constanta,
we define squared coefficient of variation ofu0 in N(x) [3]:

CoV 2
N(x)(u0) =

V arN(x)(u0)(
µN(x)(u0)

)2 . (2. 13)

Similar to the inequality ( 2. 12 ), we have the following inequality

CoV 2
N(x)(

u0

a
) < CoV 2

N(x)(u0) (2. 14)

which also validates that the intensities of scaled image(
u0

a
) are more consistent than

the intensities of a given imageu0 in arbitrary neighborhoodN(x). Moreover, the last
inequality ( 2. 14 ) also gives a suitable choice of the scaling constant which isa ∼=
µN(x)(u0). For numerical estimation of the quantitya∼= µN(x)(u0) in every neighborhood
N(x) of given imageu0, we define the following mean filter type quantity:

uS =
u0 ∗Kσ

1 ∗Kσ
. (2. 15)

The idea behinduS is similar to the neighborhood-wise constant (mean) quantitiesf1 and
f2 defined in Eq. ( 1. 3 ). Thef1 andf2 fits a given image in foreground and background
respectively. On the other hand the term in Eq. ( 2. 15 ) fits given imageu0 over all domain
Ω. For different values ofσ, the mean fitting imageuS can be seen in Fig. 4. The Fig.
4(d) shows quit clear intensity distribution of given imageu0. Now to get a scaled image
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(a) Given image (b) Forσ = 2 (c) Forσ = 4 (d) Forσ = 6

Figure 4: The effect of the values ofσ in Eq. ( 2. 15 )

a ∼= µN(x)(u0) which is having less intensity variation in foreground and background, we
at once can write: (u0

a

)
N(x)

=
( u0

uS

)
N(x)

; ∀ x ∈ Ω, (2. 16)

where the size/radius ofN(x) is decided by tuning the parameterσ. The effect ofσ on the

scaled image
u0

uS
in Eq. ( 2. 16 )and in Fig. 5. It can be witnessed that ifσ is too small such

as 2, then variation in scaled image
u0

uS
reduces but contrast in foreground and background

also reduces.

(a) Given image (b) Forσ = 2 (c) Forσ = 4 (d) Forσ = 6

Figure 5: The effect of the values ofσ on scaled image
u0

uS

2.2. Relation of Scaled Image
u0

uS
and Bias Field Model. In contrast with the given

imageu0 with intensity inhomogeneity, scaled image
u0

uS
is a better approximation of ideal
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imageJ in Eq. ( 2. 10 ). That is

Ck
u0

uS

∼= J, (2. 17)

whereCk is a positive constant for adjusting/rescaling intensities (255 ormean(u0) for
instance). Similarly, the mean filter type approximationuS of u0 can also be related with
the bias fieldb in Eq. ( 2. 10 ). That isuS

∼= b, [9]. Thus we can write at once

u0 = bJ ∼= uS

(
Ck

u0

uS

)
. (2. 18)

2.3. Benefits of Scaled Image
(
Ck

u0

uS

)
Over J of BF Model. The classicalBF model

in Eq. ( 1. 7 ) may work well in ideal images and produce reasonable ideal imageJ and
better segmentation result as shown in Fig. 1. However, when images are not ideal or
according to the model assumption then bothJ and segmentation are not true as shown

in Fig. 17. In contrast, in our method, bias field corrected imageJ ∼=
(
Ck

u0

uS

)
is pre

computed and is independent of segmentation process, whereas segmentation is dependent

on it. Performance of the new enhanced imageJ ∼=
(
Ck

u0

uS

)
can be seen for gray and

color images in Figs. 6 and 7. It can be seen that the proposed formulation tackles the
intensity inhomogeneity in images. Moreover, it can be seen in Figs. 6(i) and 7(a), that the
proposed technique also tackles clutter backgrounds and light reflectance in images.

2.4. Convex Segmentation Formulation.In this section we present a convex and non
convex variational models for efficiently segmenting images with intensity inhomogeneity,
clutter backgrounds and multi-regions. We propose the following functional of minimiza-
tion:

FKBA(c1, c2, φ) = λ1

∫

Ω

(
Ck

u0

uS
− c1

)2

φHc(1 + φ)dx + λ2

∫

Ω

(
Ck

u0

uS
− c2

)2

φHc(1− φ)dx,

(2. 19)

whereHc is heaviside function defined in Eq. ( 1. 5 ). Our proposed model is designed to
reduced the intensity inhomogeneity and capture boundaries of each and every object in a
given imageu0(x). The minimizers of our proposed modelc1, c2 can be written as:

c1(φ) =

∫
Ω

Ck
u0

uS
Hc(φ)dx

∫
Ω

Hc(φ)dx
c2(φ) =

∫
Ω

Ck
u0

uS
(1−Hc(φ))dx

∫
Ω
(1−Hc(φ))dx

. (2. 20)

The gradient descent formulation of our proposed model is given by:

∂φ

∂t
=

[
λ1

(
Ck

u0

uS
− c1

)2

+ λ2

(
Ck

u0

uS
− c2

)2

+
(
λ1

(
Ck

u0

uS
− c1

)
− λ2

(
Ck

u0

uS
− c2

)2)
φ
]

(2. 21)

The proposed joint bias field correction and segmentation formulation can be imple-
mented in the following segmentation frame work.
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(a) u0(x) (b) uD(x) (c) Ck
u0

uS

(d) u0(x) (e) uD(x) (f) Ck
u0

uS

(g) u0(x) (h) uD(x) (i) Ck
u0

uS

Figure 6: Given figure demonstrates the dual filter formulation in intensity inhomogeneity reduction.
First column represent the given image, second column represent estimated intensity inhomogeneity
and third column represent corrected image.

Below, the key steps of the proposed model for two phase gray images are presented as
follows:
Algorithm to solve ( 2. 21 )
Step 1. Insert the provided imageu0(x) and customize the initial contour.
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(a) u0(x) (b) Ck
u0

uS

(c) u0(x) (d) Ck
u0

uS

(e) u0(x) (f) Ck
u0

uS

(g) u0(x) (h) Ck
u0

uS

(i) u0(x) (j) Ck
u0

uS

(k) u0(x) (l) Ck
u0

uS

(m) u0(x) (n) Ck
u0

uS

(o) u0(x) (p) Ck
u0

uS

Figure 7: Results of dual filter formulation.
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Figure 8: Segmentation result of the proposed KBA with intensity inhomogeneity.

Step 2. ObtainCk
u0

uS
.

Step 3.c1 andc2 are computed using ( 2. 20 ).
Step 4.φ is evolved using ( 2. 21 ).
Step 5. Ifφ converges, stop; else return to Step 3.

Next we are expanding our proposed model for vector-based images

2.5. Vector-Valued KBA Model. In the case of vector-valued images, the energy func-
tionality of our proposed model is as follows:

FV V KBA(c1i, c2i, C) =
1
N

∫

inside(C)

N∑

i=1

λ+
i |(Ck

u0

uS
)i − c1i|2φHc(1 + φ)dx

+
1
N

∫

outside(C)

N∑

i=1

λ−i |(Ck
u0

uS
)i − c2i|2φHc(1− φ)dx

(2. 22)
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(a)

 

 

(b) (c) (d)

(e) (f) (g) (h)

Figure 9: Given figure demonstrates the result of WH and proposed model on two different images
suffered from intensity inhomogeneity. First, second and third columns represent the given image,
result of WH model and KBA model, respectively. While the forth column shows the segmented
result of KBA model.

where i represents ith channel of a given vector valued image.
Minimizing the Eq. ( 2. 22 ) forc1i we get.

c1i(φ) =

∫
Ω
(Ck

u0

uS
)i(x)φHc(1 + φ)dx

∫
Ω

φHc(1 + φ)dx
(2. 23)

Again by minimizing Eq. ( 2. 22 ) with respect toc2i we get.

c2i(φ) =

∫
Ω
(Ck

u0

uS
)i(x)φHc(1− φ)dx

∫
Ω

φHc(1− φ)dx
(2. 24)

The following PDEs is obtained by minimizing with respect toφ

∂φ

∂t
=

[ 1
N

N∑

i=1

λ+
i

( ˆ
(Ck

u0

uS
)i(x)− c1i

)2

+
1
N

N∑

i=1

λ−i
( ˆ
(Ck

u0

uS
)i(x)− c2i

)2

+
( 1

N

N∑

i=1

λ+
i

( ˆ
(Ck

u0

uS
)i(x)− c1i

)
− 1

N

N∑

i=1

λ−i
( ˆ
(Ck

u0

uS
)i(x)− c2i

)2)
φ
]

(2. 25)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 10: Given figure demonstrates the result of Li-Kim and proposed model on three different
images suffered from intensity inhomogeneity. First, second and third columns represent the given
image, result of Li-Kim model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11: Given figure demonstrates the result of LBF and proposed model on three different images
suffered from intensity inhomogeneity. First, second and third columns represent the given image,
result of LBF model and KBA model, respectively. While the forth column shows the segmented
result of KBA model.

3. TEXTURE IMAGE SEGMENTATION

Here we extend our proposed model for texture image segmentation based onL0 gra-
dient norm and extended structure tensor (EST) [14]. The objective function of theL0
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12: Given figure demonstrates the result of Li-Kim and proposed model on three different
images suffered from intensity inhomogeneity. First, second and third columns represent the given
image, result of Li-Kim model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.

gradient minimization is as:

minS,h,v{
∑

p

(Sp − u0p)
2 + λC(h, v) + β((∂xSp − hp)2 + (∂ySp − µp)2)}, (3. 26)

whereC(h, v) = #{p : |hp| + |vp| 6= 0} andhp, vp are auxiliary variable correspond-
ing to ∂xSp and∂ySp respectively,β is an automatically adapting parameter to control
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Figure 13: Segmentation result of proposed KBA model on multi-object images .

the similarity between(h, v) and their corresponding gradient. The functional in ( 3. 26
) was proposed to preserve edges and to smooth a given image. This concept is helpful in
segmentation to smooth the unnecessary noisy features and to make prominent the mean-
ingful edges. On the other hand to smooth the textural features for efficient segmentation,
extended structure tensor (EST) were introduced.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 14: Segmentation result of the proposed KBA model on Berkeley Segmentation Dataset .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 15: Given figure demonstrates the result of VVCV and proposed VVKBA model on four
different images suffered from intensity inhomogeneity. First, second and third columns represent
the given image, result of VVCV model and VVKBA model, respectively.
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Figure 16: Segmentation result of the proposed KBA with intensity inhomogeneity.

Table 1: Comparison table of the Our Method, LK Method and LBF Method with the number of
iterations and CPU time in seconds.

Image Size Our Method LK Method LBF Method
Itr CPU Itr CPU Itr CPU

110× 110 6 0.830 10 0.402 100 6.017395
250× 250 6 1.418 10 0.342 100 4.434779
350× 350 6 1.986 10 0.376 100 5.099626
650× 650 6 6.064 10 0.601 600 26.048569
800× 800 6 8.199 10 0.750 850 25.987099

The ESTJE
σ for a gray imageu0(x) can be defined as follows:

Jσ = Kσ∗(ννT ) =




Kσ ∗ u2
0x Kσ ∗ u0xu0y Kσ ∗ u0xu0

Kσ ∗ u0xu0y Kσ ∗ u2
0y Kσ ∗ u0yu0

Kσ ∗ u0xu0 Kσ ∗ u0yu0 Kσ ∗ u2
0


 . (3. 27)

where
ν = [u0xu0yu0] (3. 28)
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(a)

 

 

(b) (c) (d)

(e) (f) (g) (h)

Figure 17: Given figure demonstrates the result of WH and proposed model on two different images
suffered from intensity inhomogeneity. First, second and third columns represent the given image,
result of WH model and KBA model, respectively. While the forth column shows the segmented
result of KBA model.

Following expression for vector-valued images.

JE
σ = Kσ ∗

( ∑N
i=1 νiν

T
i ,

)
(3. 29)

where
νi = [u0i,xu0i,yu0i]T .

We will first useL0 smoothing on a given image to remove noisy features and enhance
meaningful edges. Next we will apply EST to smooth the textural features for image seg-
mentation.

3.1. Convexity. Let us consider the energy functional in Eq.( 1. 6 )

F (φ, c1, c2) = λ

∫

Ω

(Ck
u0
uS
− c1)2

c2
1

(φ + 1)2dx,

+
∫

Ω

(Ck
u0
uS
− c2)2

c2
2

(φ− 1)2dx, (3. 30)

f(z) = λfA(z) + fB(z). (3. 31)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 18: Given figure demonstrates the result of Li-Kim and proposed model on three different
images suffered from intensity inhomogeneity. First, second and third columns represent the given
image, result of Li-Kim model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.

where

fA(z) =
∫

Ω

(
(Ck

u0

uS
)− c1

)2

φHc(1 + φ)dz (3. 32)

And

fB(z) =
∫

Ω

(
(Ck

u0

uS
)− c2

)2

φHc(1− φ)dz (3. 33)



102 M.S. Khan, H.Ali, N.Badshah, and G.A. Khan

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 19: Given figure demonstrates the result of LBF and proposed model on three different images
suffered from intensity inhomogeneity. First, second and third columns represent the given image,
result of LBF model and KBA model, respectively. While the forth column shows the segmented
result of KBA model.

Thenf(z) is convex.
Proof:
The functionalf(z) is convex for reference see [22] .
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 20: Given figure demonstrates the result of Li-Kim and proposed model on three different
images suffered from intensity inhomogeneity. First, second and third columns represent the given
image, result of Li-Kim model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.

4. EXPERIMENTAL RESULTS

In this section, we present experiments to analyze the performance of our model. We
first illustrate the accuracy of the segmentation of the proposed model through different syn-
thetic images. We shows the comparative results of the proposed KBA model with state-of
- the-art models, such as LK, WH, LBF and HS models, and shows an over-performance
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Figure 21: Segmentation result of proposed KBA model on multi-object images .

of the proposed model for real-world images that show complexity due to inhomogene-
ity, Clutter Background and background brightness. Via experiments, we demonstrate that
the proposed method is comparatively faster and much more effective in the segmentation
of images with inhomogeneity. Furthermore, the efficiency of the proposed model is also
checked in real-world color and texture images.
Test set 1: Correct Segmentation of the Proposed Model.
As shown in Fig.16, segmentation result of our proposed model on a brain medical image
with intensity inhomogeneity and also multi-object image with varying intensity levels.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 22: Segmentation result of the proposed KBA model on Berkeley Segmentation Dataset .
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Figure 23: Comparison of four method using Jaccard Similarity.{(a,b,c,d) Original image of size
110 × 110,} ;{(e,f,g,h) results of LK methodeJs = 0.5866,Js = 0.9536,Js = 0.8463,Js =
0.3389}; {(i,j,k,l) result of WH methodeJs = 0.5987, Js = 0.3705, Js = 0.7966, Js =
0.9457};{(m,n,o,p) result of LBF methodeJs = 0.9023, Js = 0.8907, Js = 0.9532, Js =
0.9695};{(q,r,s,t) result of KBA methodeJs = 0.9977, Js = 0.9087,Js = 0.987, Js = 0.9281}
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Figure 24: Comparison of four method using Jaccard Similarity.{(a,b,c,d) Original image of
size 110 × 110,} ;{(e,f,g,h) results of LK methode(Js = 0.3073),(Js = 0.2735),(Js =
0.3571),(Js = 0.3389)}; {(i,j,k,l) result of WH methodeJs = 0.3295, Js = 0.2049, Js = 0.3375,
Js = 0.2180};{(m,n,o,p) result of LBF methodeJs = 0.2733, Js = 0.3553, Js = 0.3241,
Js = 0.3337};{(q,r,s,t) result of KBA methodeJs = 0.5589, Js = 0.4633, Js = 0.4386,
Js = 0.75370}
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 25: Given figure demonstrates the result of Li-Kim and proposed model on three different
images suffered from intensity inhomogeneity. First, second and third columns represent the given
image, result of Li-Kim model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.

Test set 2: Comparison of the Proposed Model for Images Suffer from Intensity Inho-
mogeneity and Images having Clutter Background.
It can be very certainly witnessed that suggested model accurately identified the edges. In
Fig. 17 we give test results on an image with intensity inhomogeneity of the proposed KBA
and WH models. It can be very easily witnessed that the KBA performs far better than the
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Figure 26: Given figure demonstrates the result of Li-Kim and proposed model on three different
images suffered from intensity inhomogeneity. First, second and third columns represent the given
image, result of Li-Kim model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.

WH model. Next, we evaluate the performance of KBA and LK model in Fig. 18 on image
with severe intensity inhomogeneity. It can seen observed that the proposed KBA is effi-
cient in accurate segmentation. Next, in Fig. 19 segmentation enactment of our proposed
KBA and LBF models on clutter background images are given. From Fig. 19(b), 19(f) and
19(j) we can observe that LBF model segment the objects, However, it also captures some
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Figure 27: Given figure demonstrates the result of our proposed KBA model on Texture images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 28: Given figure demonstrates the result of Hassan Shah(HS).[6] and proposed model on
two different images suffered from intensity inhomogeneity. First and second columns represent the
given image, result of HS model and KBA model, respectively. While the forth column shows the
segmented result of KBA model.

(a)

Figure 29: The Heaviside functionH0.05 andHc.
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parts of the background that show that the LBF model’s performance is not satisfactory,
while on the other hand, in Fig. 19(c), 19(g) and 19(k) we can see the strong enactment of
the KBA model which extract our desire objects. Finally in Fig. 21 we tests our proposed
KBA model on multi-objects images. Efficient performance can be very easily observed
from the same figure.
Test set 3: Robust performance of the proposed model compare with a Standard
Model in Vector-Valued Images having Multi-Region.
To check the efficiency of the proposed algorithm on vector valued images, we compete
the proposed VVKBA model and VVCV model on multi-region vector-valued images. In
Fig. 15(b), 15(e), 15(h), 15(k), It can very easily observed that result of VVCV model are
not satisfactory, on the other hand, Fig. 15(e), 15(f), 15(i), 15(l), show robust enactment of
the proposed VVKBA model.
Test set 4: Robust performance of the proposed model compare with a Standard Mod-
els in Texture Images.
Furthermore the enactment of our proposed model as to compare to Li-Kim model and
Hassan Shah model on texture images can be shown in Fig. 25(c), 25(g), 25(k), and in
Fig.26(c), 26(g), 26(k), and in Fig. 28(c), 28(g).
In Fig. 25 and in Fig.26 first, second and third columns represent the given image, result of
Li-Kim model and KBA model, respectively. While the forth column shows the segmented
result of KBA model. Similarly in Fig. 28 first, second and third columns represent the
given image, result of Hassan Shah model and KBA model, respectively. While the forth
column shows the segmented result of KBA model.
Test set 5: Correct Segmentation of the Proposed Model on Berkeley Dataset and Tex-
ture Images.
Robust and accurate segmentation of the proposed model on barkeley data set and tex-
ture images can be shown In Fig. 22 and in Fig. 27. In Fig. 22 first, second and third
columns represent the given image, result of KBA model and segmented result of KBA
model respectively. While the forth column shows the mesh plot of KBA model respec-
tively. Similarly in Fig. 27. first, second and third columns represent the given image,
result of KBA model and segmented result of KBA model respectively. While the forth
column shows the mesh plot of KBA model respectively.
Test set 6: Jacard Similarity of the Proposed and Rest of the Models.
The enactment of the proposed model on synthetic images and Berkeley Dataset images as
compare to the Li-Kim, Wu-He, LBF as shown in Fig. 23(q), 23(r), 23(s), 23(t) and 24(q),
24(r), 24(s), 24(t).
At Fig. 23 jacard similarity value of Li-Kim, Wu-He, LBF and our proposed KBA are
Js = 0.5866,Js = 0.9536,Js = 0.8463,Js = 0.3389}; Js = 0.5987, Js = 0.3705,
Js = 0.7966, Js = 0.9457}; Js = 0.9023, Js = 0.8907, Js = 0.9532, Js = 0.9695};
and Js = 0.9977, Js = 0.9087,Js = 0.987, Js = 0.9281} respectively. Likewise
at Fig 24 jacard similarity value of Li-Kim, Wu-He, LBF and our proposed KBA are
(Js = 0.3073),(Js = 0.2735),(Js = 0.3571),(Js = 0.3389)}; Js = 0.3295, Js = 0.2049,
Js = 0.3375, Js = 0.2180}; Js = 0.2733, Js = 0.3553, Js = 0.3241, Js = 0.3337}; and
Js = 0.5589, Js = 0.4633, Js = 0.4386, Js = 0.75370} respectively.
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Images Comparison table of the Our Method, LK Method and LBF Method with the num-
ber of iterations and CPU time in seconds 1

5. CONCLUSION

In this paper we proposed a novel segmentation model for multi-region image segmen-
tation with intensity inhomogeneity. Based on dual filter formulation and efficient level set
technique, the proposed model has shown better results on hard images. The experiments
on some synthetic and real images have shown that our proposed method of segmenting
images with multi-regions and intensity inhomogeneity is effective and robust. The con-
trasts with the model LBF, the model Li-Kim and the model Wu-He also demonstrate the
superiority of the proposed method over traditional methods based on the local region. In
addition, the proposed algorithm retains the accuracy on texture and vector-valued images.
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