Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 52(6)(2020) pp. 19-29

Possible Heights of Alexandroff Square Transformation Groups

Fatemah Ayatollah Zadeh Shirazi Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran E-mail: fatemah@khayam.ut.ac.ir

Fatemeh Ebrahimifar Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran , Enghelab Ave., Tehran, Iran E-mail: ebrahimifar64@ut.ac.ir

Reza Yaghmaeian Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran E-mail: rezayaghma@yahoo.com

Hamed Yahyaoghli Department of Mathematics, Tarbiat Modares University, Modiriat Bridge, Tehran, Iran E-mail: yahyaoghli@gmail.com

•

Received: 08 November, 2018 / Accepted: 19 March, 2020 / Published online: 01 June, 2020

Abstract.: In the following text we compute possible heights of \mathbb{A} (Alexandroff square), \mathbb{O} (unit square $[0, 1] \times [0, 1]$ with lexicographic order topology) and \mathbb{U} (unit square $[0, 1] \times [0, 1]$ with induced topology of Euclidean plane). We prove $P_h(\mathbb{A}) = \{n : n \ge 5\} \cup \{+\infty\}, P_h(\mathbb{O}) = \{n : n \ge 4\} \cup \{+\infty\}, P_h(\mathbb{U}) = \{n : n \ge 1\} \cup \{+\infty\}$ (where for topological space X, by $P_h(X)$ we mean the collection of heights of transformation groups with phase space X. Additionally we show that there is no topological transitive (resp. Devaney chaotic) transformation group (G, \mathbb{A}) .

AMS (MOS) Subject Classification Codes: 54H15, 54H20 Key Words: Alexandroff square, height, orbit space, transformation group.

1. INTRODUCTION

Studying closed unit ball $\{\langle x, y \rangle \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ with induced topology of Euclidean plane \mathbb{R}^2 is one of the main purposes of numerous texts (old and new) (see e.g., [8, 10]. Let us mention that unit disk and unit square $[0, 1] \times [0, 1]$ with induced topology of Euclidean plane, are homeomorphic.

On the other hand, many texts deal with dynamical properties of special topological spaces [2, 7]. In the following text we have a comparative study on dynamical properties of unit square transformation groups with emphasis on their heights (and obit spaces), where unit square $[0,1] \times [0,1]$ is equipped with Euclidean topology, lexicographic order topology, Alexandroff square topology. For convenience suppose (by $\langle x, y \rangle$ we mean the ordered pair $\{x, \{x, y\}\}$):

- A is $[0,1] \times [0,1]$ as Alexandroff square.
- \mathbb{O} is $[0,1] \times [0,1]$ equipped with lexicographic order topology,
- \mathbb{U} is $[0,1] \times [0,1]$ equipped with Euclidean plane \mathbb{R}^2 ,

where for $\langle x, y \rangle, \langle s, t \rangle \in [0, 1] \times [0, 1]$ we define lexicographic order \leq_{ℓ} with $\langle x, y \rangle \leq_{\ell} \langle s, t \rangle$ if and only if " $x \langle s$ " or "x = s and $y \leq t$ ". Alexandroff square $\mathbb{A} = [0, 1] \times [0, 1]$ equipped with topological basis generated by the following sets, see [9]: • $\{x\} \times U$ where $x \in [0, 1]$ and U is an open subset of [0, 1] (with induced topology of Euclidean line \mathbb{R}) and $x \notin U$,

• $([0,1] \times U) \setminus (\{x_1, \ldots, x_n\} \times [0,1])$ where U is an open subset of [0,1] (with induced topology of Euclidean line \mathbb{R}).

As it has been mentioned in [9], \mathbb{A} and \mathbb{O} are compact Hausdorff non-metrizable spaces. Consider the following notations and sets (for $x, y \in \mathbb{R}$ let $(x, y) = \{z \in \mathbb{R} : x < z < y\}$):

 $\Delta := \{ < x, x >: x \in [0, 1] \};$

 $\mathsf{P}_1 := <0, 0>, \mathsf{P}_2 := <0, 1>, \mathsf{P}_3 := <1, 1>, \mathsf{P}_4 := <1, 0>;$

 $\mathsf{L}_1 := \{0\} \times (0,1), \mathsf{L}_2 := (0,1) \times \{1\}, \mathsf{L}_3 := \{1\} \times (0,1), \mathsf{L}_4 := (0,1) \times \{0\}.$

Background on transformation groups. By a (topological) transformation group (G, X, ρ) or simply (G, X) we mean a compact Hausdorff topological space X (phase space), discrete topological group G (phase group) with identity e and continuous map $\rho: G \times X \to X, \rho(g, x) = gx (g \in G, x \in X)$ such that for all $x \in X$ and $g, h \in G$ we have ex = x and g(hx) = (gh)x. Note that for all $g \in G, \rho_g: X \to X$, where $\rho_g(x) = gx$ is a homeomorphism of X, and $\rho_g \rho_h = \rho_{gh}$. Thus we may consider G as a

group of self-homeomorphisms of X with composition as a binary operation. In transformation group (G, X) for $x \in X$ we call $Gx := \{gx : g \in G\}$ the orbit of x (under G) and $\frac{X}{G} := \{Gy : y \in X\}$ the orbit space of (G, X). A nonempty subset D of X is invariant (G-invariant) if $GD := \{gy : g \in G, y \in D\} \subseteq D$, for more details on transformation groups (and orbit spaces) see [4, 6].

For a topological space X suppose that \mathcal{G}_X is the collection of all homeomorphisms $h: X \to X$ (\mathcal{G}_X is equipped with discrete topology).

Closed and open invariant subsets of a transformation group play important role in studying its dynamical properties (see e.g. [5] for transitivity in transformation groups). The height of transformation group (G, X) is $h(G, X) := \sup\{n \ge 0 :$ there exist closed invariant subsets D_0, \ldots, D_n of X with $\emptyset \ne D_0 \subsetneq D_1 \subsetneq \cdots \subsetneq D_n = X\}$, i.e., $h(G, X) = +\infty$ if $\{\overline{Gx} : x \in X\}$ is infinite and $h(G, X) = card(\{\overline{Gx} : x \in X\}) - 1$ otherwise [1]. We also call $P_h(X) := \{h(G, X) : G \text{ is a subgroup of } \mathcal{G}_X\}$ the collection of all possible heights of X. In transformation group (G, X) the map $\varphi : \{\overline{Gy} : y \in X\} \rightarrow \{\overline{\mathcal{G}_X y} : y \in X\}$ with $\varphi(\overline{Gy}) = \overline{\mathcal{G}_X y}$ (for $y \in X$) is onto, so $h(\mathcal{G}_X, X) \le h(G, X)$ therefore min $P_h(X) = h(\mathcal{G}_X, X)$.

2. Computing
$$\frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$$
, $\frac{\mathbb{O}}{\mathcal{G}_{\mathbb{O}}}$ and $\frac{\mathbb{U}}{\mathcal{G}_{\mathbb{U}}}$

Considering the definition of height of transformation group (G, X) it's evident that for computing h(G, X) one may compute $\{\overline{Gy} : y \in X\}$, and begin with $\frac{X}{G} = \{Gy : y \in X\}$. Since $\min P_h(X) = h(\mathcal{G}_X, X)$, a first step towards finding $P_h(X)$ is to work out $\frac{X}{\mathcal{G}_X}$ and thus to establish the value of $h(\mathcal{G}_X, X)$. In this section we determine $\frac{X}{\mathcal{G}_X}$ where $X = \mathbb{U}, \mathbb{O}, \mathbb{A}$.

Lemma 2.1. For homeomorphism $\mathfrak{a} : \mathbb{A} \to \mathbb{A}$ we have: 1. $\mathfrak{a}(\{\mathsf{P}_1,\mathsf{P}_3\}) = \{\mathsf{P}_1,\mathsf{P}_3\}$ and $\mathfrak{a}(\Delta) = \Delta$; 2. $\mathfrak{a}(\mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2,\mathsf{P}_4\}) = \mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2,\mathsf{P}_4\}$, 3. for all $s \in [0,1]$ there exists $t \in [0,1]$ with $\mathfrak{a}(\{s\} \times [0,1]) = \{t\} \times [0,1]$ and $\mathfrak{a}\{< s, 0 >, < s, 1 >\} = \{< t, 0 >, < t, 1 >\};$ 4. One of the following cases holds:

a. $\mathfrak{a}(\mathsf{P}_i) = \mathsf{P}_i \text{ for } i = 1, 2, 3, 4, \mathfrak{a}(\mathsf{L}_1) = \mathsf{L}_1 \text{ and } \mathfrak{a}(\mathsf{L}_3) = \mathsf{L}_3;$

b. $\mathfrak{a}(\mathsf{P}_1) = \mathsf{P}_3, \mathfrak{a}(\mathsf{P}_2) = \mathsf{P}_4, \mathfrak{a}(\mathsf{P}_3) = \mathsf{P}_1, \mathfrak{a}(\mathsf{P}_4) = \mathsf{P}_2, \mathfrak{a}(\mathsf{L}_1) = \mathsf{L}_3 \text{ and } \mathfrak{a}(\mathsf{L}_3) = \mathsf{L}_1.$

Proof. 1. Using the fact that \mathbb{A} has a local countable topological basis on $\mathfrak{x} \in \mathbb{A}$ if and only if $\mathfrak{x} \in \mathbb{A} \setminus \Delta$, we have $\mathfrak{a}(\Delta) = \Delta$. Note that subspace topology on Δ induced by \mathbb{A} coincides with subspace topology on Δ induced by \mathbb{U} hence $\mathfrak{a}(\{\mathsf{P}_1,\mathsf{P}_3\}) = \{\mathsf{P}_1,\mathsf{P}_3\}$.

2. A has a countable basis $\{B_n : n \ge 1\}$ at $\mathfrak{x} \in \mathbb{A}$ such that all elements of $\{B_n \setminus \{\mathfrak{x}\} : n \ge 1\}$ are connected if and only if $\mathfrak{x} \in \mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2, \mathsf{P}_4\}$.

3. Consider $s \in [0, 1]$, using (1) and (2) we have $\langle a, b \rangle := \mathfrak{a} \langle s, 0 \rangle, \langle c, d \rangle := \mathfrak{a} \langle s, 1 \rangle \in \mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_i : 1 \leq i \leq 4\}$. So $b, d \in \{0, 1\}$. Choose $x \in [0, 1]$ and suppose $\langle u, v \rangle := \mathfrak{a} \langle s, x \rangle$. Let $S := \mathfrak{a}(\{s\} \times [0, 1])$. By item (1), $S \cap \Delta = \mathfrak{a} \langle s, s \rangle =: \langle t, t \rangle$. Assume that $u \neq t$. Then $\langle u, u \rangle \notin S$, and the sets:

$$\begin{split} U &:= & (\{u\} \times ([0,1] \setminus \{u\})) \cap S = (\{u\} \times [0,1]) \cap S \\ V &:= & (\mathbb{A} \setminus (\{u\} \times [0,1])) \cap S \;, \end{split}$$

form a separation of S ($\mathfrak{a} < s, x > \in U$ when $x \neq s$ and $\mathfrak{a} < s, s > \in V$) which contradicts the connectedness of S. Thus u = t and $\mathfrak{a} < s, x > \in \{t\} \times [0, 1]$ for all $x \in [0, 1]$, so $\mathfrak{a}(\{s\} \times [0, 1]) \subseteq \{t\} \times [0, 1]$. In particular a = c = t, so $< t, b >= \mathfrak{a} < s, 0 >, < t, d >=$ $\mathfrak{a} < s, 1$ > with $b, d \in \{0, 1\}$ (since $\mathfrak{a} < s, 0 > \neq \mathfrak{a} < s, 1$ > we have $b \neq d$). Thus $\mathfrak{a} \upharpoonright_{\{s\} \times [0, 1]}: \{s\} \times [0, 1] \to \{t\} \times [0, 1]$ is a continuous map with $< t, 0 >, < t, 1 > \in$ $\mathfrak{a}(\{s\} \times [0, 1])$ which completes the proof.

4. First suppose $\mathfrak{a}(\mathsf{P}_1) = \mathsf{P}_1$, then by (1), $\mathfrak{a}(\mathsf{P}_3) = \mathsf{P}_3$, so by (3) we have $\mathfrak{a}(\mathsf{L}_1) = \mathsf{L}_1$, $\mathfrak{a}(\mathsf{L}_3) = \mathsf{L}_3$, $\mathfrak{a}(\mathsf{P}_2) = \mathsf{P}_2$ and $\mathfrak{a}(\mathsf{P}_4) = \mathsf{P}_4$.

Now suppose $\mathfrak{a}(\mathsf{P}_1) \neq \mathsf{P}_1$, then by (1), $\mathfrak{a}(\mathsf{P}_1) = \mathsf{P}_3$ and $\mathfrak{a}(\mathsf{P}_3) = \mathsf{P}_1$ so by (3) we have $\mathfrak{a}(\mathsf{L}_1) = \mathsf{L}_3$, $\mathfrak{a}(\mathsf{L}_3) = \mathsf{L}_1$, $\mathfrak{a}(\mathsf{P}_2) = \mathsf{P}_4$ and $\mathfrak{a}(\mathsf{P}_4) = \mathsf{P}_2$.

Lemma 2.2. For homeomorphism $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ we have: 1. $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is order preserving or anti-order preserving; 2. $\mathfrak{o}(\{\mathsf{P}_1,\mathsf{P}_3\}) = \{\mathsf{P}_1,\mathsf{P}_3\};$ 3. $\mathfrak{o}(\mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2,\mathsf{P}_4\}) = \mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2,\mathsf{P}_4\},$ 4. for all $s \in [0,1]$ there exists $t \in [0,1]$ with $\mathfrak{o}(\{s\} \times [0,1]) = \{t\} \times [0,1]$ and $\mathfrak{o}\{< s, 0 > , < s, 1 > \} = \{< t, 0 >, < t, 1 > \};$ 5. One of the following cases holds:

a. $\mathfrak{o}(\mathsf{P}_i) = \mathsf{P}_i$, $\mathfrak{o}(\mathsf{L}_i) = \mathsf{L}_i$ for i = 1, 2, 3, 4 and $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is order preserving; b. $\mathfrak{o}(\mathsf{P}_1) = \mathsf{P}_3$, $\mathfrak{o}(\mathsf{P}_2) = \mathsf{P}_4$, $\mathfrak{o}(\mathsf{P}_3) = \mathsf{P}_1$, $\mathfrak{o}(\mathsf{P}_4) = \mathsf{P}_2$, $\mathfrak{o}(\mathsf{L}_1) = \mathsf{L}_3$, $\mathfrak{o}(\mathsf{L}_2) = \mathsf{L}_4$, $\mathfrak{o}(\mathsf{L}_3) = \mathsf{L}_1$, $\mathfrak{o}(\mathsf{L}_4) = \mathsf{L}_2$ and $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is anti–order preserving.

Proof. 2. Use (1) and $P_1 = \max \mathbb{O}$, $P_3 = \min \mathbb{O}$. 3. Use the fact that all open neighbourhoods of $\mathfrak{x} \in \mathbb{O}$ are non-metrizable if and only if $\mathfrak{x} \in L_2 \cup L_4 \cup \{P_2, P_4\}$.

4. Consider $s \in [0, 1]$, using (2) and (3) we have $\langle a, b \rangle := \mathfrak{o} \langle s, 0 \rangle, \langle c, d \rangle := \mathfrak{o} \langle s, 1 \rangle \in \mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_i : 1 \le i \le 4\}$. So $b, d \in \{0, 1\}$. Choose $x \in [0, 1]$ and suppose $\langle t, v \rangle := \mathfrak{o} \langle s, x \rangle$. If $t \ne a$ then we may choose $r \in \{\frac{a+t}{2}, \frac{a+2t}{3}, \frac{a+3t}{4}, \frac{a+4t}{5}\} \setminus \{a, c, t\}$. Then $\langle r, 0 \rangle \notin \mathfrak{o}(\{s\} \times [0, 1])$ and for:

$$\begin{split} U &:= & \{ < z, w > \in \mathbb{O} : < z, w > \prec_{\ell} < r, 0 > \} \cap \mathfrak{o}(\{s\} \times [0, 1]) \,, \\ V &:= & \{ < z, w > \in \mathbb{O} : < r, 0 > \prec_{\ell} < z, w > \} \cap \mathfrak{o}(\{s\} \times [0, 1]) \,, \end{split}$$

U, V is a separation of $\mathfrak{o}(\{s\} \times [0, 1])$ which is in contradiction with connectedness of $\mathfrak{o}(\{s\} \times [0, 1])$. Thus t = a and $\mathfrak{o}(\{s\} \times [0, 1]) \subseteq \{t\} \times [0, 1]$. In particular a = c = t, so $< t, b >= \mathfrak{o} < s, 0 >, < t, d >= \mathfrak{o} < s, 1 >$ with $b, d \in \{0, 1\}$. So $\mathfrak{o} \upharpoonright_{\{s\} \times [0, 1]}$: $\{s\} \times [0, 1] \rightarrow \{t\} \times [0, 1]$ is a continuous map with $< t, 0 >, < t, 1 >\in \mathfrak{o}(\{s\} \times [0, 1])$ which completes the proof.

5. (a) Suppose $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is order preserving. So $\mathfrak{o}(\mathsf{P}_1) = \mathfrak{o}(\min \mathbb{O}) = \min \mathbb{O} = \mathsf{P}_1$ and $\mathfrak{o}(\mathsf{P}_3) = \mathfrak{o}(\max \mathbb{O}) = \max \mathbb{O} = \mathsf{P}_3$, also by (3) we have

$$\mathfrak{o}(\mathsf{P}_2) = \mathfrak{o}(\min(\mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2,\mathsf{P}_4\})) = \min(\mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2,\mathsf{P}_4\}) = \mathsf{P}_2$$

and

$$\mathfrak{o}(\mathsf{P}_4) = \mathfrak{o}(\max(\mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2, \mathsf{P}_4\})) = \max(\mathsf{L}_2 \cup \mathsf{L}_4 \cup \{\mathsf{P}_2, \mathsf{P}_4\}) = \mathsf{P}_4 \ .$$

Hence by (4) we have $\mathfrak{o}(\mathsf{L}_1) = \mathsf{L}_1$ and $\mathfrak{o}(\mathsf{L}_4) = \mathsf{L}_4$. Consider $s \in [0, 1]$, by (4) there exists $t \in [0, 1]$ with $\mathfrak{o}(\{s\} \times [0, 1]) = \{t\} \times [0, 1]$ so

 $\mathfrak{o} < s, 0 >= \mathfrak{o}(\min(\{s\} \times [0,1])) = \min \mathfrak{o}(\{s\} \times [0,1]) = \min(\{t\} \times [0,1]) = < t, 0 > ,$

which shows $\mathfrak{o}(\mathsf{L}_1 \cup \{\mathsf{P}_1, \mathsf{P}_2\}) \subseteq \mathsf{L}_1 \cup \{\mathsf{P}_1, \mathsf{P}_2\}$ and $\mathfrak{o}(\mathsf{L}_4) \subseteq \mathsf{L}_4$; also by a similar method we have $\mathfrak{o} < s, 1 > = < t, 1 >$ which leads to $\mathfrak{o}(\mathsf{L}_2) \subseteq \mathsf{L}_2$. Use (2) to obtain $\mathfrak{o}(\mathsf{L}_2) = \mathsf{L}_2$ and $\mathfrak{o}(\mathsf{L}_4) = \mathsf{L}_4$.

(b) Use a similar method described in the proof of (a).

Theorem 2.3. $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is an order preserving homeomorphism if and only if there exist order preserving homeomorphism $\theta : [0,1] \to [0,1]$ and $\mu : [0,1] \to [0,1]^{[0,1]}$ such $\underset{t \mapsto \mu_t}{\overset{t}{\longrightarrow}}$

that for all $t \in [0,1]$, $\mu_t : [0,1] \to [0,1]$ is an order preserving homeomorphism and $\mathfrak{o} < s, t \ge \mathfrak{o}(s), \mu_s(t) \ge$.

Also $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is an anti–order preserving homeomorphism if and only if there exist anti–order preserving homeomorphism $\theta : [0,1] \to [0,1]$ and $\mu : [0,1] \to [0,1]^{[0,1]}$ such

that for all $t \in [0, 1]$, $\mu_t : [0, 1] \to [0, 1]$ is an anti–order preserving homeomorphism and $\mathfrak{o} < s, t > = < \theta(s), \mu_s(t) >$.

Proof. First suppose $\mathfrak{o} : \mathbb{O} \to \mathbb{O}$ is an order preserving homeomorphism, by Lemma 2.2 for each $s \in [0,1]$ there exists $t \in [0,1]$ with $\mathfrak{o}(\{s\} \times [0,1]) = \{t\} \times [0,1]$, let $\theta(s) := t$. Also by Lemma 2.2 (since $\mathfrak{o} \upharpoonright_{\mathsf{L}_2 \cup \{\mathsf{P}_2,\mathsf{P}_3\}} : \mathsf{L}_2 \cup \{\mathsf{P}_2,\mathsf{P}_3\} \to \mathsf{L}_2 \cup \{\mathsf{P}_2,\mathsf{P}_3\}$ is order preserving and bijection), $\theta : [0,1] \to [0,1]$ is order preserving and bijection, thus it is an order preserving homeomorphism on [0,1]. Now for $s \in [0,1]$, considering homeomorphism $\mathfrak{o} \upharpoonright_{\{s\} \times [0,1]} : \{s\} \times [0,1] \to \{\theta(s)\} \times [0,1]$, we may define homeomorphism $\mu_s : [0,1] \to [0,1]$ with $\mathfrak{o} < s, t > = < \theta(s), \mu_s(t) >$. For $x, y \in [0,1]$ with $x \leq y$ since $< s, x > \preceq_{\ell} < s, y >$ we have

$$<\theta(s), \mu_s(x)>=\mathfrak{o}< s, x> \preceq_\ell \mathfrak{o}< s, y>=<\theta(s), \mu_s(y)>$$

which leads to $\mu_s(x) \le \mu_s(y)$ and $\mu_s: [0,1] \to [0,1]$ is order preserving too. Conversely, consider order preserving homeomorphism θ : $[0,1] \to [0,1]$ and

 $\mu: [0,1] \to [0,1]^{[0,1]}$ such that for all $t \in [0,1]$, $\mu_t: [0,1] \to [0,1]$ is an order preserving homeomorphism and define $\mathfrak{o}: \mathbb{O} \to \mathbb{O}$ with $\mathfrak{o} < s, t > = < \theta(s), \mu_s(t) >$. It's clear that $\mathfrak{o}: \mathbb{O} \to \mathbb{O}$ is order preserving and bijective which leads to continuity of $\mathfrak{o}: \mathbb{O} \to \mathbb{O}$ under order topology.

In order to complete the proof consider homeomorphism $\varphi: \mathbb{O} \to \mathbb{O}$ and note that $s, t > \mapsto <1-s, 1-t > 0$ and note that $s, t \to \oplus <1-s, 1-t > 0$ is an anti-order preserving homeomorphism if and only if $s \to 0 \to \oplus \oplus = 0$ is an

 $\mathfrak{o}: \mathbb{O} \to \mathbb{O}$ is an anti–order preserving homeomorphism if and only if $\varphi \circ \mathfrak{o}: \mathbb{O} \to \mathbb{O}$ is an order preserving homeomorphism. \Box

Note. If $\mathfrak{a} : \mathbb{A} \to \mathbb{A}$ is a homeomorphism, then there exist a homeomorphism $\theta : [0,1] \to [0,1]$ with $\theta(\{0,1\}) = \{0,1\}$ and $\mu : [0,1] \to [0,1]^{[0,1]}$ such that for all $t \in [0,1]$, $\mu_t : [0,1] \to [0,1]^{[0,1]}$

 $[0,1] \rightarrow [0,1]$ is a homeomorphism with $\mu_t(t) = \theta(t)$ and $\mathfrak{a} < s, t > = < \theta(s), \mu_s(t) >$ (note that $\mathfrak{a} \upharpoonright_{\Delta \cup \{\mathsf{P}_1,\mathsf{P}_3\}}: \Delta \cup \{\mathsf{P}_1,\mathsf{P}_3\} \rightarrow \Delta \cup \{\mathsf{P}_1,\mathsf{P}_3\}$ is a homeomorphism). **Corollary 2.4.** For homeomorphisms $p, q : [0, 1] \rightarrow [0, 1]$, consider

$$p \times q : [0,1] \times [0,1] \to [0,1] \times [0,1] ,$$

 $< s,t > \mapsto < p(s),q(t) >$

then we have:

- 1. $p \times q : \mathbb{A} \to \mathbb{A}$ is a homeomorphism if and only if p = q;
- 2. $p \times q : \mathbb{O} \to \mathbb{O}$ is a homeomorphism if and only if $p \circ q : [0,1] \to [0,1]$ is order preserving;
- 3. $p \times q : \mathbb{U} \to \mathbb{U}$ is a homeomorphism.

Proof. 1. If $p \times q : \mathbb{A} \to \mathbb{A}$ is a homeomorphism, then by Lemma 2.1 we have $p \times q(\Delta) =$ Δ , thus for all $t \in [0,1]$ we have $\langle p(t), q(t) \rangle = p \times q(t,t) \in \Delta$ which shows p(t) = q(t)and leads to p = q.

2. Suppose $p \times q : \mathbb{O} \to \mathbb{O}$ is a homeomorphism, by Lemma 2.2 one of the following cases holds:

- $p \times q : \mathbb{O} \to \mathbb{O}$ is order preserving: in this case $p, q : [0, 1] \to [0, 1]$ are order preserving too, thus $p \circ q : [0, 1] \rightarrow [0, 1]$ is order preserving;
- $p \times q : \mathbb{O} \to \mathbb{O}$ is anti-order preserving: in this case $p, q : [0, 1] \to [0, 1]$ are anti–order preserving too, thus $p \circ q : [0, 1] \rightarrow [0, 1]$ is order preserving.

Using two cases above $p \circ q : [0, 1] \rightarrow [0, 1]$ is order preserving. Conversely suppose $p \circ q : [0,1] \to [0,1]$ is order preserving, thus either " $p,q : [0,1] \to [0,1]$ [0,1] are order preserving" or " $p,q:[0,1] \rightarrow [0,1]$ are anti–order preserving". Use Theorem 2.3 to complete the proof of this item.

Theorem 2.5. We have:

$$\begin{array}{ll} \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}} & = & \{\{\mathsf{P}_{1},\mathsf{P}_{3}\},\{\mathsf{P}_{2},\mathsf{P}_{4}\},\mathsf{L}_{1}\cup\mathsf{L}_{3},\mathsf{L}_{2}\cup\mathsf{L}_{4},\Delta\setminus\{\mathsf{P}_{1},\mathsf{P}_{3}\},((0,1)\times(0,1))\setminus\Delta\}\,,\\ \\ \frac{\mathbb{O}}{\mathcal{G}_{\mathbb{O}}} & = & \{\{\mathsf{P}_{1},\mathsf{P}_{3}\},\{\mathsf{P}_{2},\mathsf{P}_{4}\},\mathsf{L}_{1}\cup\mathsf{L}_{3},\mathsf{L}_{2}\cup\mathsf{L}_{4},(0,1)\times(0,1)\}\,,\\ \\ \frac{\mathbb{U}}{\mathcal{G}_{\mathbb{U}}} & = & \{(0,1)\times(0,1),\mathbb{U}\setminus((0,1)\times(0,1))\}\,. \end{array}$$

Proof. We prove case by case. Note that $\varphi: X \to X$ with $\varphi < s, t \ge 1 - s, 1 - t \ge 1 - s, t = s,$ (for $(s,t) \in X$) for $X = \mathbb{A}, \mathbb{O}, \mathbb{U}$ is homeomorphism. Also for $x, y \in (0,1)$ consider hommeoorphism $f_{x,y}: [0,1] \rightarrow [0,1]$ with:

$$f_{x,y}(t) = \begin{cases} \frac{y}{x}t & 0 \le t \le x ,\\ \frac{(1-y)t + (y-x)}{1-x} & x \le t \le 1 . \end{cases}$$

Now we have:

- A1. $\{\mathsf{P}_1,\mathsf{P}_3\} \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$: Use Lemma 2.1 and note that $\varphi(\mathsf{P}_1) = \mathsf{P}_3$.
- A2. $\{\mathsf{P}_2,\mathsf{P}_4\} \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$: Use Lemma 2.1 and note that $\varphi(\mathsf{P}_2) = \mathsf{P}_4$. A3. $\mathsf{L}_1 \cup \mathsf{L}_3 \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$: Using Lemma 2.1 we have $\mathcal{G}_{\mathbb{A}} < 0, \frac{1}{2} > \subseteq \mathcal{G}_{\mathbb{A}}\mathsf{L}_1 \subseteq \mathsf{L}_1 \cup \mathsf{L}_3$. For $x \in (0,1) \text{ consider homeomorphism } h: \mathbb{A} \to \mathbb{A} \text{ with } h < 0, t > = <0, f_{\frac{1}{2},x}(t) > 0$

and $h < s, t >=< s, t > \text{for } s \neq 0$. Then $< 0, x >= h < 0, \frac{1}{2} > \in \mathcal{G}_{\mathbb{A}} < 0, \frac{1}{2} >$, thus $\mathsf{L}_1 \subseteq \mathcal{G}_{\mathbb{A}} < 0, \frac{1}{2} >$, so $\mathsf{L}_1 \cup \mathsf{L}_3 = \varphi(\mathsf{L}_1) \cup \mathsf{L}_1 \subseteq \mathcal{G}_{\mathbb{A}} < 0, \frac{1}{2} >$ which leads to $\mathsf{L}_1 \cup \mathsf{L}_3 = \mathcal{G}_{\mathbb{A}} < 0, \frac{1}{2} > \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$.

- A4. $L_2 \cup L_4 \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$: Using Lemma 2.1 we have $\mathcal{G}_{\mathbb{A}} < \frac{1}{2}, 0 > \subseteq \mathcal{G}_{\mathbb{A}}L_4 \subseteq L_2 \cup L_4$. For $x \in (0,1)$ consider homeomorphism $h : \mathbb{A} \to \mathbb{A}$ with $h < s, t > = < f_{\frac{1}{2},x}(s), f_{\frac{1}{2},x}(t) >$, thus $< x, 0 > = h < \frac{1}{2}, 0 > \in \mathcal{G}_{\mathbb{A}} < \frac{1}{2}, 0 >$ which leads to $L_4 \subseteq \mathcal{G}_{\mathbb{A}} < \frac{1}{2}, 0 >$. Thus $L_2 = \varphi(L_4) \subseteq \varphi(\mathcal{G}_{\mathbb{A}} < \frac{1}{2}, 0 >) = \mathcal{G}_{\mathbb{A}} < \frac{1}{2}, 0 >$ which leads to $L_2 \cup L_4 = \mathcal{G}_{\mathbb{A}} < \frac{1}{2}, 0 > \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$.
- A5. $\Delta \setminus \{\mathsf{P}_1, \mathsf{P}_3\} \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}$: Using Lemma 2.1 we have $\mathcal{G}_{\mathbb{A}} < \frac{1}{2}, \frac{1}{2} > \subseteq \Delta \setminus \{\mathsf{P}_1, \mathsf{P}_3\}$. For $x \in (0, 1)$ consider homeomorphism $h : \mathbb{A} \to \mathbb{A}$ with $h < s, t > = < f_{\frac{1}{2}, x}(s), f_{\frac{1}{2}, x}(t) > \text{so} < x, x > = h < \frac{1}{2}, \frac{1}{2} > \in \mathcal{G}_{\mathbb{A}} < \frac{1}{2}, \frac{1}{2} >$ which shows $\Delta \setminus \{\mathsf{P}_1, \mathsf{P}_3\} \subseteq \mathcal{G}_{\mathbb{A}} < \frac{1}{2}, \frac{1}{2} >$.
- A6. $((0,1) \times (0,1)) \setminus \Delta \in \overline{\mathcal{A}}$: Consider $\langle a, b \rangle, \langle c, d \rangle \in ((0,1) \times (0,1)) \setminus \Delta$, using (A1), ..., (A5) we have $\mathcal{G}_{\mathbb{A}} \langle a, b \rangle \subseteq ((0,1) \times (0,1)) \setminus \Delta$. Consider the following cases:

 $\underline{\mathbf{I.}} \ b < a, \ d < c \ \text{and} \ a \leq c. \ \text{In this case consider homeomorphism} \ h : \mathbb{A} \to \mathbb{A} \\ \text{with} \ h < s, t > = < f_{a,c}(s), f_{a,c}(t) >, \text{thus} \ h < a, b > = < c, f_{a,c}(b) > (\text{note that} \\ b < a \ \text{thus} \ f_{a,c}(b) < f_{a,c}(a) = c). \ \text{Define} \ p : \mathbb{A} \to \mathbb{A} \\ \text{with:}$

$$p < s, t > := \begin{cases} < s, \frac{d}{f_{a,c}(b)}t > & s = c, 0 \le t \le f_{a,c}(b) , \\ < s, \frac{(d-c)t + (f_{a,c}(b) - d)c}{f_{a,c}(b) - c} > & s = c, f_{a,c}(b) \le t \le c , \\ < s, t > & \text{otherwise} , \end{cases}$$

then $h, p \in \mathcal{G}_{\mathbb{A}}$ and

$$< c, d >= p < c, f_{a,c}(b) >= p(h < a, b >) \in \mathcal{G}_{\mathbb{A}} < a, b > .$$

 $\underbrace{\text{II.}}{b} < a, d < c \text{ and } c \leq a. \text{ By case (I) we have } < a, b > \in \mathcal{G}_{\mathbb{A}} < c, d > \text{thus there exists } j \in \mathcal{G}_{\mathbb{A}} \text{ with } < a, b > = j < c, d > \text{so} < c, d > = j^{-1} < a, b > \in \mathcal{G}_{\mathbb{A}} < a, b >.$

 $\underbrace{\text{III.}}_{\mathcal{G}_{\mathbb{A}}} b < a \text{ and } d > c. \text{ Choose } e \in (0,c) \text{ by cases (I) and (II) we have } < c, e > \in \\ \mathcal{G}_{\mathbb{A}} < a, b >. \text{ Define } q : \mathbb{A} \to \mathbb{A} \text{ with:}$

$$q < s, t >:= \begin{cases} < c, \frac{d-1}{e}t + 1 > & 0 \le t \le e, s = c , \\ < c, \frac{(d-c)t + (e-d)c}{e-c} > & e \le t \le c, s = c , \\ < c, \frac{c(1-t)}{1-c} > & c \le t \le 1, s = c , \\ < s, t > & t \ne d , \end{cases}$$

then $q \in \mathcal{G}_{\mathbb{A}}$ and $\langle c, d \rangle = q \langle c, e \rangle \in q\mathcal{G}_{\mathbb{A}} \langle a, b \rangle = \mathcal{G}_{\mathbb{A}} \langle a, b \rangle$. Using cases (I,II, III) we have $((0,1) \times (0,1)) \setminus \Delta \subseteq \mathcal{G}_{\mathbb{A}} < a, b >$ which leads to $((0,1) \times (0,1)) \setminus \Delta = \mathcal{G}_{\mathbb{A}} < a, b > \in \frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}}.$ O1. $\{\mathsf{P}_1,\mathsf{P}_3\} \in \frac{\mathbb{O}}{\mathcal{G}_0}$: Use Lemma 2.2 and note that $\varphi(\mathsf{P}_1) = \mathsf{P}_3.$ O2. $\{\mathsf{P}_2,\mathsf{P}_4\} \in \frac{\mathbb{O}}{\mathcal{G}_0}$: Use Lemma 2.2 and note that $\varphi(\mathsf{P}_2) = \mathsf{P}_4.$

- O3. $L_2 \cup L_4 \in \frac{\mathbb{O}}{\mathcal{G}_0}$: By Lemma 2.2, $\mathcal{G}_{\mathbb{O}} < \frac{1}{2}, 0 \geq L_2 \cup L_4$. For $x \in (0,1)$ consider $h:\mathbb{O}\to\mathbb{O} \text{ with } h < s,t> = < f_{\frac{1}{2},x}(s),t> \text{ so } < x,0> = h < \frac{1}{2},0> \in \mathcal{G}_{\mathbb{O}} < f_{\frac{1}{2},x}(s),t> \text{ so } < x,0> = h < \frac{1}{2},0> \in \mathcal{G}_{\mathbb{O}} < 0$ $\frac{1}{2}, 0 > \text{and} < x, 1 >= h(\varphi < \frac{1}{2}, 0 >) \in \mathcal{G}_{\mathbb{O}} < \frac{1}{2}, 0 >, \text{ thus } \mathsf{L}_{2} \cup \mathsf{L}_{4} \subseteq \mathcal{G}_{\mathbb{O}} < \frac{1}{2}, 0 > \text{ which leads to } \mathsf{L}_{2} \cup \mathsf{L}_{4} = \mathcal{G}_{\mathbb{O}} < \frac{1}{2}, 0 > \in \frac{\mathbb{O}}{\mathcal{G}_{\mathbb{O}}}.$
- O4. $L_1 \cup L_3 \in \frac{\mathbb{O}}{\mathcal{G}_0}$: By Lemma 2.2, $\mathcal{G}_{\mathbb{O}} < 0, \frac{1}{2} > \subseteq L_1 \cup L_3$. For $x \in (0, 1)$ consider $h : \mathbb{O} \to \mathbb{O}$ with $h < s, t > = < s, f_{\frac{1}{2},x}(t) > \text{so} < 0, x > = h < 0, \frac{1}{2} > \in \mathcal{G}_{\mathbb{O}} < 0$ $0, \frac{1}{2} > \text{and} < 1, x >= h(\varphi < 0, \frac{1}{2} >) \in \mathcal{G}_{\mathbb{O}} < 0, \frac{1}{2} >, \text{ thus } \mathsf{L}_{2} \cup \mathsf{L}_{4} \subseteq \mathcal{G}_{\mathbb{O}} < 0, \frac{1}{2} > \text{ which leads to } \mathsf{L}_{2} \cup \mathsf{L}_{4} = \mathcal{G}_{\mathbb{O}} < 0, \frac{1}{2} > \in \frac{\mathbb{O}}{\mathcal{G}_{\mathbb{O}}}.$
- O5. $(0,1) \times (0,1) \in \frac{\mathbb{O}}{\mathcal{G}_{\mathbb{O}}}$: Using (O1), (O2), (O3) and (O4) we have $\mathcal{G}_{\mathbb{O}} < \frac{1}{2}, \frac{1}{2} > \subseteq$ $(0,1) \times (0,1)$. Choose $\langle x, y \rangle \in (0,1) \times (0,1)$ and define $h : \mathbb{O} \to \mathbb{O}$ with $h < s, t >= \langle f_{\frac{1}{2},x}(s), f_{\frac{1}{2},y}(t) \rangle$, then $\langle x, y \rangle = h < \frac{1}{2}, \frac{1}{2} \rangle$ which shows $(0,1) \times (0,1) \subseteq \mathcal{G}_{\mathbb{O}} < \frac{1}{2}, \frac{1}{2} >$ and completes the proof.

Devaney chaos. We say transformation group (G, X) is topological transitive if for all nonempty and open subsets U, V of X we have $U \cap GV \neq \emptyset$. We say that $x \in X$ is a periodic point of transformation group (G, X) if $st(x) := \{g \in G : gx = x\}$ is a subgroup of finite index of G. Transformation group (G, X) is Devaney chaotic if it is topological transitive and the collection of its periodic points is dense in X [3]. We say that $x \in X$ is an almost periodic point of (G, X) if Gx is a minimal subset of X (i.e., it is a closed invariant subset of (G, X) without any proper subset which is a closed invariant subset of (G, X)[4]. All periodic points of (G, X) are almost periodic. Using the following theorem we show that transformation groups $(\mathcal{G}_{\mathbb{A}}, \mathbb{A}), (\mathcal{G}_{\mathbb{O}}, \mathbb{O})$ and $(\mathcal{G}_{\mathbb{U}}, \mathbb{U})$ are not Devaney chaotic.

Theorem 2.6. For $X = \mathbb{A}, \mathbb{O}$, the transformation group (G, X) is not topological transitive, in particular it is not Devaney chaotic. However $(\mathcal{G}_{\mathbb{U}}, \mathbb{U})$ is topological transitive.

Proof. For $X = \mathbb{A}, \mathbb{O}$ the sets $U := (0, 1) \times (0, 1)$ and $V := \mathsf{L}_1 \cup \mathsf{L}_3$ are open subsets of X and by Theorem 2.5 we have $GU \cap V \subseteq \mathcal{G}_X U \cap V = U \cap V = \emptyset$ thus (G, X) is not topological transitive. \square

Note. \mathfrak{x} is an almost periodic point of $(\mathcal{G}_{\mathbb{A}}, \mathbb{A})$ (resp. $(\mathcal{G}_{\mathbb{D}}, \mathbb{O})$) if and only if \mathfrak{x} is a periodic point. Also $\{\mathsf{P}_i : 1 \le i \le 4\}$ is the collection of all its periodic points. Moreover $(\mathcal{G}_{\mathbb{U}}, \mathbb{U})$ does not have any periodic point, but $\{ \langle s, t \rangle \in \mathbb{U} : \{s, t\} \cap \{0, 1\} \neq \emptyset \}$ is the collection of its almost periodic points.

3. Computing $P_h(\mathbb{A})$, $P_h(\mathbb{O})$ and $P_h(\mathbb{U})$

Now we are ready to find out $P_h(\mathbb{A})$, $P_h(\mathbb{O})$ and $P_h(\mathbb{U})$. We show $P_h(\mathbb{A}) = \{n : n \geq n \}$ $\{5\} \cup \{+\infty\}, P_h(\mathbb{O}) = \{n : n \ge 4\} \cup \{+\infty\} \text{ and } P_h(\mathbb{U}) = \{n : n \ge 1\} \cup \{+\infty\}.$

Theorem 3.1. $h(\mathcal{G}_{\mathbb{A}}, \mathbb{A}) = 5$, $h(\mathcal{G}_{\mathbb{O}}, \mathbb{O}) = 4$, $h(\mathcal{G}_{\mathbb{U}}, \mathbb{U}) = 1$.

Proof. Use Theorem 2.5.

Theorem 3.2. $P_h(\mathbb{A}) = \{n : n \ge 5\} \cup \{+\infty\}, P_h(\mathbb{O}) = \{n : n \ge 4\} \cup \{+\infty\}, P_h(\mathbb{U}) = \{n : n \ge 1\} \cup \{+\infty\}.$

Proof. Computing $P_h(\mathbb{A})$. By Theorem 3.1, it's evident that $5 \in P_h(\mathbb{A}) \subseteq \{n : n \geq 5\} \cup \{+\infty\}$. For $n \geq 1$ choose $t_1, \ldots, t_n \in (0, 1)$ with $\frac{1}{2} = t_1 < \cdots, t_n$ and let

Then $\mathcal{H}_{\mathbb{A}}$ is a proper normal subgroup of $\mathcal{G}_{\mathbb{A}}$ with index 2 and $\mathcal{G}_{\mathbb{A}} = \mathcal{H}_{\mathbb{A}} \cup \varphi \mathcal{H}_{\mathbb{A}}$ (where $\varphi < s, t > = < 1 - s, 1 - t >$). Moreover using a similar method described in Theorem 2.5 we have:

$$\begin{split} \frac{\mathbb{A}}{\mathcal{H}_{\mathbb{A}}} &= \{\{\mathsf{P}_1\}, \{\mathsf{P}_2\}, \{\mathsf{P}_3\}, \{\mathsf{P}_4\}, \mathsf{L}_1, \mathsf{L}_3, \mathsf{L}_2 \cup \mathsf{L}_4, \Delta \setminus \{\mathsf{P}_1, \mathsf{P}_3\}, ((0, 1) \times (0, 1)) \setminus \Delta\} \\ \frac{\mathbb{A}}{\mathcal{K}_0} &= \left(\frac{\mathbb{A}}{\mathcal{H}_{\mathbb{A}}} \setminus \{\mathsf{L}_1\}\right) \cup \{\{<0, t_1 >\}, \dots, \{<0, t_n >\}, \\ &\{0\} \times (0, t_1), \{0\} \times (t_1, t_2), \dots, \{0\} \times (t_{n-1}, t_n), \{0\} \times (t_n, 1)\} \\ \frac{\mathbb{A}}{\mathcal{K}_1} &= \left(\frac{\mathbb{A}}{\mathcal{K}_0} \setminus \{\{0\} \times (0, t_1)\}\right) \cup \{\{<0, \frac{1}{j} >: j \ge 2\} \cup \{<0, \frac{1}{2} - \frac{1}{j} >: j \ge 3\}, \\ &\{0\} \times ((0, t_1) \setminus \{\frac{1}{j} : j \ge 2\} \cup \{\frac{1}{2} - \frac{1}{j} : j \ge 3\})\} \\ \frac{\mathbb{A}}{\mathcal{K}_2} &= \left(\frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}} \setminus \{\mathsf{L}_1 \cup \mathsf{L}_3\}\right) \cup \{\{<0, \frac{1}{2} >, <1, \frac{1}{2} >\}, \\ &(\{0\} \times (0, \frac{1}{2})) \cup (\{1\} \times (\frac{1}{2}, 1)), (\{0\} \times (\frac{1}{2}, 1)) \cup (\{1\} \times (0, \frac{1}{2}))\} \\ \frac{\mathbb{A}}{\mathcal{K}_3} &= \left(\frac{\mathbb{A}}{\mathcal{G}_{\mathbb{A}}} \setminus \{\mathsf{L}_1 \cup \mathsf{L}_3\}\right) \cup \\ &\{\{: j \ge 2, i = 0, 1\} \cup \{: j \ge 2, i = 0, 1\}, \\ &(\mathsf{L}_1 \cup \mathsf{L}_3) \setminus (\{: j \ge 2, i = 0, 1\} \cup \{: j \ge 2, i = 0, 1\})\} \end{split}$$

which leads to $h(\mathcal{H}_{\mathbb{A}}, \mathbb{A}) = 8$, $h(\mathcal{K}_0, \mathbb{A}) = 8 + 2n$, $h(\mathcal{K}_1, \mathbb{A}) = 8 + 2n + 1$, $h(\mathcal{K}_2, \mathbb{A}) = 7$, $h(\mathcal{K}_3, \mathbb{A}) = 6$, $h(\{id_{\mathbb{A}}\}, \mathbb{A}) = +\infty$. Hence $P_h(\mathbb{A}) = \{n : n \ge 5\} \cup \{+\infty\}$. Computing $P_h(\mathbb{O})$. By Theorem 3.1, it's evident that $4 \in P_h(\mathbb{O}) \subseteq \{n : n \ge 4\} \cup \{+\infty\}$. For $n \ge 1$ choose $t_1, \ldots, t_n \in (0, 1)$ with $\frac{1}{2} = t_1 < \cdots, t_n$ and let

$$\begin{split} \mathcal{H}_{\mathbb{O}} &:= \{ f \in \mathcal{G}_{\mathbb{O}} : f(\mathsf{P}_{1}) = \mathsf{P}_{1} \} \\ \mathcal{J}_{0} &:= \{ f \in \mathcal{G}_{\mathbb{O}} : f < 0, t_{1} > = < 0, t_{1} >, \dots, f < 0, t_{n} > = < 0, t_{n} > \} (\subseteq \mathcal{H}_{\mathbb{O}}) \\ \mathcal{J}_{1} &:= \{ f \in \mathcal{J}_{0} : f(\{ < 0, \frac{1}{j} > : j \geq 2 \} \cup \{ < 0, \frac{1}{2} - \frac{1}{j} > : j \geq 3 \}) = \\ \{ < 0, \frac{1}{j} > : j \geq 2 \} \cup \{ < 0, \frac{1}{2} - \frac{1}{j} > : j \geq 3 \} \} \\ \mathcal{J}_{2} &:= \{ f \in \mathcal{G}_{\mathbb{O}} : f(\{ < 0, \frac{1}{2} >, < 1, \frac{1}{2} > \}) = \{ < 0, \frac{1}{2} >, < 1, \frac{1}{2} > \} \} \\ \mathcal{J}_{3} &:= \{ f \in \mathcal{G}_{\mathbb{O}} : f(\{ < i, \frac{1}{j} > : j \geq 2, i = 0, 1 \} \cup \{ < i, 1 - \frac{1}{j} > : j \geq 2, i = 0, 1 \}) = \\ \{ < i, \frac{1}{j} > : j \geq 2, i = 0, 1 \} \cup \{ < i, 1 - \frac{1}{j} > : j \geq 2, i = 0, 1 \} \} \\ \mathcal{J}_{4} &:= \{ f \in \mathcal{G}_{\mathbb{O}} : f(\{\frac{1}{2}\} \times (0, 1)) = \{ \frac{1}{2} \} \times (0, 1) \} \end{split}$$

One can verify $h(\mathcal{H}_{\mathbb{O}}, \mathbb{O}) = 8$, $h(\mathcal{J}_0, \mathbb{O}) = 8 + 2n$, $h(\mathcal{J}_1, \mathbb{O}) = 8 + 2n + 1$, $h(\mathcal{J}_2, \mathbb{O}) = 6$, $h(\mathcal{J}_3, \mathbb{A}) = 5$, $h(\mathcal{J}_4, \mathbb{O}) = 7$, $h(\{id_{\mathbb{O}}\}, \mathbb{O}) = +\infty$. Hence $P_h(\mathbb{A}) = \{n : n \ge 4\} \cup \{+\infty\}$. *Computing* $P_h(\mathbb{U})$. By Theorem 3.1, it's evident that $1 \in P_h(\mathbb{U}) \subseteq \{n : n \ge 1\} \cup \{+\infty\}$. For $n \ge 1$ choose distinct $\mathfrak{x}_1, \ldots, \mathfrak{x}_n \in (0, 1) \times (0, 1)$, so $h(\{f \in \mathcal{G}_{\mathbb{U}} : f(\mathfrak{x}_1) = \mathfrak{x}_1, \ldots, f(\mathfrak{x}_n) = \mathfrak{x}_n\}, \mathbb{U}) = n + 1$ and $h(\{id_{\mathbb{U}}\}, \mathbb{U}) = +\infty$ which completes the proof. \Box

4. ACKNOWLEDGMENTS

The authors are grateful to the research division of the University of Tehran for the grant which supported this research.

REFERENCES

- F. Ayatollah Zadeh Shirazi, N. Golestani, On classification of transformation semigroups: indicator sequences and indicator topological spaces, Filomat, 26, No.2 (2012) 313–329.
- [2] F. Ayatollah Zadeh Shirazi, M. A. Mahmoodi, M. Raeisi, On distaity of a transformation semigroup with one point compactification of a discrete space as phase space, Iranian Journal of Science and Technology, Transaction A: Science, 40, No.4 (2016) 209–217.
- [3] T. Ceccherini, M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, Journal of dynamical and control systems, 19, No.3 (2013) 349–357.
- [4] R. Ellis, Lectures on topological dynamics, W. A. Benjamin Inc., 1969.
- [5] M. Garg, R. Das, Exploring stronger forms of transitivity on G-spaces, Mat. Vesnik, 69, No.3 (2017) 164–175.
- [6] K. Kuwakubo, The theory of transformation groups, Oxford University Press, 1991.
- [7] J.-H. Mai, S. Shao, *The structure of graph maps without periodic points*, Topology and its Applications, 154, No.14 (2007), 2714–2728.
- [8] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Classics in Mathematics, Reprint of 1980, Springer–Verlag, 2008.
- [9] L. A. Steen, J. A. Seebach, Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.

[10] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate texts in Mathematics, 226, Springer-Verlag 2005.