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Abstract.: In the following text we compute possible heightsiofAlexan-
droff square)© (unit squarg0, 1] x [0, 1] with lexicographic order topol-
ogy) andU (unit squarg0, 1] x [0, 1] with induced topology of Euclidean
plane). We proveP,(A) = {n : n > 5} U {+oo}, P,(0) = {n :n >
4} U{+o0o}, Pp,(U) = {n:n > 1} U {+o0} (where for topological space
X, by P,(X) we mean the collection of heights of transformation groups
with phase spac&’. Additionally we show that there is no topological
transitive (resp. Devaney chaotic) transformation grGpA).
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1. INTRODUCTION

Studying closed unit bal{< z,y >€ R? : 22 + y?> < 1} with induced topology of
Euclidean plan&®? is one of the main purposes of numerous texts (old and new) (see e.g.,
[8, 10]. Let us mention that unit disk and unit squérel] x [0, 1] with induced topology
of Euclidean plane, are homeomorphic.
On the other hand, many texts deal with dynamical properties of special topological spaces
[2, 7]. In the following text we have a comparative study on dynamical properties of unit
square transformation groups with emphasis on their heights (and obit spaces), where unit
squarel0, 1] x [0,1] is equipped with Euclidean topology, lexicographic order topology,
Alexandroff square topology. For convenience suppose{hbyy > we mean the ordered
pair {z, {z,y}}):
e Ais[0,1] x [0, 1] as Alexandroff square.
e Ois[0,1] x [0, 1] equipped with lexicographic order topology,
e Uis|[0,1] x [0,1] equipped with Euclidean plari?,
where for< z,y >,< s,t >€ [0,1] x [0,1] we define lexicographic ordegr, with
< x,y >=¢< s, t >ifand only if “z < s" or “x = s andy < t". Alexandroff square
A =10,1] x [0, 1] equipped with topological basis generated by the following sets, see [9]:
e {z} x U wherez € [0,1] andU is an open subset df, 1] (with induced topology of
Euclidean lineR) andzx ¢ U,
e ([0,1] x U) \ ({z1,...,zn} x [0,1]) whereU is an open subset ¢, 1] (with induced
topology of Euclidean lin®R).
As it has been mentioned in [9), andO are compact Hausdorff non—metrizable spaces.
Consider the following notations and sets (foy € Rlet(z,y) = {z € R: 2 < z < y}):
A={<z,xz>2x€l0,1]};
Py :=<0,0>,Py:=<0,1>P3:=<1,1>Py:=<1,0>;
Ly :={0} x (0,1),Ly :=(0,1) x {1},Ls := {1} x (0,1),L4 := (0,1) x {0}.

Ps L2 P3
L3
L1 A
PT Ly P4
Fig. 1

Background on transformation groups. By a (topological) transformation groyg, X, p)
or simply (G, X) we mean a compact Hausdorff topological spacéphase space), dis-
crete topological groupG (phase group) with identitye and continuous map
p:GxX — X, p(g,z) = gr (g € G,z € X)suchthatforall: € X andg,h € G
we haveex = x andg(hxz) = (gh)z. Note that for ally € G, p, : X — X, where
pg(x) = gz is a homeomorphism aX, andp,pn = pgn. Thus we may conside® as a



Possible Heights of Alexandroff Square Transformation Groups 21

group of self-homeomorphisms &f with composition as a binary operation. In transfor-
mation group(G, X) for x € X we callGz := {gz : g € G} the orbit ofz (underG) and

% := {Gy : y € X} the orbit space ofG, X). A nonempty subseb of X is invariant
(G—invariant) if GD := {gy : g € G,y € D} C D, for more details on transformation
groups (and orbit spaces) see [4, 6].

For a topological spac& suppose thatix is the collection of all homeomorphisms
h: X — X (Gx is equipped with discrete topology).

Closed and open invariant subsets of a transformation group play important role in studying
its dynamical properties (see e.g. [5] for transitivity in transformation groups). The height
of transformation grougG, X) is h(G, X) := sup{n > 0 : there exist closed invariant
subsetdy,...,D,of X witha £ Dy G D1 & -+ &G D, = X}, i,e,h(G, X) = +ooif

{Gz : z € X} isinfinite andh(G, X) = card({Gz : * € X}) — 1 otherwise [1]. We also

call B,(X) := {h(G, X) : G is a subgroup o6 x } the collection of all possible heights

of X. In transformation grougG, X) the mapy : {Gy : y € X} — {Gxy :y € X}

with o(Gy) = Gxy (fory € X)) is onto, sah(Gx, X) < h(G, X) thereforemin P, (X) =
h(Gx,X).

A O
2. COMPUTING g—, — AND —

Considering the definition of height of transformation grdadp X) it's evident that for
computingh(G, X) one may computéGy : y € X}, and begin with% ={Gy:y €
X}. Sincemin P, (X) = h(Gx, X), a first step towards finding, (X) is to work out
% and thus to establish the value iofGx, X). In this section we determingY; where
X =T,0,A.
Lemma 2.1. For homeomorphism : A — A we have:
1. a({Pl, P3}) = {Pl7 P3} anda(A) = A,
2. Cl(L2 U L4 U {Pg, P4}) = Lg U L4 U {PQ7 P4},
3. for all s € [0,1] there existst € [0, 1] with a({s} x [0,1]) = {¢t} x [0,1] and
a{<s5,0><s,1>}={<t,0><t1>}
4. One of the following cases holds:

a. Cl(Pi) =P; fori = 1,2,3,4, Cl(Ll) =L anda(l_3) = Lg;

b. CL(Pl) = P37a(P2) = P47C1(P3) = Pl, a(P4) = PQ, CL(Ll) = L3 anda(l_g) = Ll.

Proof. 1. Using the fact that\ has a local countable topological basisor A if and
onlyifr € A\ A, we havea(A) = A. Note that subspace topology dninduced byA
coincides with subspace topology dninduced byU hencea({P1, Ps}) = {P1, Ps}.

2. A has a countable basisB, : n > 1} atr € A such that all elements of
{B, \ {t} : n > 1} are connected if and only ffe Ly U Ly U {P2,P4}.

3. Considers € [0,1], using (1) and (2) we have a,b >:=a < 5,0 >, < ¢,d >:=a <
s$,1 > Lo ULy U{P; : 1 < i < 4}. Sob,d € {0,1}. Chooser € [0,1] and suppose
<u,v>=a<sx> LetS :=a({s} x[0,1]). Byitem (1),SNA =a< s,5 >=:<
t,t >. Assume that. # ¢. Then< u,u >¢ S, and the sets:

u ({u} > ([0, 1]\ {u})) NS = ({u} x [0,1]) NS,
Vo= (AN ({u x[0,1])) NS,
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form a separation of (a < s, >€ U whenz # s anda < s, s >€ V) which contradicts
the connectedness 6f Thusu = t anda < s,z >€ {t} x [0,1] for all z € [0,1]., so
a({s} x[0,1]) C {¢t} x [0, 1]. In particulara = ¢ =t,S0< t,b >=a < 5,0 >, < t,d >=
a < s,1>withbd d e {0,1} (sincea < 5,0 ># a < s,1 > we haveb # d). Thus
a [rsyxjo,1): 18} x [0,1] — {t} x [0,1] is a continuous map witk: #,0 >, < t,1 >¢
a({s} x [0, 1]) which completes the proof.

4. First suppose(P1) = Py, then by (1),a(P3) = P3, so by (3) we have(L,) = Ly,
a(L3) = Ls, a(Pz) =Py anda(P4) = Py.

Now supposei(P;) # P1, then by (1),a(P1) = P3s anda(Ps) = P; so by (3) we have
Cl(Ll) = |_3, Cl(Lg) = L]_, CL(PQ) = P4 anda(P4) = Pg. O

Lemma 2.2. For homeomorphism : O — O we have:
1.0: O — Ois order preserving or anti—order preserving;
2.0({P1,P3}) = {P1,P3};
3. 0(L2 U |_4 U {PQ, P4}) = |_2 U L4 U {Pg, P4},
4. forall s € [0, 1] there exists € [0, 1] witho({s} x [0,1]) = {¢t} x [0, 1] ando{< 5,0 >
,< s, 1> ={<t,0> <t1>};
5. One of the following cases holds:
a. o(P;) =P;,0(L;) =L;fori =1,2,3,4ando : O — O is order preserving;
b. o(P1) = P3,0(P2) = P4,0(P3) = Py,0(P4) = P2, 0(L1) = L3, o(L2) = Ly,
o(Ls) = L1, 0(Ls) = L ando : O — O is anti—order preserving.

Proof. 2. Use (1) and®; = max O, P3 = min Q.

3. Use the fact that all open neighbourhoods af O are non—metrizable if and only if
reloUlyaU {PQ, P4}

4. Considers € [0, 1], using (2) and (3) we have a,b >:=0 < 5,0 >, < ¢,d >:=0 <
s,1>e Ly ULy U{P; : 1 <i<4}. Sob,d € {0,1}. Chooser € [0, 1] and suppose
t,v >=0< s,z >. If t # athen we may choosec {4t a2t afst atdidy fg ¢ ¢},
Then< r,0 >¢ o({s} x [0,1]) and for:

U = {<zw>0:<z,w><,<r,0>}No({s} x[0,1]),
V o= {<z,w>0:<7,0><< z,w >} No({s} x [0,1]),

U,V is a separation 06({s} x [0,1]) which is in contradiction with connectedness of
o({s} x [0,1]). Thust = a ando({s} x [0,1]) C {t} x [0,1]. In particulara = ¢ = t,
so< t,b >=0 < 50> < t,d>=0<s1>withbdec {0,1}. Soo [0,
{s} x [0,1] — {t} x [0,1] is a continuous map witk t,0 >, < t,1 >€ o({s} x [0,1])
which completes the proof.

5. (a) Suppose : O — O is order preserving. S&(P;) = o(min ®) = min O = P; and
0(P3) = o(max Q) = max O = P, also by (3) we have

O(PQ) = a(min(L2 U L4 U {PQ, P4})) = min(LQ U L4 U {PQ, P4}) = P2
and

0(P4) = o(maX(L2 U L4 U {Pg, P4})) = maX(Lg U |_4 U {PQ7 P4}) = P4 .
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Hence by (4) we have(L,) = L; ando(L4) = L4. Considers € [0, 1], by (4) there exists
t €[0,1] with o({s} x [0,1]) = {¢t} x [0,1] so

0 < 5,0 >=o(min({s} x [0,1])) = mino({s} x [0,1]) = min({t} x [0,1]) =< ¢,0 >,

which showss(L; U {Py,P2}) C Ly U{Py,P2} ando(Ly4) C Ly; also by a similar method
we haves < s,1 >=< t,1 > which leads taw(Ls) C Lo. Use (2) to obtaim(Ly) = L,
ando(L4) = L4.

(b) Use a similar method described in the proof of (a). O

Theorem 2.3. 0 : O — O is an order preserving homeomorphism if and only if there

exist order preserving homeomorphigm [0,1] — [0,1] and x : [0,1] — [0, 1]1>! such
t— g

that for all ¢ € [0,1], ut : [0,1] — [0,1] is an order preserving homeomorphism and

0 < s, t>=<0(s), us(t) >.

Alsoo : O — O is an anti—order preserving homeomorphism if and only if there exist

anti—order preserving homeomorphigm [0,1] — [0,1] and  : [0, 1] — [0, 1]1>! such
t—put

that for all ¢ € [0, 1], s : [0,1] — [0, 1] is an anti—order preserving homeomorphism and

0 < s,t>=<0(s), us(t) >.

Proof. First supposes : O — O is an order preserving homeomorphism, by
Lemma 2.2 for each < [0, 1] there existg € [0,1] with o({s} x [0,1]) = {¢t} x [0, 1],

let 9(5) :=t. Also by Lemma 2.2 (Since rLQU{Pz,Pg}: L, U {P27 P3} — Ly U {PQ7 Pg}

is order preserving and bijectior),: [0, 1] — [0, 1] is order preserving and bijection, thus
it is an order preserving homeomorphism[énl]. Now for s € [0, 1], considering home-
omorphismo [y4yxj0,13: {s} % [0,1] — {0(s)} x [0,1], we may define homeomorphism
s [0,1] — [0,1] with 0 < s,t >=< 0(s), pus(t) >. Forz,y € [0,1] with z < y since

< s,z >=y< s,y > we have

<0(s), ps(x) >=0 < 5,2 >= 0 < 5,y >=< 0(s), ps(y) >

which leads tqus (z) < ps(y) andys : [0,1] — [0, 1] is order preserving too.

Conversely, consider order preserving homeomorphtsm: [0,1] — [0,1] and

w2 0,1] — [0,1]01 such that for alk € [0, 1], y : [0,1] — [0,1] is an order preserving
t—pug

homeomorphism and define: O — O with o < s,t >=< 6(s), us(t) >. It's clear that

o : O — O s order preserving and bijective which leads to continuity ofd — @ under

order topology.

In order to complete the proof consider homeomorphisnp : © — @  and note that
<s,t>—<1—s,1—t>
o : O — O s an anti—order preserving homeomorphism if and onlydfo : O — Qis an

order preserving homeomorphism. O

Note. If a : A — A is a homeomorphism,then there exist a homeomorpHisr, 1] —

[0,1] with 6({0,1}) = {0,1} andy : [0, 1] — [0, 1]} such that for alk € [0, 1], s :
t—pg

[0,1] — [0, 1] is a homeomorphism witp,(t) = 6(¢t) anda < s,t >=< 0(s), ps(t) >

(note thata [augp, p,y: AU {P1,P3} — AU {P1,P3} is a homeomorphism).
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Corollary 2.4. For homeomorphismg, ¢ : [0,1] — [0, 1], consider
pxq:[0,1] x [0,1] — [0,1] x [0,1],

<s,t>—<p(s),q(t)>
then we have:

1. p x ¢ : A — Ais ahomeomorphism if and onlyif= ¢;

2. px g : O — Ois a homeomorphism if and onlyfo ¢ : [0,1] — [0, 1] is order
preserving;

3. px ¢q:U — Uisahomeomorphism.

Proof. 1.If p x ¢ : A — A is a homeomorphism, then by Lemma 2.1 we haveg(A) =
A, thus for allt € [0, 1] we have< p(t), q(t) >= px q(t,t) € A which show(t) = ¢(t
and leads tp = q.
2. Suppose x g : O — O is a homeomorphism, by Lemma 2.2 one of the following cases
holds:
e pxq: 0O — O is order preserving: in this cageq : [0,1] — [0,1] are order
preserving too, thug o ¢ : [0, 1] — [0, 1] is order preserving;
e p x q: O — O is anti-order preserving: in this cageqg : [0,1] — [0, 1] are
anti—order preserving too, thps ¢ : [0,1] — [0, 1] is order preserving.
Using two cases abovyeo g : [0, 1] — [0, 1] is order preserving.
Conversely supposeo ¢ : [0,1] — [0,1] is order preserving, thus eithep,q : [0,1] —
[0, 1] are order preserving” or g : [0,1] — [0, 1] are anti—order preserving”. Use Theo-
rem 2.3 to complete the proof of this item. O

Theorem 2.5. We have:

% - {{Pla PB}?{P% P4}a LU L37 Lz U L47A \ {Plv P3}a ((071) X (071)) \ A}7
& = (PLPShPaPiLL UL L ULL(0.1) X (01)
;% = {(0,1) x (0,1), U\ ((0,1) x (0,1))} .

Proof. We prove case by case. Note thhat X — X with o < s, t >=<1—3s,1 -t >
(for (s,t) € X) for X = A O, U is homeomorphism. Also far,y € (0,1) consider
hommeoorphisny, , : [0, 1] — [0, 1] with:

fm,y(t) =

Now we have:
Al. {Py,P3} € &: Use Lemma 2.1 and note thatP;) = Ps.
A2. {P,,P4} € 2: Use Lemma 2.1 and note thatPs) = P,.
A3. LiUlLs e %: Using Lemma 2.1 we havg, < O,% >C Gal1 € Ly ULs. For
z € (0,1) consider homeomorphisi: A — Awith b <0, >=<0, f1 ,(t) >

A
Gu
A
Ga
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andh < s,t >= <st>for57é0 Then< 0,2 >=h <0, 1 >EQA<O,2 ,
thusL; C Gy < 0, 4 3>, soL1 UlLs = (L) UL; € Gy <0,2 5 > Which leads to
Liuls = QA<0,2 >€ &

A4. Ly ULy € £ Using Lemma 2.1 we havg, < 3,0 >C Galy C Ly U Ly.
Forz € (0,1) consider homeomorph|snh] A — Awithh < st >=<
f1, ()flx() >, thus< 2,0 >= h < 3,0 >¢ QA< 1,0 > which leads
to L4 C Gu < 3,0 > Thust = ¢(L4) C ©(Ga < 3,0 >) =Ga < 3,0 >
which leads tcL2 ULy =Ga <3 L 0>e g

A5. A\ {Py,P3} € & Using Lemma 2.1we havg, < 1,3 >C A\ {Py,P3}.
For z € (0,1) consider homeomorphisth : A — A with h < s,t >=<
fi2(8), f1a(t) >80< @, >= h < §,5 >€ Ga < 3,3 > which shows
A\{Pl,Pd} CGy< i 2,2 >.

A6. ((0,1) x (0,1))\ A € gA : Consider< a,b >, < ¢,d >€ ((0,1) x (0,1)) \ A,
using (Al), ..., (A5) we hav€, < a,b >C ((0,1) x (0,1)) \ A. Consider the
following cases:

I.b < a,d < canda < c. In this case consider homeomorphigm A — A
With h < s,t >=< f,.c(8), fa,c(t) >, thush < a,b >=< ¢, f,,.(b) > (note that
b <athusf,.(b) < foc(a) =c). Definep : A — A with:

8 d
<8, ——F~t > S:C,OStS a,cb,
% 0 o0
p<s,t>= (d =)t + (fa,c(b) — d)c _
<s, > s=g¢, fa,c(b) <t < e,
Foclt) — ¢ o0
To<st> otherwise ,

thenh,p € G and

<ec,d>=p<ec, foob) >=ph<a,b>)eGy<ab>.

1. b < a,d < candc < a. By case (I) we have a,b >€ Gy < ¢,d > thus there
existsj € G, with < a,b >= j < ¢,d >80< ¢,d >= j~' < a,b >€ Gy <
a,b>.

lll. b < aandd > ¢. Choosee € (0, ¢) by cases (I) and (II) we have c,e >€
Ga < a,b>. Defineq : A — A with:

d—1
<ec, t+1> 0<t<es=c,

d—c)t —d
<c,( o)t + (e )C> e<t<c¢s=c,
e—c
1—1t
cl=t)

1—c - =7 ’

q<s,t>=

<c,

< st > t#d,



26 F.A.Z.Shirazi, Ebrahimifar R.Yaghmaeian, H. Yahyaoghli

theng € Gy and< ¢,d >=q < ¢c,e >€ qG < a,b >= Gy < a,b >.
Using cases (1,11, 1Il) we hav&(0,1) x (0,1)) \ A C G4 < a,b > which leads to
((0,1) x (0,1)) \A = Ga < a,b>€ &

O1. {Py,P3} € 5-: Use Lemma 2.2 and note thatP,) = Ps.

02. {Py,P4} € C%: Use Lemma 2.2 and note thatP,) = P.

03. Ly Uly € %: By Lemma 2.2Gp < %,0 >C Ly ULy. Forz € (0,1) consider
h:0— Owithh < s,t >=< f1 ,(s),t >s0< 2,0 >=h < 1,0>€ Go <
3,0 >and< z,1 >=h(p < 3,0 >) € Gg < 3,0 >, thusLa ULy C Gp <
1,0 > whichleadstds ULy = G < 5,0 >€ %

O4. L UL; € C%: By Lemma 2.2Go < 0,4 >C Ly ULs. Forz € (0,1) consider
h:0— Owithh < st >=<s,f1,(t) >s0< 0,2 >=h < 0,5 >€ Go <
0,3 >and< 1,2 >= h(p < 0,1 >) € Go < 0,3 >, thusL, ULy C Go <
0,3 >whichleadstd, ULy = Go < 0,3 >€ .

05. (0,1) x (0,1) € g=: Using (01), (02), (03) and (04) we had < 3,3 >C

202
(0,1) x (0,1). Choose< z,y >€ (0,1) x (0,1) and defineh : O — O with
h < st >=< f1,(s), f1,(t) > then< z,y >= h < §, 5 > which shows
(0,1) x (0,1) € Go < 3,2 > and completes the proof.

O

Devaney chaos.We say transformation grouf, X) is topological transitive if for all
nonempty and open subséfsV” of X we haveU N GV # @&. We say that: € X is a
periodic point of transformation groug, X) if st(x) := {g € G : gx = x} is a subgroup
of finite index of G. Transformation groupG, X) is Devaney chaotic if it is topological
transitive and the collection of its periodic points is dens&i[8]. We say that: € X is an
almost periodic point of G, X) if Gz is a minimal subset ok (i.e., it is a closed invariant
subset of(G, X') without any proper subset which is a closed invariant subsgfoi))
[4]. All periodic points of (G, X) are almost periodic. Using the following theorem we
show that transformation grouggys, A), (Go, ©) and(Gy, U) are not Devaney chaotic.

Theorem 2.6. For X = A, O, the transformation groupG, X ) is not topological transi-
tive, in particular it is not Devaney chaotic. Howevgfy, U) is topological transitive.

Proof. For X = A, O the setdJ := (0,1) x (0,1) andV := L; U L3 are open subsets of
X and by Theorem2.5we haeU NV C GxUNV =U NV = @ thus(G, X) is not
topological transitive. O

Note. ¢ is an almost periodic point G4, A) (resp.(Gg, ©)) if and only if ¢ is a periodic
point. Also{P; : 1 < i < 4} is the collection of all its periodic points. Moreov@y, U)
does not have any periodic point, ut s,t > U: {s,t} N {0,1} # @} is the collection
of its almost periodic points.

3. COMPUTING Py, (A), P,(0) AND Py, (U)

Now we are ready to find ou®,(A), P,(0) and P,(U). We showP,(A) = {n : n >
5} U{+o0}, Po(0) ={n:n >4} U{+oco} andP,(U) = {n:n > 1} U {+oo}.
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Theorem 3.1. h(Ga, A) = 5, h(Go,0) =4, h(Gy,U) = 1.
Proof. Use Theorem 2.5. O

Theorem 3.2. P,(A) = {n : n > 5} U {400}, Po(Q) = {n : n > 4} U {+o0},
P,(U)={n:n>1}U{+o0}.

Proof. ComputingP;,(A). By Theorem 3.1, it's evident tha € P,(A) C {n : n >
5} U {+o0}. Forn > 1chooséy,...,t, € (0,1) with + =¢; <--- ¢, and let

Hy = {fe€Ga:f(P1)=P1}

Ko = {f€Gn:f<0,ty>=<0,t; >,...,f <0ty >=<0,t, >}HC Ha)
1 11
K= {f Ko J(<0,5 > 22} U{< 0,5~ = >0 > 3)) =
1 ] 1 1 .
{<0,=>j>2U{<0,5—=>j>3}}
J 2
1 1 1 1
Ky = {fEQAZf({<0’§>’<1a§>}):{<0>§>><1>§>}}
1 1
Ks = {ngAlf({<i,3>:j22,i:0,1}u{<i,1—3>1j22,i:0a1}):

1 1
{<i,3>:j22,i:0,1}u{<i,1—3>:j22,i:0,1}}

ThenH, is a proper normal subgroup 6f with index 2 andG, = Ha U ¢H, (Where
p < s,t >=<1—s,1—1t >). Moreover using a similar method described in Theorem 2.5
we have:

% = {{Pl}’ {P2}7 {P3}7 {P4}’ le L3a Lo U L47A\ {Pla P3}7 ((07 1) X (07 1)) \ A}
%r:(%ﬂﬂMUH<Mp%“{<Mpﬁ
{0} X (Ovtl)a{o} X (tlatQ)a B 7{0} X (tn—lytn)a{o} X (tna 1)}
A Ao xOm)Uuf<otsiznui<ol Loy
ICl - (’CO\{{}X(71 7]- )= 72 ] )=z )
(0 x (0.0 \ {515 = 2 U5 = =25 = 3)
% = (%\{LluLg})u{{<0,%>,<1,%>},

({03 x (0, 2) U ({1} x (3.1). (10} x (2. 1) U ({1} x (0.2))
K (%\{hULg})U
{{<i,%>:j22,2’20,1}U{<i,1—%>:j22,i:0,1}7

1 1
(L1UL3)\({<i,3>:j22,z’:0,1}u{<i,1—5>:j22,z’:0,1})}
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which leads toh(H,, A) = 8, h(Ko, A) = 8+ 2n, h(K1,A) = 84 2n+1, h(Ky, A) =7,
h(Ks,A) =6, h({idp},A) = +oo. HenceP,(A) = {n:n > 5} U {+oo}.
ComputingP, (0). By Theorem 3.1, it's evident thdte P,(Q) C {n : n > 4} U {+oc0}.
Forn > 1choose,.. . t, € (0,1) with £ =#; <--- ,t, and let

Ho := {f€Go: f(P1)=Pi}
Jo = {f€Go:f<0,t; >=<0,t1 >,...,f <0,t, >=<0,t, >}(C Ho)

1 1 1
1 1 1
<0,=>:17221U{<0,z—=>:52>3
{ k) HU{< 0,5 7> I3
1 1 1 1
\72 = {feg@f({<055>a<17§>}):{<07§>7<17§>}}
J3 = {feg@:f({<i,%>:j22,i:0,1}u{<i,17%>:j22,i:0,1}):

1 1
{<i,=>:j>2,i=0,1}U{<i,1—=>:7>214i=0,1}}
J J

T = f€Go: fl5} < (0,1) = {5} x O,1)}

One can verifyh(Hgo, Q) = 8, h(Jo, Q) = 8+ 2n, h(J1,0) = 8+2n+1, h(J2, Q) = 6,
W T3, A) = 5, h(Js, Q) = 7, h({ido}, Q) = +oo. HencePy, (A) = {n : n > 4}U{+o0}.
ComputingP,,(U). By Theorem 3.1, it's evident that € P,(U) C {n : n > 1} U
{+00}. Forn > 1 choose distinct;, ...z, € (0,1) x (0,1), soh({f € Gu : f(zr1) =
-5 f(tn) =tn}, U) = n+1andh({idy}, U) = 400 which completes the proof.[]
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