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Abstract.: In the following text we compute possible heights ofA (Alexan-
droff square),O (unit square[0, 1]× [0, 1] with lexicographic order topol-
ogy) andU (unit square[0, 1]× [0, 1] with induced topology of Euclidean
plane). We provePh(A) = {n : n ≥ 5} ∪ {+∞}, Ph(O) = {n : n ≥
4}∪{+∞}, Ph(U) = {n : n ≥ 1}∪{+∞} (where for topological space
X, by Ph(X) we mean the collection of heights of transformation groups
with phase spaceX. Additionally we show that there is no topological
transitive (resp. Devaney chaotic) transformation group(G,A).
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1. INTRODUCTION

Studying closed unit ball{< x, y >∈ R2 : x2 + y2 ≤ 1} with induced topology of
Euclidean planeR2 is one of the main purposes of numerous texts (old and new) (see e.g.,
[8, 10]. Let us mention that unit disk and unit square[0, 1] × [0, 1] with induced topology
of Euclidean plane, are homeomorphic.
On the other hand, many texts deal with dynamical properties of special topological spaces
[2, 7]. In the following text we have a comparative study on dynamical properties of unit
square transformation groups with emphasis on their heights (and obit spaces), where unit
square[0, 1] × [0, 1] is equipped with Euclidean topology, lexicographic order topology,
Alexandroff square topology. For convenience suppose (by< x, y > we mean the ordered
pair{x, {x, y}}):

• A is [0, 1]× [0, 1] as Alexandroff square.
• O is [0, 1]× [0, 1] equipped with lexicographic order topology,
• U is [0, 1]× [0, 1] equipped with Euclidean planeR2,

where for< x, y >, < s, t >∈ [0, 1] × [0, 1] we define lexicographic order¹` with
< x, y >¹`< s, t > if and only if “x < s” or “ x = s andy ≤ t”. Alexandroff square
A = [0, 1]× [0, 1] equipped with topological basis generated by the following sets, see [9]:
• {x} × U wherex ∈ [0, 1] andU is an open subset of[0, 1] (with induced topology of
Euclidean lineR) andx /∈ U ,
• ([0, 1] × U) \ ({x1, . . . , xn} × [0, 1]) whereU is an open subset of[0, 1] (with induced
topology of Euclidean lineR).
As it has been mentioned in [9],A andO are compact Hausdorff non–metrizable spaces.
Consider the following notations and sets (forx, y ∈ R let (x, y) = {z ∈ R : x < z < y}):

∆ := {< x, x >: x ∈ [0, 1]};
P1 :=< 0, 0 >,P2 :=< 0, 1 >,P3 :=< 1, 1 >,P4 :=< 1, 0 >;
L1 := {0} × (0, 1), L2 := (0, 1)× {1}, L3 := {1} × (0, 1), L4 := (0, 1)× {0}.
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Background on transformation groups. By a (topological) transformation group(G, X, ρ)
or simply (G,X) we mean a compact Hausdorff topological spaceX (phase space), dis-
crete topological groupG (phase group) with identitye and continuous map
ρ : G × X → X, ρ(g, x) = gx (g ∈ G, x ∈ X) such that for allx ∈ X andg, h ∈ G
we haveex = x andg(hx) = (gh)x. Note that for allg ∈ G, ρg : X → X, where
ρg(x) = gx is a homeomorphism ofX, andρgρh = ρgh. Thus we may considerG as a
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group of self–homeomorphisms ofX with composition as a binary operation. In transfor-
mation group(G,X) for x ∈ X we callGx := {gx : g ∈ G} the orbit ofx (underG) and
X
G := {Gy : y ∈ X} the orbit space of(G,X). A nonempty subsetD of X is invariant
(G−invariant) if GD := {gy : g ∈ G, y ∈ D} ⊆ D, for more details on transformation
groups (and orbit spaces) see [4, 6].
For a topological spaceX suppose thatGX is the collection of all homeomorphisms
h : X → X (GX is equipped with discrete topology).
Closed and open invariant subsets of a transformation group play important role in studying
its dynamical properties (see e.g. [5] for transitivity in transformation groups). The height
of transformation group(G,X) is h(G,X) := sup{n ≥ 0 : there exist closed invariant
subsetsD0, . . . , Dn of X with ∅ 6= D0  D1  · · ·  Dn = X}, i,e.,h(G,X) = +∞ if
{Gx : x ∈ X} is infinite andh(G, X) = card({Gx : x ∈ X})− 1 otherwise [1]. We also
call Ph(X) := {h(G, X) : G is a subgroup ofGX} the collection of all possible heights
of X. In transformation group(G,X) the mapϕ : {Gy : y ∈ X} → {GXy : y ∈ X}
with ϕ(Gy) = GXy (for y ∈ X) is onto, soh(GX , X) ≤ h(G, X) thereforemin Ph(X) =
h(GX , X).

2. COMPUTING
A
GA ,

O
GO AND

U
GU

Considering the definition of height of transformation group(G,X) it’s evident that for
computingh(G,X) one may compute{Gy : y ∈ X}, and begin withX

G = {Gy : y ∈
X}. Sincemin Ph(X) = h(GX , X), a first step towards findingPh(X) is to work out
X
GX

and thus to establish the value ofh(GX , X). In this section we determineXGX
where

X = U,O,A.

Lemma 2.1. For homeomorphisma : A→ A we have:
1. a({P1, P3}) = {P1,P3} anda(∆) = ∆;
2. a(L2 ∪ L4 ∪ {P2, P4}) = L2 ∪ L4 ∪ {P2, P4},
3. for all s ∈ [0, 1] there existst ∈ [0, 1] with a({s} × [0, 1]) = {t} × [0, 1] and
a{< s, 0 >,< s, 1 >} = {< t, 0 >, < t, 1 >};
4. One of the following cases holds:

a. a(Pi) = Pi for i = 1, 2, 3, 4, a(L1) = L1 anda(L3) = L3;
b. a(P1) = P3, a(P2) = P4, a(P3) = P1, a(P4) = P2, a(L1) = L3 anda(L3) = L1.

Proof. 1. Using the fact thatA has a local countable topological basis onx ∈ A if and
only if x ∈ A \ ∆, we havea(∆) = ∆. Note that subspace topology on∆ induced byA
coincides with subspace topology on∆ induced byU hencea({P1,P3}) = {P1, P3}.
2. A has a countable basis{Bn : n ≥ 1} at x ∈ A such that all elements of
{Bn \ {x} : n ≥ 1} are connected if and only ifx ∈ L2 ∪ L4 ∪ {P2, P4}.
3. Considers ∈ [0, 1], using (1) and (2) we have< a, b >:= a < s, 0 >, < c, d >:= a <
s, 1 >∈ L2 ∪ L4 ∪ {Pi : 1 ≤ i ≤ 4}. Sob, d ∈ {0, 1}. Choosex ∈ [0, 1] and suppose
< u, v >:= a < s, x >. Let S := a({s} × [0, 1]). By item (1),S ∩∆ = a < s, s >=:<
t, t >. Assume thatu 6= t. Then< u, u >/∈ S, and the sets:

U := ({u} × ([0, 1] \ {u})) ∩ S = ({u} × [0, 1]) ∩ S ,

V := (A \ ({u} × [0, 1])) ∩ S ,
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form a separation ofS (a < s, x >∈ U whenx 6= s anda < s, s >∈ V ) which contradicts
the connectedness ofS. Thusu = t anda < s, x >∈ {t} × [0, 1] for all x ∈ [0, 1]., so
a({s}× [0, 1]) ⊆ {t}× [0, 1]. In particulara = c = t, so< t, b >= a < s, 0 >, < t, d >=
a < s, 1 > with b, d ∈ {0, 1} (sincea < s, 0 > 6= a < s, 1 > we haveb 6= d). Thus
a ¹{s}×[0,1]: {s} × [0, 1] → {t} × [0, 1] is a continuous map with< t, 0 >,< t, 1 >∈
a({s} × [0, 1]) which completes the proof.
4. First supposea(P1) = P1, then by (1),a(P3) = P3, so by (3) we havea(L1) = L1,
a(L3) = L3, a(P2) = P2 anda(P4) = P4.
Now supposea(P1) 6= P1, then by (1),a(P1) = P3 anda(P3) = P1 so by (3) we have
a(L1) = L3, a(L3) = L1, a(P2) = P4 anda(P4) = P2. ¤

Lemma 2.2. For homeomorphismo : O→ O we have:
1. o : O→ O is order preserving or anti–order preserving;
2. o({P1,P3}) = {P1, P3};
3. o(L2 ∪ L4 ∪ {P2,P4}) = L2 ∪ L4 ∪ {P2, P4},
4. for all s ∈ [0, 1] there existst ∈ [0, 1] with o({s}× [0, 1]) = {t}× [0, 1] ando{< s, 0 >
,< s, 1 >} = {< t, 0 >,< t, 1 >};
5. One of the following cases holds:

a. o(Pi) = Pi, o(Li) = Li for i = 1, 2, 3, 4 ando : O→ O is order preserving;
b. o(P1) = P3, o(P2) = P4, o(P3) = P1, o(P4) = P2, o(L1) = L3, o(L2) = L4,

o(L3) = L1, o(L4) = L2 ando : O→ O is anti–order preserving.

Proof. 2. Use (1) andP1 = maxO, P3 = minO.
3. Use the fact that all open neighbourhoods ofx ∈ O are non–metrizable if and only if
x ∈ L2 ∪ L4 ∪ {P2, P4}.
4. Considers ∈ [0, 1], using (2) and (3) we have< a, b >:= o < s, 0 >,< c, d >:= o <
s, 1 >∈ L2 ∪ L4 ∪ {Pi : 1 ≤ i ≤ 4}. Sob, d ∈ {0, 1}. Choosex ∈ [0, 1] and suppose<
t, v >:= o < s, x >. If t 6= a then we may chooser ∈ {a+t

2 , a+2t
3 , a+3t

4 , a+4t
5 }\{a, c, t}.

Then< r, 0 >/∈ o({s} × [0, 1]) and for:

U := {< z,w >∈ O :< z,w >≺`< r, 0 >} ∩ o({s} × [0, 1]) ,

V := {< z,w >∈ O :< r, 0 >≺`< z, w >} ∩ o({s} × [0, 1]) ,

U, V is a separation ofo({s} × [0, 1]) which is in contradiction with connectedness of
o({s} × [0, 1]). Thust = a ando({s} × [0, 1]) ⊆ {t} × [0, 1]. In particulara = c = t,
so < t, b >= o < s, 0 >,< t, d >= o < s, 1 > with b, d ∈ {0, 1}. Soo ¹{s}×[0,1]:
{s} × [0, 1] → {t} × [0, 1] is a continuous map with< t, 0 >,< t, 1 >∈ o({s} × [0, 1])
which completes the proof.
5. (a) Supposeo : O → O is order preserving. Soo(P1) = o(minO) = minO = P1 and
o(P3) = o(maxO) = maxO = P3, also by (3) we have

o(P2) = o(min(L2 ∪ L4 ∪ {P2, P4})) = min(L2 ∪ L4 ∪ {P2,P4}) = P2

and

o(P4) = o(max(L2 ∪ L4 ∪ {P2, P4})) = max(L2 ∪ L4 ∪ {P2, P4}) = P4 .
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Hence by (4) we haveo(L1) = L1 ando(L4) = L4. Considers ∈ [0, 1], by (4) there exists
t ∈ [0, 1] with o({s} × [0, 1]) = {t} × [0, 1] so

o < s, 0 >= o(min({s} × [0, 1])) = min o({s} × [0, 1]) = min({t} × [0, 1]) =< t, 0 > ,

which showso(L1 ∪ {P1, P2}) ⊆ L1 ∪ {P1, P2} ando(L4) ⊆ L4; also by a similar method
we haveo < s, 1 >=< t, 1 > which leads too(L2) ⊆ L2. Use (2) to obtaino(L2) = L2

ando(L4) = L4.
(b) Use a similar method described in the proof of (a). ¤

Theorem 2.3. o : O → O is an order preserving homeomorphism if and only if there
exist order preserving homeomorphismθ : [0, 1] → [0, 1] andµ : [0, 1] → [0, 1][0,1]

t 7→µt

such

that for all t ∈ [0, 1], µt : [0, 1] → [0, 1] is an order preserving homeomorphism and
o < s, t >=< θ(s), µs(t) >.
Also o : O → O is an anti–order preserving homeomorphism if and only if there exist
anti–order preserving homeomorphismθ : [0, 1] → [0, 1] andµ : [0, 1] → [0, 1][0,1]

t 7→µt

such

that for all t ∈ [0, 1], µt : [0, 1] → [0, 1] is an anti–order preserving homeomorphism and
o < s, t >=< θ(s), µs(t) >.

Proof. First supposeo : O → O is an order preserving homeomorphism, by
Lemma 2.2 for eachs ∈ [0, 1] there existst ∈ [0, 1] with o({s} × [0, 1]) = {t} × [0, 1],
let θ(s) := t. Also by Lemma 2.2 (sinceo ¹L2∪{P2,P3}: L2 ∪ {P2, P3} → L2 ∪ {P2, P3}
is order preserving and bijection),θ : [0, 1] → [0, 1] is order preserving and bijection, thus
it is an order preserving homeomorphism on[0, 1]. Now for s ∈ [0, 1], considering home-
omorphismo ¹{s}×[0,1]: {s} × [0, 1] → {θ(s)} × [0, 1], we may define homeomorphism
µs : [0, 1] → [0, 1] with o < s, t >=< θ(s), µs(t) >. Forx, y ∈ [0, 1] with x ≤ y since
< s, x >¹`< s, y > we have

< θ(s), µs(x) >= o < s, x >¹` o < s, y >=< θ(s), µs(y) >

which leads toµs(x) ≤ µs(y) andµs : [0, 1] → [0, 1] is order preserving too.
Conversely, consider order preserving homeomorphismθ : [0, 1] → [0, 1] and
µ : [0, 1] → [0, 1][0,1]

t 7→µt

such that for allt ∈ [0, 1], µt : [0, 1] → [0, 1] is an order preserving

homeomorphism and defineo : O → O with o < s, t >=< θ(s), µs(t) >. It’s clear that
o : O→ O is order preserving and bijective which leads to continuity ofo : O→ O under
order topology.
In order to complete the proof consider homeomorphismϕ : O→ O

<s,t> 7→<1−s,1−t>
and note that

o : O→ O is an anti–order preserving homeomorphism if and only ifϕ ◦ o : O→ O is an
order preserving homeomorphism. ¤

Note. If a : A → A is a homeomorphism,then there exist a homeomorphismθ : [0, 1] →
[0, 1] with θ({0, 1}) = {0, 1} andµ : [0, 1] → [0, 1][0,1]

t 7→µt

such that for allt ∈ [0, 1], µt :

[0, 1] → [0, 1] is a homeomorphism withµt(t) = θ(t) anda < s, t >=< θ(s), µs(t) >
(note thata ¹∆∪{P1,P3}: ∆ ∪ {P1, P3} → ∆ ∪ {P1, P3} is a homeomorphism).
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Corollary 2.4. For homeomorphismsp, q : [0, 1] → [0, 1], consider

p× q : [0, 1]× [0, 1] → [0, 1]× [0, 1]
<s,t> 7→<p(s),q(t)>

,

then we have:

1. p× q : A→ A is a homeomorphism if and only ifp = q;
2. p × q : O → O is a homeomorphism if and only ifp ◦ q : [0, 1] → [0, 1] is order

preserving;
3. p× q : U→ U is a homeomorphism.

Proof. 1. If p× q : A→ A is a homeomorphism, then by Lemma 2.1 we havep× q(∆) =
∆, thus for allt ∈ [0, 1] we have< p(t), q(t) >= p×q(t, t) ∈ ∆ which showsp(t) = q(t)
and leads top = q.
2. Supposep× q : O→ O is a homeomorphism, by Lemma 2.2 one of the following cases
holds:

• p × q : O → O is order preserving: in this casep, q : [0, 1] → [0, 1] are order
preserving too, thusp ◦ q : [0, 1] → [0, 1] is order preserving;

• p × q : O → O is anti–order preserving: in this casep, q : [0, 1] → [0, 1] are
anti–order preserving too, thusp ◦ q : [0, 1] → [0, 1] is order preserving.

Using two cases abovep ◦ q : [0, 1] → [0, 1] is order preserving.
Conversely supposep ◦ q : [0, 1] → [0, 1] is order preserving, thus either “p, q : [0, 1] →
[0, 1] are order preserving” or “p, q : [0, 1] → [0, 1] are anti–order preserving”. Use Theo-
rem 2.3 to complete the proof of this item. ¤

Theorem 2.5. We have:
A
GA = {{P1,P3}, {P2, P4}, L1 ∪ L3, L2 ∪ L4, ∆ \ {P1, P3}, ((0, 1)× (0, 1)) \∆} ,

O
GO = {{P1,P3}, {P2, P4}, L1 ∪ L3, L2 ∪ L4, (0, 1)× (0, 1)} ,

U
GU = {(0, 1)× (0, 1),U \ ((0, 1)× (0, 1))} .

Proof. We prove case by case. Note thatϕ : X → X with ϕ < s, t >=< 1 − s, 1 − t >
(for (s, t) ∈ X) for X = A,O,U is homeomorphism. Also forx, y ∈ (0, 1) consider
hommeoorphismfx,y : [0, 1] → [0, 1] with:

fx,y(t) =





y

x
t 0 ≤ t ≤ x ,

(1− y)t + (y − x)
1− x

x ≤ t ≤ 1 .

Now we have:

A1. {P1, P3} ∈ A
GA : Use Lemma 2.1 and note thatϕ(P1) = P3.

A2. {P2, P4} ∈ A
GA : Use Lemma 2.1 and note thatϕ(P2) = P4.

A3. L1 ∪ L3 ∈ A
GA : Using Lemma 2.1 we haveGA < 0, 1

2 >⊆ GAL1 ⊆ L1 ∪ L3. For
x ∈ (0, 1) consider homeomorphismh : A→ A with h < 0, t >=< 0, f 1

2 ,x(t) >
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andh < s, t >=< s, t > for s 6= 0. Then< 0, x >= h < 0, 1
2 >∈ GA < 0, 1

2 >,
thusL1 ⊆ GA < 0, 1

2 >, soL1 ∪ L3 = ϕ(L1) ∪ L1 ⊆ GA < 0, 1
2 > which leads to

L1 ∪ L3 = GA < 0, 1
2 >∈ A

GA .

A4. L2 ∪ L4 ∈ A
GA : Using Lemma 2.1 we haveGA < 1

2 , 0 >⊆ GAL4 ⊆ L2 ∪ L4.
For x ∈ (0, 1) consider homeomorphismh : A → A with h < s, t >=<
f 1

2 ,x(s), f 1
2 ,x(t) >, thus< x, 0 >= h < 1

2 , 0 >∈ GA < 1
2 , 0 > which leads

to L4 ⊆ GA < 1
2 , 0 >. ThusL2 = ϕ(L4) ⊆ ϕ(GA < 1

2 , 0 >) = GA < 1
2 , 0 >

which leads toL2 ∪ L4 = GA < 1
2 , 0 >∈ A

GA .

A5. ∆ \ {P1, P3} ∈ A
GA : Using Lemma 2.1 we haveGA < 1

2 , 1
2 >⊆ ∆ \ {P1, P3}.

For x ∈ (0, 1) consider homeomorphismh : A → A with h < s, t >=<
f 1

2 ,x(s), f 1
2 ,x(t) > so < x, x >= h < 1

2 , 1
2 >∈ GA < 1

2 , 1
2 > which shows

∆ \ {P1, P3} ⊆ GA < 1
2 , 1

2 >.
A6. ((0, 1) × (0, 1)) \ ∆ ∈ A

GA : Consider< a, b >, < c, d >∈ ((0, 1) × (0, 1)) \ ∆,
using (A1), ..., (A5) we haveGA < a, b >⊆ ((0, 1) × (0, 1)) \ ∆. Consider the
following cases:
I. b < a, d < c anda ≤ c. In this case consider homeomorphismh : A → A
with h < s, t >=< fa,c(s), fa,c(t) >, thush < a, b >=< c, fa,c(b) > (note that
b < a thusfa,c(b) < fa,c(a) = c). Definep : A→ A with:

p < s, t >:=

8
>>>>>>><
>>>>>>>:

< s,
d

fa,c(b)
t > s = c, 0 ≤ t ≤ fa,c(b) ,

< s,
(d− c)t + (fa,c(b)− d)c

fa,c(b)− c
> s = c, fa,c(b) ≤ t ≤ c ,

< s, t > otherwise ,

thenh, p ∈ GA and

< c, d >= p < c, fa,c(b) >= p(h < a, b >) ∈ GA < a, b > .

II. b < a, d < c andc ≤ a. By case (I) we have< a, b >∈ GA < c, d > thus there
existsj ∈ GA with < a, b >= j < c, d > so< c, d >= j−1 < a, b >∈ GA <
a, b >.
III. b < a andd > c. Choosee ∈ (0, c) by cases (I) and (II) we have< c, e >∈
GA < a, b >. Defineq : A→ A with:

q < s, t >:=





< c,
d− 1

e
t + 1 > 0 ≤ t ≤ e, s = c ,

< c,
(d− c)t + (e− d)c

e− c
> e ≤ t ≤ c, s = c ,

< c,
c(1− t)
1− c

> c ≤ t ≤ 1, s = c ,

< s, t > t 6= d ,
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thenq ∈ GA and< c, d >= q < c, e >∈ qGA < a, b >= GA < a, b >.
Using cases (I,II, III) we have((0, 1)× (0, 1)) \∆ ⊆ GA < a, b > which leads to
((0, 1)× (0, 1)) \∆ = GA < a, b >∈ A

GA .

O1. {P1, P3} ∈ O
GO : Use Lemma 2.2 and note thatϕ(P1) = P3.

O2. {P2, P4} ∈ O
GO : Use Lemma 2.2 and note thatϕ(P2) = P4.

O3. L2 ∪ L4 ∈ O
GO : By Lemma 2.2,GO < 1

2 , 0 >⊆ L2 ∪ L4. Forx ∈ (0, 1) consider

h : O → O with h < s, t >=< f 1
2 ,x(s), t > so< x, 0 >= h < 1

2 , 0 >∈ GO <
1
2 , 0 > and< x, 1 >= h(ϕ < 1

2 , 0 >) ∈ GO < 1
2 , 0 >, thusL2 ∪ L4 ⊆ GO <

1
2 , 0 > which leads toL2 ∪ L4 = GO < 1

2 , 0 >∈ O
GO .

O4. L1 ∪ L3 ∈ O
GO : By Lemma 2.2,GO < 0, 1

2 >⊆ L1 ∪ L3. Forx ∈ (0, 1) consider

h : O → O with h < s, t >=< s, f 1
2 ,x(t) > so< 0, x >= h < 0, 1

2 >∈ GO <

0, 1
2 > and< 1, x >= h(ϕ < 0, 1

2 >) ∈ GO < 0, 1
2 >, thusL2 ∪ L4 ⊆ GO <

0, 1
2 > which leads toL2 ∪ L4 = GO < 0, 1

2 >∈ O
GO .

O5. (0, 1) × (0, 1) ∈ O
GO : Using (O1), (O2), (O3) and (O4) we haveGO < 1

2 , 1
2 >⊆

(0, 1) × (0, 1). Choose< x, y >∈ (0, 1) × (0, 1) and defineh : O → O with
h < s, t >=< f 1

2 ,x(s), f 1
2 ,y(t) >, then< x, y >= h < 1

2 , 1
2 > which shows

(0, 1)× (0, 1) ⊆ GO < 1
2 , 1

2 > and completes the proof.

¤

Devaney chaos.We say transformation group(G,X) is topological transitive if for all
nonempty and open subsetsU, V of X we haveU ∩ GV 6= ∅. We say thatx ∈ X is a
periodic point of transformation group(G,X) if st(x) := {g ∈ G : gx = x} is a subgroup
of finite index ofG. Transformation group(G,X) is Devaney chaotic if it is topological
transitive and the collection of its periodic points is dense inX [3]. We say thatx ∈ X is an
almost periodic point of(G,X) if Gx is a minimal subset ofX (i.e., it is a closed invariant
subset of(G,X) without any proper subset which is a closed invariant subset of(G,X))
[4]. All periodic points of(G,X) are almost periodic. Using the following theorem we
show that transformation groups(GA,A), (GO,O) and(GU,U) are not Devaney chaotic.

Theorem 2.6. For X = A,O, the transformation group(G,X) is not topological transi-
tive, in particular it is not Devaney chaotic. However(GU,U) is topological transitive.

Proof. For X = A,O the setsU := (0, 1) × (0, 1) andV := L1 ∪ L3 are open subsets of
X and by Theorem 2.5 we haveGU ∩ V ⊆ GXU ∩ V = U ∩ V = ∅ thus(G, X) is not
topological transitive. ¤

Note. x is an almost periodic point of(GA,A) (resp.(GO,O)) if and only if x is a periodic
point. Also{Pi : 1 ≤ i ≤ 4} is the collection of all its periodic points. Moreover(GU,U)
does not have any periodic point, but{< s, t >∈ U : {s, t}∩ {0, 1} 6= ∅} is the collection
of its almost periodic points.

3. COMPUTING Ph(A), Ph(O) AND Ph(U)

Now we are ready to find outPh(A), Ph(O) andPh(U). We showPh(A) = {n : n ≥
5} ∪ {+∞}, Ph(O) = {n : n ≥ 4} ∪ {+∞} andPh(U) = {n : n ≥ 1} ∪ {+∞}.
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Theorem 3.1. h(GA,A) = 5, h(GO,O) = 4, h(GU,U) = 1.

Proof. Use Theorem 2.5. ¤

Theorem 3.2. Ph(A) = {n : n ≥ 5} ∪ {+∞}, Ph(O) = {n : n ≥ 4} ∪ {+∞},
Ph(U) = {n : n ≥ 1} ∪ {+∞}.
Proof. ComputingPh(A). By Theorem 3.1, it’s evident that5 ∈ Ph(A) ⊆ {n : n ≥
5} ∪ {+∞}. Forn ≥ 1 chooset1, . . . , tn ∈ (0, 1) with 1

2 = t1 < · · · , tn and let

HA := {f ∈ GA : f(P1) = P1}
K0 := {f ∈ GA : f < 0, t1 >=< 0, t1 >, . . . , f < 0, tn >=< 0, tn >}(⊆ HA)
K1 := {f ∈ K0 : f({< 0,

1
j

>: j ≥ 2} ∪ {< 0,
1
2
− 1

j
>: j ≥ 3}) =

{< 0,
1
j

>: j ≥ 2} ∪ {< 0,
1
2
− 1

j
>: j ≥ 3}}

K2 := {f ∈ GA : f({< 0,
1
2

>,< 1,
1
2

>}) = {< 0,
1
2

>,< 1,
1
2

>}}

K3 := {f ∈ GA : f({< i,
1
j

>: j ≥ 2, i = 0, 1} ∪ {< i, 1− 1
j

>: j ≥ 2, i = 0, 1}) =

{< i,
1
j

>: j ≥ 2, i = 0, 1} ∪ {< i, 1− 1
j

>: j ≥ 2, i = 0, 1}}

ThenHA is a proper normal subgroup ofGA with index 2 andGA = HA ∪ ϕHA (where
ϕ < s, t >=< 1− s, 1− t >). Moreover using a similar method described in Theorem 2.5
we have:

A
HA = {{P1}, {P2}, {P3}, {P4}, L1, L3, L2 ∪ L4, ∆ \ {P1,P3}, ((0, 1)× (0, 1)) \∆}
A
K0

= (
A
HA \ {L1}) ∪ {{< 0, t1 >}, . . . .{< 0, tn >},
{0} × (0, t1), {0} × (t1, t2), . . . , {0} × (tn−1, tn), {0} × (tn, 1)}

A
K1

= (
A
K0

\ {{0} × (0, t1)}) ∪ {{< 0,
1
j

>: j ≥ 2} ∪ {< 0,
1
2
− 1

j
>: j ≥ 3},

{0} × ((0, t1) \ {1
j

: j ≥ 2} ∪ {1
2
− 1

j
: j ≥ 3})}

A
K2

= (
A
GA \ {L1 ∪ L3}) ∪ {{< 0,

1
2

>,< 1,
1
2

>},

({0} × (0,
1
2
)) ∪ ({1} × (

1
2
, 1)), ({0} × (

1
2
, 1)) ∪ ({1} × (0,

1
2
))}

A
K3

= (
A
GA \ {L1 ∪ L3}) ∪

{{< i,
1
j

>: j ≥ 2, i = 0, 1} ∪ {< i, 1− 1
j

>: j ≥ 2, i = 0, 1},

(L1 ∪ L3) \ ({< i,
1
j

>: j ≥ 2, i = 0, 1} ∪ {< i, 1− 1
j

>: j ≥ 2, i = 0, 1})}
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which leads toh(HA,A) = 8, h(K0,A) = 8+2n, h(K1,A) = 8+2n+1, h(K2,A) = 7,
h(K3,A) = 6, h({idA},A) = +∞. HencePh(A) = {n : n ≥ 5} ∪ {+∞}.
ComputingPh(O). By Theorem 3.1, it’s evident that4 ∈ Ph(O) ⊆ {n : n ≥ 4} ∪ {+∞}.
Forn ≥ 1 chooset1, . . . , tn ∈ (0, 1) with 1

2 = t1 < · · · , tn and let

HO := {f ∈ GO : f(P1) = P1}
J0 := {f ∈ GO : f < 0, t1 >=< 0, t1 >, . . . , f < 0, tn >=< 0, tn >}(⊆ HO)

J1 := {f ∈ J0 : f({< 0,
1
j

>: j ≥ 2} ∪ {< 0,
1
2
− 1

j
>: j ≥ 3}) =

{< 0,
1
j

>: j ≥ 2} ∪ {< 0,
1
2
− 1

j
>: j ≥ 3}}

J2 := {f ∈ GO : f({< 0,
1
2

>,< 1,
1
2

>}) = {< 0,
1
2

>,< 1,
1
2

>}}

J3 := {f ∈ GO : f({< i,
1
j

>: j ≥ 2, i = 0, 1} ∪ {< i, 1− 1
j

>: j ≥ 2, i = 0, 1}) =

{< i,
1
j

>: j ≥ 2, i = 0, 1} ∪ {< i, 1− 1
j

>: j ≥ 2, i = 0, 1}}

J4 := {f ∈ GO : f({1
2
} × (0, 1)) = {1

2
} × (0, 1)}

One can verifyh(HO,O) = 8, h(J0,O) = 8+2n, h(J1,O) = 8+2n+1, h(J2,O) = 6,
h(J3,A) = 5, h(J4,O) = 7, h({idO},O) = +∞. HencePh(A) = {n : n ≥ 4}∪{+∞}.
ComputingPh(U). By Theorem 3.1, it’s evident that1 ∈ Ph(U) ⊆ {n : n ≥ 1} ∪
{+∞}. For n ≥ 1 choose distinctx1, . . . , xn ∈ (0, 1) × (0, 1), soh({f ∈ GU : f(x1) =
x1, . . . , f(xn) = xn},U) = n + 1 andh({idU},U) = +∞ which completes the proof.¤
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