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Abstract.: In this paper, we study the oscillatory character of a general-
ized differential equation of ordet + « with o € (0,1]. Generalized
criteria of Kamenev type are obtained, which are extensions of several
known in the literature both integer and fractional.
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1. INTRODUCTION

In this paper we will consider the following generalized differential equation

N [p(t)g(Ngy)] + q(t) f(y(t) = R(t,y), (1. 1)

where the differential operata¥g, 0 < o < 1, will be defined later and the functions
considered satisfy € C([tg, ), (0,00)), ¢ € C([to, ), R, f € C(R,R) such that
yf(y) > 0fory # 0,9 € C(R,R) with (Ngy)g(Ngy) > 0for Ny # 0andR(t,y(t)) €
C([to, 50) R, R) satisfying L4 < o(t), y # 0 with s € C([to, 00), (0, 0)).

We will say that a solution of (1. 1), not zero, is called oscillatory if it cuts the axis
x = 0 infinitely, that is, if it has infinite zeros, for t large enough. If all its solutions of
equation (1. 1) are oscillatory, we will say that this equation is oscillatory.

The nonlinear fractional equations plays a crucial role in a wide variety of applied sci-
ences problems, in all these areas, the study of oscillating solutions, that is, the existence of
a certain “work regime of periodic, quasi-periodic or of variable sign but bounded, is of vi-
tal importance (the following works are illustrative [53, 42, 43, 5, 6]). It is noteworthy that,
in general, they are centered on equations with the classical “global” fractional derivatives
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(see [44] and the references cited there), and qualitative research is almost non-existent us-
ing local fractional derivatives (see [28], [29], [30] for attempts in this direction, although
the technigues used will be different from those used in this work).

The continuous extensions of various notions of derivatives in recent years, of non-
integer and / or variable order, are extensions of the classical differential equations, and
have different theoretical and applied fields. (cf. [4], [37], [36] and [19]). More than
five decades ago, intensified in recent years, that different researchers have been studying
various qualitative aspects of fractional equation solutions (local and global) (see [39], [40],
[10], [25], [53], [11], [16], [55], [38], [46], [2], [27], [54], [57], [24] and [7] and references
cited therein). However, we should note that, in general, little attention is paid to the study
of the oscillatory nature of the solutions, being one of the central properties in mathematical
modeling.

Although certain differential operators that are called local fractional derivatives have
appeared since the 1960s, it is not until in 2014 when a local derivative (conformable) was
formalized and in 2018 (non-conformable) with very good properties, what we highlight is
that all these operators can be considered as particular cases (including the ordinary classic)
of the following Definition of Generalized Derivative, as discussed below.

In [33] a generalized fractional derivative was defined in the following way (see also

[8)).

Definition 1.1. Let f : [0,+00) — R be a continuous function. The generalized N-
derivative off of order« is defined by

t F(t — f(t
£— e
forall ¢ > 0, a € (0,1) whereF(«a,t) is some function. Here we will use some cases
of F' defined in function oF, ;(.) the classic Definition of Mittag-Leffler function with
Re(a), Re(b) > 0. Also we consideE, ,(t~%)y, is the k-nth term o, ;(.).

If fis a—differentiable in som€0, «), and lim+N1€3f(t) exists, then defin® 2 f(0) =
t—0
11131+Ngf(t), note that iff is differentiable, thenVg f(t) = F(t,a) f'(t) wheref'(¢) is
t—
the ordinary derivative.

The original functionE,, 1 (z) = E.(z) was defined and studied by Mittag-Leffler in
the year1903, that is, a uniparameter function (see [14, 15]). It is a direct generalization
of the exponential function. Wiman proposed and studied a generalization of the role of
Mittag-Leffler, who we’ll call it the Mittag-Leffler function with two parametes, (=)
(see [3]), Agarwal inl953 and Humbert and Agarwal i953, also made contributions to
the final formalization of this function. Since then the applications of the Mittag-Leffler
Function in many areas of science and engineering have multiplied, which has caused the
study to have attracted the attention of many researchers, in [17] the authors present, in a
unified way, a detailed review of the Mittag-Leffler function, of generalized Mittag-Leffler
functions, of Mittag-Leffler type functions, their interesting and useful properties and most
of the publications dedicated to this function.

We consider the following examples:
I) F(t,a) = 1, in this case we have the ordinary derivative.
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i) F(t,a) = E11(t~%). In this case we obtain, from Definition 1.1, the derivative
N f(t) defined in [45] (see also [31]).

) F(t,a) = Bi1((1 — a)t) = e~ this kernel satisfies thaf(t,a) — 1 as
a— 1.

V) F(t,o) = Ey1(t17%), = t'=* with this kernel we havé”(t,a) — 0 asa — 1
(see [51)).

V)F(t,a) = Ey1(t7%), = t* with this kernel we have'(t,a) — t asa — 1 (see
[34]).

VI) F(t,o) = E11(t7%), = ¢t~ with this kernel we havé”(t,a) — t~! asa — 1
This is the derivativeVs' studied in [13].

Remark 1.2. After these clarifications, it is clear that if ifl. 1) we doF(t,«) = 1,
p=1,9(N°y) =y, q(t) = b(t) > 0, f(y) = |y’ with 3 # 1, 3 > 0and R = 0 we
obtain the classic Emden-Fowler equation

Y+ b(t)|yl” sgny = 0, 1.3)
called superlinear if3 > 1 and sublinear if5 < 1.

This equation was first studied by Emden and Fowller (see [49] and [47, 48], respectiv-
elly), you can consult for additional details about its qualitative properties in [22].

The Emden-Fowler equation (or Lane-Emden equation) appears in several problems in
mathematics and physics, and it has been investigated from various points of view. and
many different methods for its solution have been proposed; is of great importance in New-
tonian astrophysics and by introducing a set of new variables, this equation can be written
as an autonomous system of two ordinary differential equations that can be analyzed using
linear and nonlinear stability analysis. The Emden-Fowler equation also can be related to
the diffusion and reaction problem in a slab, and it can be considered a particular case of
the semilinear elliptic equatioAu + un = 0 with «(0) = 1 andw’(0) = 0 on the positive
real line, where the constant n is called the polytropic index.

For these and other reasons, this equation has been the subject of research in recent years
(see [50, 9, 41, 35, 52, 20, 56, 1]), as additional data Wong, in his review of 1975 ([22]),
contains over 100 references, although it does not cover all reported papers.

It is noted that research on the oscillation of solutions is very scarce, so this work comes
to fill this gap, not only in the classic case, but also in the generalized one. Hence the
importance of the results obtained, new in both the classical and generalized cases.

Now, we give the Definition of a general fractional integral (see [8] and [32]):

Definition 1.3. Leta € (0,1] and0 < u < v. We say that a functioh : [u,v] — R is
a-fractional integrable orfu, v}, if the integral

W) =y () = [ ' F’(‘t(tiy) i, (1. 4)

exists and is finite.
Remark 1.4. Taking into account the examples of kernels presented above, it is clear that

we will have different integral operators. To name just one casg|ifa) = 1 we will
have the classic Riemann integral.
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The following theorem is similar to a known result of classical calculus (see [32] and
[8]).
Theorem 1.5. Let f be N-differentiable function ir(ty, oo) with o € (0, 1]. Then for all
t > to we have
a) Iffis differentiabley,, J (Ngf(t)) = f(t) — f(to)-
b) N (ve i (1) = F(D).
As in the classic case, we have the well-known Integration by Parts property.

Theorem 1.6. (Integration by parts) Let: andv be N-differentiable function in(ty, co)
with « € (0, 1]. Then for allt > ¢, we have

Nediy (uNE)(#) = [uv(t) — uolto)] =~y Ji (WNFu)(E)) .- (1.5)

In this paper we will study the equation (1. 1) using a Riccati Transformation and then
formulate two general oscillation criteria of Kamenev type, whé) is allowed to take
negative values for sufficiently large values of t. For this we have divided the study into
two parts, first a particular case of the Equation (1. 1) is studied and in the second section
the general equation itself.

2. MAIN RESULTS

For the linear version of equation (1. 3), i.e. with= 1, Kamenev established a new
oscillation criterion using an integral average method (cf. [21]), which generalizes some
previous results, specifically states that if

I e
tlim sup—/ (t —s)" 'b(s)ds = +oo, (2. 6)

-1
tr to

forn > 2, then

y" +b(t)y =0,
is oscillatory. Based on that seminal result, we will focus our work.

2.1. A particular case. Instead of the (1. 1) consider the following particular case:

N [p(t)Npy] +q(t) f(y(t)) = R(t,y), 2.7
subject to the conditions stated above (WittNgy) = Ngy). For all of the above, it
is natural to ask under what conditions on the functions involved in (2. 7)) we can state a
condition similar to the condition of Kamenev (2. 6 ). Thus we have the following result.

Theorem 2.2. In addition to the conditions on the functions p, g, f and R, suppose that the
following conditions are satisfied

75lim inf NJ§ (@) =—-A>—00, A>0, (2.8)
_ 1 N e n—1)> 3
Jim sup L (-9 e U R (s a9 0 = 0, (2.9)
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then(2. 7)is oscillatory, withu(t) = q(t) — v(t).
Proof. Assume the contrary, then (2. 7)) has a nonoscillatory solutio)) which may be

assumed(t) # 0 for t > t,. Define the functions(t) = %ﬁy(’) then it follows from
(2.7) ‘

N&w 4+ M(t)w? +u(t) <0, t>t,

with M (t) = % Hence, multiplying the above inequality By — s)"~* and
integrate by parts (Theorem 2.5) to find

(n=1) NIt =9)""*F(s, a)w)(t) +
+ NI =) T MW () T (= 5)" T u)(8) < (8= to)" T w(to).
Completing the square, combining the first two terms of this inequality, we get

NIE VM (t - $) T w+ % (Ti/_Ml)F(&Oé)(t —5) 7T | (0)+
(n* 1)2 n—3

+ NIt = )" u = P(s ) (= 8)")(#) < (8 t0)" (o).

Note that the first integral of the left hand side of the previous inequality is nonnegative,
this allows us to obtain

(n—1)”
AM
Dividing by (¢ — #)" " and taking limit in both sides as— oo, we have that the left

hand side of (2. 10) tends to a finite limit, which produce the desired contradiction with
the requirement (2. 9). O

NIE((t—8)"Tu — F(s,a)?(t— )" ") (t) < (t —to)" "wlty). (2. 10)

Remark 2.3. Let us indicate that the result obtained is consistent with those reported in the
literature for the ordinary case, for example, if we use the keffgl o) = 1, R = 0, and
fly) = |y|ﬁsgny our equation(2. 7)is reduced to Emden-Fowler differential equation

(p(t)y") + b(t)|y|”sgny = 0, a general case ofl. 3), that is, Theorem 2.2 generalizes
the results obtained if23] for the equatiorn(1. 3).

Remark 2.4. The result obtained before, can be written in a more general way, if instead
of (t — to)" ! we use a general functioH (¢, ¢y) defined as follows.

So, if we use a continuous functidh : D = {(¢,s):t>s >t} — R satisfying
H(t,t) = 0fort > to, H(t,s) > 0fort > s > ¢, having a continuous and nonpositive
partial derivative onDy = {(t,s) : t > s > o} with respect to variable s. Moreover, let

h : Dy — R be a continuous function for which we have

0H

- () = h(t,s)\/H(t,s),

for all (t,s) € Dy. Thus we can state the following result, whose proof is very similar
and we leave it to the reader.
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Theorem 2.5. If we takeH (¢, s) and h(t, s) as before, then the equati¢®. 7 )is oscilla-
tory if in addition to(2. 8 )the condition, being(t) = ¢(t) — v(t)

tlirglo supﬁ N/ {H(t, s)u(s) — ﬁ(h(i, s)F(s,a))z} = 00, (2. 11)

is satisfied.

Remark 2.6. Another variant in the condition of Kamenev tyf2 9 ) is to use instead
of (t — to)"~! or the functionH (¢,t,) above, the product of functior{s — s)®s®, with
a € (1,00) andb € [0, 1). The formulation of this result would be as follows.

Theorem 2.7. The equatior{2. 7 )is oscillatory if the conditions

1
Jim sup— nJ5 (t— $)*stu(s)(t) = oo, (2. 12)

lim sup% Ny {[asF(s7 @) — b(t — s)F(s, )] (t — 5)“72‘9!’72}(75) <(20,13)

t—o0
are satisfied withu(t) = q(t) — v(¢).

Proof. Proceeding as in the previous proof, after defining w in the same way, integrating,
rearranging terms and dividing by the desired contradiction is obtained. O

2.8. A general case.Consider the equation (1. 1 ) under the condition that f, that is,
in this section we will study the equation

Nz [p(t) f(Ngy)] + a(t) f(y(t) = R(t,y). (2. 14)
Let us observe as before thapifs 1, f and g are the identity functions ad= 1, this
equation is reduced to the linear equation of the second order.
Our main result is as follows.
Theorem 2.9. If in addition to the considerations on the functions p, q, f1 R f(lj\;iyy)

for Ngy # 0 and(2. 8 ), suppose the following assumptions are fulfilled

(n—1)?
4M
then(2. 14 )is oscillatory, biengu(t) = ¢(t) — v(t).

n—3

NIt —8)"Tu— F(s,a)?(t —s)

lim sup——- )(t) = 00, (2.15)
t—00 tn 1

Proof. As before, we assume the contrary, i.e. the (2. 14) has a nonoscillatory solution
y(t), which without loss of generality, we can assume &} > 0 for ¢t > ¢,. Define the

functionw(t) = ZOLNE) this and (2. 14 ) imply

Niy
f(Ngy)
with M (t) = %. Now we have to consider two cases:
1) Ngy # 0. If we work as in the Theorem 2.2, we get easily

Ngw + M(t) ( ) w? +u(t) <0, t>to, (2. 16)
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o 77,;1 1 (n — 1) 71;3
NI VM (t—5) T w+ CRVIT: F(s,a)(t—s) (t) +
(n—1)°

SR (O LTI F(s,a)%(t —3)"")(t) <

AM
< (t—to)" " w(to).

From here we reached the contradiction necessary to prove this case.

2) N2y is oscillatory. Hencg (N2y) it is also oscillatory. Then, there exists an infinite
sequence,, such thatt,, — co, n — oo andf(Ngy(t,)) = 0. So, from (2. 16) we
have

o n—i 1(n-1) n=s
NG [VM(E=5) T w5 77 Pt =97 () +
(’fL - 1)2 n—3

+ NIt =) e —
< (t—to)" " wlto).

We must point out that the singularity of the first two integral$,jrhas no impact on
the oscillation of the solutions, since the oscillation is a qualitative property to infinity, so
the result remains true, taking into account the boundary of the right member. Thus we
complete the proof of the theorem. O

Remark 2.10. As we indicated before, our results are not contradictory with the ordinary
case. Thus, in the case that= 1, f(z) = g(z) = |z’ >z withp > 1 andR = 0, we
obtain Theorem 2 of18]. It is clear that Corollaries 3 and 4 of this work are still valid.
Obviously in this case, the proof is much simpler.

Remark 2.11. Without much difficulty, results equivalent to Theorems 2.5 and 2.7 of the
previous section can be stated.

Remark 2.12. Our results complete those obtained2®] for the equationVg (p(t) Ngy)+
b(t)y = 0, a particular case of(1. 1 )with g(z) = f(z) = z, R = 0 and the kernel Ill)
F(t,a) =t

Remark 2.13. Finally, we must point out that in the case of considering different kernels,
not only the cases Il) -VI) presented at the beginning of the work, the results obtained have
not been reported in the literature.

3. CONCLUSION

In this work we obtained, through a Riccati transformation, generalized oscillation cri-
teria that contain as particular cases several reported in the literature, both integer and
fractional.

In [12] the authors study the existence of oscillatory solutions of certain conformable
fractional equations with damping, it is clear that using the Definition 1.1 and a method



104 J. E. Napoles and M. N. Quevedo

similar to that presented in this work, we can draw conclusions on the oscillatory nature of
the solutions of the generalized differential equation

NE [pOF(NZy)| + aOg(t.y(®) = Rit.y), 0<a,8<1,

a result of undoubted value.

On the other hand, it is noteworthy that in this way we can directly study the oscillatory
nature of generalized differential equations, without the need to use a geometric transfor-
mation to reduce it to an ordinary differential equation, a matter that in the case of fractional
differential equations with global derivatives, classic, it is not possible because there is no
Chain Rule.
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