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Abstract. A simple analytical approach is used to solve nonlinear problem
forming in the phenomenon of Jeffery-Hamel Flow. The suggested tech-
nique consists of a homotopy with an embedding parameter, Daftardar-
Gejji and Jafari polynomials (DJPs) and auxiliary functions. It has also
some constants, used for controlling the convergence of the solution. The
suggested technique is named Modified Optimal Homotopy Perturbation
Method (MOHPM). The method is simple but effective and the results
gained by this are in good agreement with numerical outcomes. The
achieved results are compared with the results gained by Homotopy as-
ymptotic method (HAM), Optimal homotopy asymptotic method (OHAM),
Homotopy perturbation method (HPM), Modified Homotopy Perturbation
Method (MHPM), Adomain decomposition method (ADM) and Differen-
tial transform method (DTM) to authenticate the code.
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Daftardar-Gejji and Jafari Polynomials, Least Square Method.

1. INTRODUCTION

The flow in converging and diverging channel has a significant role in engineering and
industries. This flow is applicable in fluid mechanics, civil, environmental, mechanical
and bio mechanical engineering. The applications of the flow are; pressure driven trans-
port of particles through a symmetric converging and diverging channel, heat transfer of
heat exchangers for milk flowing and many others as in [1,2]. In various fields of science
and engineering, nonlinear equations, as well as their analytic and numerical solutions are
fundamentally important. The eminent Jeffery-Hamel problem between the non-parallel
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walls has investigated by Jeffery [3] and Hamel [4] for the first time. This type of work can
also be seen in [5]. The Jeffery-Hamel flow problem has been solved by numerical meth-
ods as well as analytical methods like; Homotopy Perturbation Method (HPM), Differential
Transform Method (DTM), Homotopy Analysis Method (HAM), Adomain Decomposition
Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). Joneidi et al. [6]
and Smaeilpour et al [7] also investigate the phenomenon of Jeffery-Hamel flow by using
analytical methods such as HAM, HPM, DTM and OHAM. Such type of research is found
in [8-10]. Here in our research we have used an analytical approach MOHPM to investigate
the Jeffery-Hamel flow problem. It consists of auxiliary convergence control parameters,
initial guess, least square method and auxiliary function. The effectiveness of the applied
technique depends upon construction and determination of the auxiliary functions com-
bined with a suitable technique to optimally control the convergence of the solution. In this
method, a nonlinear term is expanded in terms of Daftardar-Gejji and Jafari polynomials
[11,12] instead of normal expansion due to which produces more accurate and reliable re-
sults than the other analytical techniques. The relevant work can be seen in [13-19]. The
same work is also found in [20-22]. It can be observed from the solved nonlinear equation
of governing Jeffery hamel flow in section 5 that MOHPM is better for different problems
in the fluids. It consists of few steps and solves difficult problem in a simple way with
more accuracy. The suggested method may be used for the solution of ODEs, IDEs and
their system forming in different physical phenomena. The manuscript has seven sections
given below. Section 1 consists of introduction while section 2 is devoted to the statement
of the model and its mathematical formulation. The explanation about daftardar-Gejji and
Jafari polynomials as well as convergence are studied in section 3. Section 4 contains the
introduction of MOHPM. Section 5 is devoted to the application of MOHPM to investigate
Jeffery-Hamel flow. In section 6, the results are shown in the form of figures and tables. In
section 7 some conclusions are mentioned to facilitate the readers.

2. STATEMENT OF THE MODEL AND ITS MATHEMATICAL FORMULATION :

Assume a two-dimensional flow of an incompressible conducting viscous fluid between
two rigid plane walls with an angle±α, which is steady and fully developed, as illustrated
in Figure-1. The channel walls are supposed to be convergent ifα is less than0 and diver-
gent ifα is greater than0. The velocity depends uponr andθ and is taken along the radial
direction only explained in [6,7,10].

Now the equation of continuity and Navier- Stokes equations in polar coordinates given
as,

ρ

r

∂

∂r
(r U(r, θ)) = 0, (2. 1)

U(r, θ) ∂ U(r,θ)
∂r = − 1

ρ
∂p
∂r + ν[∂2U(r,θ)

∂r2 + 1
r

∂U(r,θ)
∂r

+ 1
r2

∂2U(r,θ)
∂θ2 − U(r,θ)

r2 ], (2. 2)

− 1
ρr

∂p

∂θ
+

2ν

r2

∂U(r, θ)
∂θ

= 0, (2. 3)
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whereν the kinematic viscosity,p the pressure,ρ is the fluid density. Use Eq.( 2. 1 ), we
obtained:

g(θ) = r U(r, θ), (2. 4)

µ(x) =
g(θ)
gmax

, x =
θ

α
. (2. 5)

Now using Eq.( 2. 5 ) in Eq.( 2. 2 ) and Eq.( 2. 3 ) to get:

µ′′′ + 2α Reµµ′ + 4 α2µ′ = 0, (2. 6)

With boundary conditions

µ(0) = 1, µ′(0) = 0, µ(1) = 0. (2. 7)

. Where the velocityUmax is maximum at centre of the channel.α < 0 , Umax < 0 is taken
for convergent channel while for divergent channelα > 0 , Umax > 0. Re = α gmax

v =
Umaxr α shows Reynolds number.

TABLE 1. Nomenclature

Symbols Defined as Symbols Defined as

U(r, θ) Radial Velocity v Coefficient of kinematic viscosity
p The pressure ρ Fluid density(kgm−3)
α < 0 , Umax < 0 is taken for convergent channel α > 0 , Umax > 0 for divergent channel
Re= α gmax

v = Umaxr α shows Reynolds number α Channel angle
` embedding parameter r, θ Radial and Angular coordinates
µ, g Similarity functions c0, c1, . . . Similarity constants
L Linear N Nonlinear
Umax Maximum velocity at centre of the channel

3. EXPLANATION OF THE POLYNOMIALS USED IN OHPM AND MOHPM
(DAFTARDAR-GEJJI AND JAFARI POLNOMIALS (DJPS))

3.1. Explanation about the polynomials of OHPM and MOHPM:. Suppose we have a
nonlinear termN(µ) = µ2 in a functional equation such that

µ = µ0 + `µ1 + `2µ2 + `3µ3

. If this function is expanded in taylor series aboutµ0 and considered̀ = 1 then we have:

N(µ) = µ2 = (µ0 + µ1 + µ2 + µ3)2

= µ2
0︸︷︷︸ +(µ2

1 + 2µ0µ1)︸ ︷︷ ︸ +(µ2
2 + 2µ0µ2 + 2µ1µ2)︸ ︷︷ ︸

+ (2µ0µ3 + 2µ1µ3 + 2µ2µ3 + µ2
3)︸ ︷︷ ︸

(3. 8)
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Relating to the power of̀, the OHPM built-in polynomials for this nonlinear term are:

N0(µ0) = µ2
0︸︷︷︸,

N1(µ0, µ1) = 2µ0µ1︸ ︷︷ ︸,

N2(µ0, µ1, µ2) = µ2
1 + 2µ0µ2︸ ︷︷ ︸,

N3(µ0, µ1, µ2, µ3) = 2µ1µ2 + 2µ0µ3︸ ︷︷ ︸ .

(3. 9)

We notice that these polynomials took only six terms of the series while the seriesEq.(3.8)
is consisting of ten terms. Relating to the power of`, the polynomials in MOHPM for this
nonlinear term are:

N0(µ0) = µ2
0︸︷︷︸,

N1(µ0, µ1) = µ2
1 + 2µ0µ1︸ ︷︷ ︸,

N2(µ0, µ1, µ2) = µ2
2 + 2µ0µ2 + 2µ1µ2︸ ︷︷ ︸,

N3(µ0, µ1, µ2, µ3) = 2µ0µ3 + 2µ1µ3 + 2µ2µ3 + µ2
3︸ ︷︷ ︸,

(3. 10)

From the above we notice that these polynomials took all the terms of the expansion
Eq.(3.8). It clearly indicates the superiority of MOHPM-polynomials (Daftardar-Gejji
and Jafari Polynomials) over the OHPM-polynomials.

3.2. Convergence.Here our mean is to find the condition for the convergence of DJPs
used in the method: The nonlinear functionN(µ) is written in the following form,

N(µ) = N(µ0) + [N(µ0 + µ1)−N(µ0)] +
[N(µ0 + µ1 + µ2)−N(µ0 + µ1)] + . . . (3. 11)

Let G0 = N(µ0) and

Gn = N(
n∑

i=0

µi)−N(
n−1∑

i=0

µi), (3. 12)

for n = 1, 2, . . . thereforeN(µ) =
∑∞

i=0 Gi . Also by the use of taylors theorem given
below,

Taylor’s Theorem. Suppose thatµ ∈ Cn(u), whereu is an open subset ofX (Banach
space) containing the line segment fromx0 to h, then

N(x0 + h) = N(x0) + N ′(x0)h + N ′′(x0)
(h2)
2! + . . . + N (n−1)(x0)

(h(n−1))
(n−1)!

=
∑n

k=0 N (k)(x0)hk

k! + q(x), (3. 13)

whereq(x) is such that‖q(x)‖ = O‖x‖n

andN (k)(x) is symmetric.
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We get as:

G1 = N(µ0 + µ1)−N(µ0) = N(µ0) + N ′(µ0)µ1 + N ′′(µ0)
µ2

1
2! + . . .−N(µ0)

=
∑∞

k=1 N (k)(µ0)
µk

1
k! , (3. 14)

G2 = N(µ0 + µ1 + µ2)−N(µ0 + µ1) =

N(µ0) + N ′(µ0)µ1 + N ′′(µ0)
µ2

1
2! + . . .−N(µ0)

=
∑∞

j=1 N (j)(µ0 + µ1)
µj

2
j!

=
∑∞

j=1[
∑∞

i=0 N (i+j)(µ0)
µi

1
i! ]µj

2
j! , (3. 15)

G3 =
∞∑

i3=1

∞∑

i2=0

∞∑

i1=0

N (i1+i2+i3)(µ0)
µi3

3

i3!
µi2

2

i2!
µi1

1

i1!
, (3. 16)

In general,

Gn =
∞∑

in=1

∞∑

in−1=0

. . .

∞∑

i1=0

[N (
Pn

k=1 ik)(µ0)
n∏

j=1

µ
ij

j

ij !
] (3. 17)

3.3. Theorem: If N is C∞ in a neighbourhood ofµ0 and

‖Nn(µ0)‖ = SupNn(µ0)(~1, . . . ~n) : ‖~‖i ≤ 1, 1 ≤ i ≤ n ≤ R, (3. 18)

for anyn and some realR > 0 and‖µi‖ ≤ M < 1
e , the series

∑∞
n=0 Gn is absolutely

convergent,i = 1, 2, 3, . . . ,. Moreover

‖Gn‖ ≤ LMnen−1(e− 1), forn = 1, 2, . . . (3. 19)

Proof: Consider Eq.( 3. 17 )

‖Gn‖ ≤ RMn
∑∞

in=1

∑∞
in−1=0

. . .
∑∞

i1=0
[N (

Pn
k=1 ik)(µ0)(

∏n
i1=1

1
ij !

)] =

RMnen−1(e− 1), n = 1, 2, 3, . . . . (3. 20)

Thus by the convergent series‖∑∞
n=1 Gn‖ is dominated,RM(e− 1)

∑∞
n=1(Me )n−1

whereM ≺ 1
e . Hence by the comparison test

∑∞
n=1 ‖Gn‖ is absolutely convergent. Now

to present the boundedness of all‖µi‖ , for all i , we have to prove the following theorem.

3.4. Theorem: WhenN is C∞ and‖Nn(µ0)‖ ≤ M ≤ e−1 , for all n , then the series∑∞
n=0 Gn is absolutely convergent.

Proof: Let the relation

ςn = ς0 exp(ςn−1) (3. 21)

for n = 1, 2, . . . .
whereς0 = M. Let κn = ςn−ςn−1 . Usingµn = Gn−1 andGn =

∑∞
in=1

∑∞
in−1=0

. . .
∑∞

i1=0
[N (

Pn
k=1 ik)(µ0)

∏n
j=1

µij
j

ij !
] we get as :
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‖Gn‖ ≤ κn, n = 1, 2, . . . . (3. 22)

Let

ωn =
n∑

i=1

κi = ςn − ς0 (3. 23)

. Note thatς0 = e−1 > 0, ς1 = ς0 exp(ς0) > ς0 andς2 = ς0 exp(ς1) = ς1 . Generally,
ςn > ςn−1 > 0,

Therefore,
∑

κn is a series of+ ive real numbers. Note that:

0 < ς0 = M = e−1 < 1,

0 < ς1 = ς0 exp(ς0) < ς0 e1 = e−1e1 = 1,

0 < ς2 = ς0 exp(ς1) < ς0 e1 = e−1e1 = 1. (3. 24)

Generally,0 < ςn < 1 . So,ωn = ςn − ς0 < 1 which proves that{ωn}∞n=1 is bounded
above by1 , and hence convergent. Therefore by comparison test

∑
Gn is absolutely

convergent.

4. INTRODUCTION OFMOHPM

Consider the problem:

L(µ(x)) + N(µ(x)) + G(x) = 0, x ∈ Ω (4. 25)

,

β

(
µ(x),

∂µ(x)
∂x

)
= 0, x ∈ T, (4. 26)

whereL denotes linear operator whileN nonlinear.G(x) is a given function . Construct a
homotopy,ω(x, `) : Ω× [0, 1] → R , by

H(ω, `) = (1− `)[L(ω(x, `))− L(uini(x))] +
`[L(ω(x, `)) + N(ω(x, `) + G(x))] = 0. (4. 27)

Where,` ∈ [0, 1] and presents an embedding parameter,ω(x, `) is an unknown function
anduini(x) is an initial approximation for the solution of Eq.( 4. 25 , which satisfies the
BCs. Clearly, wheǹ = 0 and` = 1 Eq.( 4. 27 ) holds and takes the forms as:

H(ω, 0) = L(ω(x, 0))− L(uini(x)) = 0, (4. 28)

H(ω, 1) = L(ω(x, 1)) + N(ω(x, 1)) + G(x) = 0. (4. 29)

The pathsL(ω(x, 0))−L(µini(x)) andL(ω(x, 1))+N(ω(x, 1))+G(x) are homotopic to
each other. For the solution of Eq.( 4. 28 ) and Eq.( 4. 29 ) assume the perturbation series:

ω(x, `) = µ0(x) + `µ1(x) + `2µ2(x) + .... (4. 30)
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When` = 0, thenω(x, 0) = µ0(x) and wheǹ = 1, thenω(x, 1) = µ̄(x) = µ0(x) +
µ1(x) + µ2(x) + ..., which is the essence of He,s HPM.
Now for MOHPM, the nonlinear functionN(ω(x, `)) is decomposed as:

N(ω(x, `)) = N(µ0) + ` [N(µ0 + µ1)−N(µ0)] +
`2 [N(µ0 + µ1 + µ2)−N(µ0 + µ1)] + ..., (4. 31)

The expressionsN(µ0), [N(µ0 + µ1)−N(µ0)], [N(µ0 + µ1 + µ2)−N(µ0 + µ1)], ...on
the right hand side in equation Eq.( 4. 31 )

are Daftardar-Jafari polynomials [11,12]. For simplicity and convenience, these poly-
nomials are expressed as:

N0 = N(µ0), Nm = N (
∑m

i=0 µi)−N
(∑m−1

i=0 µi

)
.

We can now express

N(ω(x, `)) = N0 +
∞∑

k=1

`k Nk (4. 32)

Substituting back, equation Eq.( 4. 32 ) for equation Eq.( 4. 27 ), also by introduc-
ing a number of unknown auxiliary functions,γ0(x, ci), γ1(x, cj), γ2(x, cl), for i, j, l =
0, 1, 2, 3, . . . that depend on the variablex and some constantsc0, c1, c2, . . . , we get a new
homotopy as:

H(ω, `) = (1− `)[L(ω(x, `))− L(uini(x))] +
`[L(ω(x, `)) + γ0(x, ci)N0 + γ1(x, cj) `N1 + `2γ2(x, cl)N2 + · · ·+ G(x))]

= 0. (4. 33)

Now, comparing the coefficients of similar powers of` in Eq.( 4. 33 ), we get linear dif-
ferential equations of zeroth order, first order, second order and so on, which can be solved
very easily.

Zeroth order problem:

L(µ0(x)) = L(µini(x)), β

(
µ0(x),

dµ0(x)
dx

)
= 0. (4. 34)

First order problem:

L(µ1(x)) + γ0(x, ci)(N0) + G(x) = 0, β

(
µ1(x),

dµ1(x)
dx

)
= 0 . (4. 35)

Second order problem:

L(µ2(x)) + γ1(x, cj)(N1) = 0, β

(
µ2(x),

dµ2(x)
dx

)
= 0. (4. 36)

Third order problem:

L(µ3(x)) + γ2(x, cl)(N2) = 0, β

(
µ3(x),

dµ3(x)
dx

)
= 0. (4. 37)

... whereγ0(x, ci), γ1(x, cj), γ2(x, cl), . . . for i, j, l = 0, 1, 2, 3, . . ., are not unique and
can be chosen as the same form of nonlinear operatorN [15]. We can make higher order
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problems but solutions up to the third order problems are enough to get more accurate
results.

Let µ̄(x) be themth order approximate solution then

µ̄(x) = µ0(x) + µ1(x) + µ2(x) + µ3(x) + . . . + µm(x). (4. 38)

This depends upon the auxiliary functionsγ0(x, ci), γ1(x, cj), γ2(x, cl), . . . for i, j, l =
0, 1, 2, 3, . . .. The constantsc0, c1, c2, . . . which are present in the expressions of auxiliary
functions can be determined by different methods such as the Galerkins method, Colloca-
tion method and the least square method. The residual is achieved by puttingµ̄(x) in Eq.(
4. 25 ):

R(x, c0, c1, c2, . . .) = L(µ̄(x, c0, c1, c2, . . .)) + N(µ̄(x, c0, c1, c2, . . .)) + G(x). (4. 39)

If R = 0, then the solution will be exact. Other wise, it is minimized by different
methods mentioned in [14,15]. The values ofc0, c1, c2, . . . can be calculated by various
techniques mentioned above. Here least square method is used for this purpose as given
bellow: Defined the function as:

ζ(c0, c1, c2, . . .) =

b∫

a

(R(x, c0, c1, c2, . . .)2)dx (4. 40)

and then minimizing it, we have:

∂ζ

∂c0
=

∂ζ

∂c1
=

∂ζ

∂c2
= 0 · · · (4. 41)

In Galerekins method, the following system is used for finding the auxiliary constants as:

b∫

a

R
∂µ̄(x)
∂c0

dx = 0,

b∫

a

R
∂µ̄(x)
∂c1

dx = 0,

b∫

a

R
∂µ̄(x)
∂c2

dx = 0, . . . (4. 42)

5. APPLICATION OFMOHPM TO INVESTIGATE JEFFERYHAMEL FLOW

Let,

L( ω(x, `)) =
∂3(ω(x, `))

∂x3
, L(µini(x)) = 0 (5. 43)

N(ω(x, `)) = 2 αRe ω(x, `)
∂(ω(x, `))

∂x
+ 4 α2 ∂(ω(x, `))

∂x
, (5. 44)

and boundary conditions are

ω(0, `) = 1,
∂(ω(0, `))

∂x
= 0, ω(1, `) = 0 (5. 45)

Using Eq.( 4. 33 )we get from Eq.( 4. 34 )
Zeroth order problem:

L(µ0(x)) + L(µini(x)) = 0, β(µ0(x)) = 0, (5. 46)
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∂3(µ0(x))
∂x3

= 0, µ0(0) = 1 , µ′0(0) = 0 , µ0(1) = 0, (5. 47)

We obtained

µ0(x) = 1− x2. (5. 48)

Putting,γ0(x, ci) = c1 + c2x + c3x
2 + c4x

3 in Eq.( 4. 35 ), we obtained
First order problem:

4α2c1µ
′
0(x) + 4α2x c2µ

′
0(x) + 4α2x2c3µ

′
0(x) + 4α2x3c4µ

′
0(x) +

2αRec1µ0xµ′0(x) + 2αRex c2µ0xµ′0(x) + 2αRex2c3µ0(x)µ′0(x)
+2αRex3c4µ0(x)µ′0(x) + µ3

1(x) = 0 , µ1(0) = 0, µ′1(0) = 0, µ1(1) = 0. (5. 49)

Its solution is:

µ1(x) = 1
1260 (−420α2x2c1 − 168αRex2c1 +

420α2x4c1 + 210αRex4c1 − 42αRex6c1

−168α2x2c2 − 60αRex2c2 + 168α2x5c2 +
84αRex5c2 − 24αRex7c2 − 84α2x2c3 − Rex6c1 −
27αRex2c3 + 84α2x6c3 + 42αRex6c3 − 15αRex8c3

−48α2x2c4 − 14αRex2c4 + 48α2x7c4 +
24αRex7c4 − 10αRex9c4) (5. 50)

Now, putting the values ofµ0(x) , µ1(x) in Eq.( 4. 38 ), We obtained the 1st order
approximate solution:

µ̄(x) = 1 + 1
6x4(2α2c1 + αRec1) + 1

15x5(2α2c2 + αRec2)−
1
84αRex8c3 + 1

30x6(−αRec1 + 2α2c3 + αRec3)− 1
126αRex9c4 +

x2(−1260−420α2c1−168αRec1−168α2c2−60αRec2−84α2c3−27αRec3−48α2c4−14αRec4)
1260

+ 2
105x7(−αRec2 + 2α2c4 + αRec4). (5. 51)

Now, applying the Least square method: Eq.( 4. 40 ), Eq.( 4. 41 ), we obtained
c1 = 0.37221496329045584, c2 = 0.36317546662571465, c3 = −0.35469830635505323, c4 =

2.4238340045161983, for, α = −5◦, Re= 80.
So, the 1st order approximate solution is:

µ̄(x) = 1− 0.39967340538381296x2 − 0.4321469159595225x4 −
0.16866077222370218x5 + 0.16898032028521215x6 −
0.2733179694321173x7 − 0.029479301414967643x8 +

0.13429804412891036x9. (5. 52)

Now, applying the Least square method: Eq.( 4. 40 ), Eq.( 4. 41 ), we obtained
c1 = 1.8253284184260292, c2 = −0.4706368493812372, c3 = −3.3075346177317275, c4 =

2.3204912912600206, for, α = 5◦, Re= 50.
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So, the 1st order approximate solution is:

µ̄(x) = 1− 1.7705541863794897x2 + 1.332049841598825x4 −
0.13738059065763727x5 − 0.748223888059061x6 +

0.23264642053911208x7 + 0.17180764643782936x8 −
0.08035756606417079x9. (5. 53)

FIGURE 1. Dotted curve-sol: (MOHPM Eq.( 5. 52 )) forα =
−5◦, Re= 80, and solid curve-sol: (Numerical Method)

FIGURE 2. Dotted curve-sol: (MOHPM Eq.( 5. 53 )) forα = 5◦, Re=
50, and solid curve-sol: (Numerical Method)
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TABLE 2. Shows the comparisons of the results obtained by MOHPM
Eq.( 5. 52 ) with the obtained results of HAM [6], DTM [6], HPM [6],
MHPM [10] for α = −5◦, Re = 80, and E∗= (Numerical values-
MOHPM).

x HAM [6] DTM [6] HPM [6] MHPM [10] MOHPM Eq.( 5. 52 ) Num: results E∗MOHPM

0. 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 0.0
0.1 0.9995960242 0.9959603887 0.9960671874 0.9962165196 0.9959580613 0.99596062782.1× 10−6

0.2 0.9832755258 0.9832745481 0.9836959424 0.9843230775 0.9832749668 0.98327553835.7× 10−7

0.3 0.9601798911 0.9601775551 0.9610758773 0.9625668179 0.9601832790 0.96017991139−3.4× 10−6

0.4 0.9235215737 0.9235170706 0.9249245156 0.9276517677 0.9235224328 0.9235215894−8.4× 10−7

0.5 0.8684588997 0.8684511349 0.8701997697 0.8743082951 0.8684539854 0.868458877724.9× 10−6

0.6 0.7880910186 0.7880785402 0.7898325937 0.7949430464 0.7880873398 0.788090920323.6× 10−6

0.7 0.6731437690 0.673248448 0.6745334968 0.6795990006 0.6731468393 0.6731436346−2.5× 10−6

0.8 0.51199099937 0.5119644061 0.51283730959 0.5164879998 0.5119924986 0.5119910891−1.4× 10−6

0.9 0.2915580178 0.2915280122 0.2918936991 0.2933661078 0.2915563248 0.291558742612.4× 10−6

1. -0.000001149 0 0 0.0000000005 0 0 0
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FIGURE 3. Geometry of the model.

TABLE 3. Shows the comparisons of the results obtained by MOHPM
Eq.( 5. 52 ) with the obtained results of OHAM [7] forα = 5◦, Re= 50,

x OHAM [7] MOHPM Eq.( 5. 52 ) Num. values E∗MOHPM

0. 1.00000000 1.00000000 1.000000000 0.0
0.1 0.98251809 0.982425689 0.982431245.6× 10−6

0.2 0.93156589 0.931221133 0.931225964.8× 10−6

0.3 0.85138155 0.850622116 0.85061062−1.1× 10−5

0.4 0.74826040 0.746814973 0.74823445−2.4× 10−5

0.5 0.62953865 0.626965232 0.62694817−1.7× 10−5

0.6 0.50242894 0.498235240 0.49823445−7.9× 10−7

0.7 0.37293383 0.366963390 0.366966342.9× 10−6

0.8 0.24508198 0.238130168 0.23812375−6.4× 10−6

0.9 0.12071562 0.115159727 0.11515193−7.8× 10−6

1. 0. 0 0 0
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5.1. Figures and Tables.

6. CONCLUSIONS

In this endeavor a modified analytical method has been used to solve nonlinear equation
forming in the phenomenon of Jeffery-Hamel flow and compared the results with other
methods to authenticate the code. The proposed procedure is valid even if the nonlinear
equation does not contain any small or large parameters. MOHPM provides a simple and
rigorous way to control and adjust the convergence of the solution through the auxiliary
functions involving several constants which are optimally calculated. Actually the capital
strength of the proposed procedure is its fast convergence, since after only two iterations it
converges to the exact solution, which proves that this method is very effective in practice.
Here the code is authenticated by comparing the achieved analytic solutions with the solu-
tions obtained via numerical simulations or other known procedures.
From the results presented above, we can conclude the following.
1)The velocityUmax is maximum at centre of the channel.
2) α < 0 , Umax < 0 is taken for convergent channel while for divergent channelα >
0 , Umax > 0.
3) The use of DJMs in the expansion of nonlinear term increases the accuracy.
4) The optimal convergence control parameters in the auxiliary function have great influ-
ence on the solution and so the accuracy increases with the increase of parameters.
5) The achieved results are compared with various techniques given in the tables.
6) The results obtained by MOHPM have also good concurrence with the results obtained
numerically.
7) The suggested method can solve all linear and nonlinear problems of any order and their
systems.
8) The proposed technique can be used to solve PDEs, IDEs and Their systems.
9) Increase in the value of Reynolds number is directly proportional to velocity
10) Figure 1 shows the geometry of the flow.
11) Nomenclature is given in Table 1.
12) The obtained results and numerical results are compared in Figure-2, figure-3, Table-2
and Table-3.
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