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Abstract. A new regression M-estimator namely modified least squares
(MLS) in the class of M-estimators is presented in this study. The pro-
posed estimator overcomes the non-robustness property associated with
traditional approach of the least square (LS) estimator. The effective-
ness of the loss function used for proposed estimator has been compared
with that of commonly implemented approach of the LS estimator. The
influence and weight functions have been derived to analyze the robust-
ness of the proposed estimator against the polluted measurements. Real
data examples in statistical applications have been used to analyze the
effectiveness of proposed estimator. The empirical results from real appli-
cations also confirm that MLS estimator substantially enhances the non-
robustness property of the LS estimator.
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1. INTRODUCTION

Regression analysis is one of the primary statistical techniques which is currently be-
ing applied extensively across many discipline areas for data analysis. The method of
the LS is a root for most of the regression analysis used for estimating the model para-
meters [11, 12]. The procedure of the LS in many senses is an optimal under specific
assumptions of error terms having a Gaussian distribution in a regression model [13].These
assumptions are however, rarely satisfied in full when applying this analysis technique in
real world situations but, they are usually taken as a best approximations to reality. The
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results for many non-Gaussians situations using the LS approach are markedly outlying
from optimal and proving inefficiency specially, in the presence of contaminated values in
the data [2]. These contaminated observations can be added from different sources such
as measuring equipment failure, improper calibration, mistakes in observing data and so
on [14].The occurrence of corrupted measurements obviously depends upon the quality of
data but Huber [9] pointed out the prevalence of the corrupted measurements even in data
which are collected in a highly careful manner. Hampel [6] emphasized that 5-10% gross
errors in high quality samples (such as in geodesy and astronomy) comprising of thousands
of measurements is not an exception rather, seem to be the rule. These errors are not always
detectable so one initially cleans up the measurements, making it unlikely to fit a perfect
model; robust methods should be devised. Statisticians in midst of the 20th century have
become acutely aware about the fact that commonly used statistical methods specifically
those involving normality assumptions, are not being very insensitive to smaller deviations
from the assumptions taken [3]. The reaction of this probably resulted in robust procedures.
Many classes of robust methods have been developed so far, however, details of some of
commonly used techniques in context of regression analysis can be seen in [15, 16]. One
of the important classes of robust estimators which are rooted on the principle of maxi-
mum likelihood approach are known as M-estimators. Such estimators can be primarily
embodied in two categories, Hubers and Hampel estimators. The effect of outlying val-
ues is reduced by the former whereas the latter are used to nullify their effect. This effect
of M-estimators against the offset values are usually evaluated in terms of their influence
functions [1]. While larger errors are basically not rejected by Huber estimators however,
their influence is bounded whereas the influence function for a Hampel estimators becomes
zero for distorted values [17].

This work is concerned with development of a new regression M-estimator which is suffi-
ciently to address the gross errors commonly occurring in data used for regression analysis.
This new estimator has a bounded influence and yields estimates for unknown regression
parameters as excellent as those that resulted by traditional approach of the LS when no
contaminated value is present in data. The proposed MLS estimator was tested on variety
of examples taken from relevant literature on robust regression applications.

The reminder of this work is established in the following sections as these lines: Section 2
includes the methodology of the M-estimators. The proposed estimator of MLS approach
is established with its properties in Section 3. Section 4 presents a relative performance
of proposed estimator with LS estimator and other conventional estimators using examples
from relevant literature. Section 5 contains the application of MLS estimator in real world
problem of SE of power system. Eventually, the summary of the work is highlighted in
Section 6.

2. M-ESTIMATORS

The innovative idea of M-estimators in context of regression parameters was first in-
troduced by Huber [8]. These estimators utilize the approach of ML in formulations pro-
viding optimal weights to data values under non-normal environments. The approach of
M-estimator is actually a generalization of most commonly used criterion of the LS by



A New Modification of the Least Squares Method with Real Life Applications 3

substituting the quadratic objective function; with the following less rapidly growing func-
tion ρ (ε̂i) of residuals:

min
bβ

n∑

i=1

ρ (ε̂i) (2. 1)

where the chosen functionρ (ε̂i) holds at least the properties of symmetric, non-negative,
and increasing monotonically in either direction ofε̂i and having unique minimum at zero.
In respect to other regression robust estimators, the approach of M-estimators is theoret-
ically and computationally simplified [18]. Despite of non-robustness of M-estimators
against the leverage points, they are remained extensively employed in regression appli-
cations where it assumes that corrupted measurements are mainly in direction of response
variable. Obviously, selection of an appropriate form of objective function should be found
on information about the actual errors behaviour which is generally not known in advance.
Thereby, the function is chosen instead with the view of how the resulting approach re-
duces the effects of larger residuals by assigning less weight to them. The workout of this
approach can be helpful to detect the outliers which can be identified as values acquiring
zero weights in the estimation procedure [5]. Instead of minimizing (2. 1 ) with respect to
unknown parameterβ, the following expression is usually used due to scale invariant issue
of the M-estimators [10].

min
bβ

n∑

i=1

ρ

(
ε̂i

σ

)
(2. 2)

The unknown value of sigma is typically substituted by one of its most extensively
used preliminary estimates namely; mean absolute value deviation (MAD) which can be
expressed as below:

σ̂ =
median |ε̂i|

0.674
(2. 3)

This estimator ofσ is highly robust to contaminated values with a break down point of
50% [10]. Solving (2. 2 ) for unknown values ofβ is weighted least squares (WLS) prob-
lem with an iterative scheme because here, the weights depend upon estimated residuals,
the residuals are found on the coefficient estimated and the coefficient estimation relies on
the weights. In order to compute the M-estimators, different iterative techniques are avail-
able but iterative re-weighted least square (IRLS) approach is more numerical stable and
efficient technique [4].

3. THE PROPOSEDM-ESTIMATOR

In this section the proposal of the new objective functionρ (ε̂i) with its associated influ-
ence and weight functions are discussed. The proposed objective function belongs to the
group of the soft re-descending M-estimators according to classification of these estimators
on the basis of corresponding behaviour of their influence functions.
Beginning with the following general regression model:

yi = f (xij , θ) + εi, i = 1, 2, . . . m; j = 1, 2, 3 . . . k (3. 4)

wherey1, y2, . . . , ym be a sample ofm measurements withk response variables in de-
fined model, the vector of the unknown parametersθ = [θ1, θ2, . . . θp] andεi represents a
Gaussian random term.
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To find the unknown values of regression parameters, the following estimator in the most
familiar criterion of the LS approach is employed in the optimization process:

ρ (εi) =
1
2
ε2

i , (3. 5)

whereεi = yi − f (xij , θ).
The larger deviations of the residuals can distort the results obtained from the expres-
sion (3. 5 ). This justifies the non-robustness of the LS criterion against outlying obser-
vations. The influence of these troublesome values on estimator performance can be mea-
sured using its influence function. Thereby a way of observing the effect of outliers on
estimation results obtained by the LS estimator, can be seen by the following its influence
function:

Ψ(εi) = εi. (3. 6)

Equation (3. 6 ) suffices to conclude that the influence function of the LS criterion is
not bound and the effect of error is proportionally related to estimated quantity. The con-
sequence of this non-robustness signifies that a single outlier value can have an overriding
impact on estimation results. In contrast to the LS, our suggested estimator based on the
modified form, utilizes the following function in optimization criteria:

ρ (εi) =
ε2
i√

4 + αε2
i

, α ≥ 0 (3. 7)

whereα signifies the tune constant. The function defined in (3. 7 ) is referred as the
modified least squares (MLS) estimator and satisfies the same properties as mentioned
above for the function defined in (2. 1 ). The MLS estimator is constructed by robustizing
the LS estimator in such a way, that the contaminated values cannot have significant influ-
ence on the estimated quantities. This tolerance of MLS estimator is achieved by adding
the descending termαε2

i to diminish the influence of the larger residuals on the estimated
parameters and its inclusion robustizes the LS approach. It should be noticed that zero
value of the tune constant provides the equivalent results as those obtain from the routinely
LS estimator. Likewise, the other existing M-estimators, the proposed estimator is resistant
to outlier inY observations and highly sensitivity to leverage points inx-direction. Thus,
the MLS estimator holds the same property of breakdown point equal to1/n, wheren is
number of observations in the sample. In order to assess the breakdown property of the
proposed estimator for outlying iny-direction, the following sensitivity curve(SC) for the
proposed estimator has been computed for the chem data:

SC = n [Tn (X1, X2 . . . Xn−1, Y )− Tn−1 (X1, X2 . . . Xn−1)]

whereTn (X) denotes the value of the estimator based on data with contaminated observa-
tion Y . To view the effect of arbitrarily changes inY on the proposed estimator, an outlier
has been introduced in chem data that varies within the range{−10 < Y < 10}. The chem
data set can be accessed from the MASS package in R. Thus, the sensitivity of curves of
the proposed estimator for the location model can be viewed below in Figure 1.
In Figure 1, the sensitivity curves of the MLS estimator have been established for the
tuning constant equal to 0 and 0.75. Notice that, the zero of the tuning constant in the MLS
estimator provides result equal to the LS estimator. Thus, the proposed estimator treats the
offset values differently with different values of the tuning constant. Figure 1, shows that
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FIGURE 1. Sensitivity curve of the MLS and LS estimators

arbitrarily changes toY do not alternate the location estimate of the proposed estimator
and thus indicates its bounded influence. Whereas, for the LS estimator this effect can be
considered as large by large changes toY .
The objective and influence functions of the MLS are viewed in the following equations (3. 8 )
and (3. 9 ) respectively:

Ψ(εi) =
8εi + αε3

i

(4 + αε2
i )

3
2

∀ εi ∈ R (3. 8)

w (εi) =
8 + αε2

i

(4 + αε2
i )

3
2

∀ εi ∈ R (3. 9)

For the different values of tune constant, graphically comparisons between the MLS
approach and to that the LS are depicted in the following respective graphs of the loss,
weight and influence functions.
Figure 2, describes that the large value of tune constant yields more reduction and less
rapid increase of the objective function, indicating that the resultant estimator becomes
progressively robust to outlying observations. Figure 3 illustrates that the behaviour of the
MLS estimator is similar to the LS for the smaller errors whereas for moderately to larger
errors, the effect gradually decreases and subsequently approaches to a constant quantity
which confirms the bound influence of the MLS estimator, i.e.,

Ψ (εi) → 1√
α

as |εi| → ∞

Figure 4, describes that the weight pattern assigned by the MLS estimator during the esti-
mation process. This weighting behaviour illustrates that reduced weights are attached to
outlier values and thus, the estimated quantities keep on less affected by such measurement
errors.
The proposed estimator follows the asymptotic normal distribution with variance equal to
γσ2, whereγ is the correction factor. The asymptotic variance-covariance matrix can be
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FIGURE 2. The objective function of the MLS estimator

FIGURE 3. The influence function of the MLS estimator

estimated from the observed data as follows:

V̂ =
1/n

∑n
i=1 Ψ(ε̂i)

2

(
1/n

∑n
i=1

´Ψ (ε̂i)
)2

(
X́X

)−1

,

whereΨ((ε̂i)) for the proposed estimator is based on the scaled residuals in computational
algorithm.
The tune valueα is directly connected with the efficiency performance of the proposed
estimator. The higher value of tuning constant increases down weighting and make the es-
timator more robustized but at the cost of efficiency loss. Thereby, we cannot assume every
value of tune parameter from its defined domain due to the tradeoff between efficiency
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FIGURE 4. The weight function of the MLS estimator

and robustness. In general the following formula is usually applied to find the asymptotic
efficiency of aM -estimator [19]:

Eff =
[E (Ψ′ε (Z))]2

E [Ψ2
ε (Z)]

, (3. 10)

whereΨε (Z) signifies the influence function at specific value of tuning constantα and
Ψ′ε (Z) denotes its derivate under an ideal model of standard normal distribution. The effi-
ciency solution using (3. 10 ) for some M-estimators is somewhat straightforward while the
others involve numerical integration. The efficiency of MLS estimator according to (3. 10 )
at any specific value of the tune constantα can be calculated and its computation also ne-
cessitates the numerical integration. The 95% asymptotic efficiency of the MLS estimator
can be achieved by letting the tune constant equal to0.75. In addition, the asymptotic rela-
tive efficiency of the MLS estimator for other values of the tune constant is also computed
which is displayed in Table 1.

TABLE 1. The relative efficiency computation of the MLS estimator at
different valuesα

α 0.25 0.5 0.75 1.5 2
Efficiency 99% 97% 95% 92% 90%

The procedure for finding the unknown vector of interestθ = [θ1, θ2, . . . θp] is rooted on
the IRLS approach which can be outlined below:
1: Start with initial estimateŝθ

2: Obtain the initial residualŝεi = (yi−xT
i
bθ)

bσ , i = 1, 2, ..m whereσ̂ is scale estimate as
defined in (2. 3 )
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3: Construct the preliminary weightsw (εi) = 8+αε∗i
3

(4+αε∗i
2)

3
2

whereε∗i = bεi

α∗√1−hii
is stan-

dardized residual andhii is correspondingith leverage point from the vector of the LS
leverages.
4: Attain the updated values of̂θ by applying MLS approach with weights as defined in
step 3.
5: Iterate up to convergence.
The aforementioned algorithm starts with initial estimates ofθ̂ which can be assumed from
the LS fit. Moreover, the termination tolerance is defined on theθ̂ which means that iter-
ations will continue until the norm of change of estimated coefficients is less than a fixed

small positive valueτ which may be chosen ase−8 i.e.,
∥∥∥θ̂i − θ̂i+1

∥∥∥ ≤ e−8.

4. SIMULATIONS

This section demonstrates the effectiveness of the MLS estimator through Monte Carlo
simulation results. For better understanding the performance, several other useful esti-
mators including Andrews (hard redescender), Welsch and Cauchy (soft redescender) and
Huber (Monotone) are also readily considered. Each estimator has its own tune constant re-
lated to the relative efficiency (RE) of the corresponding estimator under the ideal model of
the normal distribution. Therefore, in the comparison procedure, this tune constant value is
necessary to be adopted in such a way that one desires to expect almost equal efficiency per-
formance. This means that the Andrews estimator with 90% (for example) efficiency can
be rigorously compared with the same efficiency of other chosen estimator. For this pur-
pose, the corresponding tune constant values have been selected for each estimator which
provides an equivalent efficiency of approximately 95%. The following independent linear
model with known parameters(β0, β1) have been used in the simulation procedure:

yi = β0 + β1xi + εi (4. 11)

whereβ0 = 2, β1 = 5, εi ∼ N (0, 1 ) and the independent variablexi is considered to
be normally distributed with the parameters of zero mean and unit variance.
Across the various sample sizes, three cases were considered. In case-I, it had been as-
sumed that the data set was not contaminated and the error terms were exactly normally
distributed. This case is considered because the proposed estimator in the absence of out-
lying values provides results more or less similar to those as obtained by the LS estimator.
The case- II had been considered to validate the robustness of the proposed estimator by
introducing 25% contamination in they-direction. To this end, 25% of the values in the
y vector were replaced with influential valuesyi, which followedN (100, 400). In the
same line 25% of the usual values in thex-direction were also included considering the
same contaminated values distribution and the results were reported under case-III. The M-
estimators are sensitive to bad leverage points, however; case-III had been retained due to
the implementation of standardized residuals (see step 3 in the given algorithm) in the pro-
posed method. For uniformity in results, the residuals used by each robust estimator were
also standardized in the same manner in the simulation procedure. To restore the same
random number generator setting amongst the various estimators, a seed command was
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applied in the program written in the MATLAB environment. The results obtained in all
three cases are described in Table 2 for the sample sizes (n) of 20, 50 and 100 respectively.

TABLE 2. Comparisons of different robust estimators

Case No-I Case No-II Case No-III

Methods
∣∣∣β̂0 − β0

∣∣∣
∣∣∣β̂1 − β1

∣∣∣
∣∣∣β̂0 − β0

∣∣∣
∣∣∣β̂1 − β1

∣∣∣
∣∣∣β̂0 − β0

∣∣∣
∣∣∣β̂1 − β1

∣∣∣
n=20

LS 0.0342 0.0640 21.7744 3.3717 402.621 0.3354
MLS 0.0368 0.0738 0.0019 0.1905 0.0599 0.0012

Andrews 0.0441 0.0885 0.015 0.1331 0.2338 0.0016
Welsh 0.0470 0.0893 0.0142 0.1301 0.2320 0.0016
Huber 0.0467 0.0829 0.0300 0.3582 0.0871 0.0010
Cauchy 0.0436 0.0804 0.0131 0.2290 0.2346 0.0016

n=50
LS 0.0374 0.0109 427.80 28.69 62.89 0.6105

MLS 0.0390 0.0175 0.0421 0.0059 0.0180 7.12×10−4

Andrews 0.0546 0.0667 0.0724 0.1532 0.0135 2.29×10−4

Welsh 0.0577 0.0582 0.0447 0.1522 0.0073 2.36×10−4

Huber 0.0509 0.1919 0.1810 0.4726 0.0129 7.73×10−4

Cauchy 0.0599 0.0449 0.0293 0.0920 0.0035 2.46×10−4

n=100
LS 0.0110 0.0915 37.893 16.546 80.43 1.3123

MLS 0.0167 0.1059 0.0399 0.1741 0.0807 3.52×10−4

Andrews 0.0280 0.1022 0.0481 0.1416 0.0262 2.22×10−4

Welsh 0.0268 0.1233 0.0435 0.1635 0.0864 2.22×10−4

Huber 0.0250 0.1603 0.0813 0.1910 0.0841 4.59×10−4

Cauchy 0.0274 0.1553 0.0419 0.1698 0.0291 2.23×10−4

Results in Table 2, are reported for the absolute bias on the average of 10,000 simulation
runs. It is obvious from the results obtained in all three cases that the proposed estimator
was in close proximity to those as obtained from the LS estimator in the absence of any
gross error irrespective of the various sample sizes. In the presence of usual values both
in the x andy directions, it caused profound deterioration in the values of the estimated
coefficients using the LS estimator. The proposed MLS estimator resulted in values closer
to the benchmark values ofβ0 andβ1, justifying its non-robustness property. In summary,
the proposed estimator likewise with the other conventional M-estimators provides results
which are insensitive to the substantial effect of the contaminated values. Also, notice that
there are no markedly differences held in the results across the various sample sizes.
In addition, the computation of the RE of the MLS was also part of the simulation study
which is the computation of the ratio of the minimum variance of an estimator to its real
variance. In a regression context, the variance of the regression coefficients from the robust
estimator was compared to that of the LS estimator since it is the most efficient when
assumptions are suitably fulfilled. In order to compute the RE of the estimated coefficients



10 Z. Khan, K.L. Krebs, S. Ahmad, A.Saghir and S. Gumusteki

defined following in (4. 12 ):

RE =
MSE

(
β̂benchmark

)

MSE
(
β̂
) (4. 12)

whereMSE
(
β̂benchmark

)
is average mean square error of the LS estimated coeffi-

cient computed over 10000 simulations when there was no contamination in the processing

measurements. whereasMSE
(
β̂
)

is mean square error of estimated coefficient using

either the LS or MLS approach under the contaminated data. The error terms were allowed
to contaminate the values from various distributions such asN (0, 25), t (1) andχ2 (2. 3 ).
The t-distribution with one and the chi-square distribution with 3 degrees of freedom are
intuitively considered as cases of heavy tailed distributions. The RE of the MLS computed
at various levels of contamination for the sample size of 50 is reported in Table 3.

TABLE 3. RE of the estimated coefficients when the contamination in
errors is made from different distributions with different rates

β̂0 β̂1

Method 1% 5% 10% 20% 30% 1% 5% 10% 20% 30%
(a) N(0, 1) with contaminationN(0, 25)

LS 1.0121 0.7936 0.6357 0.4118 0.3283 1.0121 0.7936 0.6357 0.4118 0.3283
MLS 1.0664 0.9274 0.8508 0.7193 0.6092 1.0664 0.9274 0.8508 0.7193 0.6092

(b) N(0, 1) with contaminationt(1)-distribution (Cauchy distribution)
LS 1.0123 0.9019 0.7614 0.5694 0.4433 1.0123 0.9019 0.7614 0.5694 0.4433

MLS 1.0661 0.9478 0.8837 0.7777 0.6889 1.0661 0.9478 0.8837 0.7777 0.6889
(c) N(0, 1) with contaminationχ2 (3)-distribution

LS 1.0105 0.8770 0.7582 0.6149 0.5364 1.0105 0.8770 0.7582 0.6149 0.5364
MLS 1.0664 0.9431 0.8821 0.7691 0.6747 1.0664 0.9431 0.8821 0.7691 0.6747

Since most of the conventional estimators in the variety of the statistical package manuals
are described at the tuning value which provides approximately 95% efficiency; thereby,
the MSE of the estimated coefficients has also been evaluated using the MLS estimator at
tuning constant of equivalent efficiency. The larger size of the RE fairly indicates that the
estimator with respect to the benchmark value is more efficient. It can be seen clearly from
the Table 3 that the results of the LS estimator became unfavourable as the contamination
level increased. Whereas, the MLS, in the absence of or only a small amount of contamina-
tion had a performance equivalently efficient to that of the LS estimator. For a moderate to
higher rate of contamination, the MLS is more efficient than the LS estimator with respect
to the benchmark value. Additionally, the MLS apparently outperforms to some extent in
the presence of contaminated errors from the normal distribution.

5. APPLICATIONS

In order to investigate the effectiveness of the proposed estimator, we have taken some
realistic data examples from the relevant literature. The first example is taken from Rousseauw
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and Leroy [15] about data originally presented by Hampel et al. [7] for the usefulness of the
robust estimation procedures. The measurements in given data set concern the water flow
rates at two different located cities (Libby and Newgate) for the month of January on the
Kootnenary river in time span of 1931 to 1943. Hampel internationally introduced a bad
leverage point by replacing original value of 44.9 to 15.7 for the Newgate city for the year
1934. Consequently, the contaminated value introduced in this way attracted the LS line
towards itself and resulted in a drastic changed in the estimated coefficients. We applied
proposed estimator on the actual and contaminated data set to verify its effectiveness. The
standardized data as used by Hampel et al. [7], along with estimated values from the LS
approach and proposed method are shown in Table 4.

TABLE 4. The original data on water flow rates and estimated values
using different estimators

Libby (xi) Newgate(yi) LS MLS Huber Cauchy Welsch
0.6575 0.5678 0.6569 0.6454 0.6434 0.6436 0.6432
0.5071 0.5188 0.6593 0.556 0.5548 0.5336 0.5319
0.8104 0.7523 0.6543 0.7363 0.7335 0.7555 0.7564
1.8828 1.292 0.6366 1.3738 1.3653 1.5401 1.5501
0.8977 0.7523 0.6529 0.7882 0.7849 0.8194 0.821
0.5241 0.5736 0.6591 0.5661 0.5648 0.5460 0.5445
0.427 0.4525 0.6607 0.5084 0.5076 0.4750 0.4726
0.8516 0.7956 0.6536 0.7608 0.7578 0.7856 0.7869
0.7901 0.7177 0.6547 0.7242 0.7215 0.7406 0.7414
0.6308 0.6745 0.6573 0.6295 0.6277 0.6241 0.6235
0.6696 0.6658 0.6567 0.6526 0.6506 0.6525 0.6522
0.9389 0.9022 0.6522 0.8127 0.8092 0.8495 0.8515
0.6745 0.686 0.6566 0.6555 0.6534 0.6561 0.6558

The results given in Table 4, show that the proposed estimator provides reliable results
like the other well-known robust procedures in the presence of a bad leverage value. The
procedure of the LS is highly sensitive to even a single outlier value whereas; the MLS
estimator is relatively non-robust in sense of providing fewer weights to outlying values.
Note here, the results given in Table 4 are based on different tuning constant values which
give equal efficiency of 95% for all robust methods. The coefficient of determination for
the LS was only 0.002 whereas its value for the proposed estimator was 0.9335 which
was close to benchmark value of 0.9453 for the original data without contamination. The
scatter plots with fitted lines from each method in Figure 5 further depict the usefulness of
the proposed method.
To further describe the foregoing, the second example is taken from Street et al. [20]
work which has also been used by other investigators for illustration of their robust proce-
dures [21].The data set comprise of US population (in millions) recorded at census interval
of ten years from 1790 to 1990.The scatter plot of the given data set is shown in Figure 6(a).
According to Figure 6(a), second degree polynomial seems to be appropriate for the given
data. Therefore the LS and MLS quadratic fits are calculated and shown in Figure 6(b).
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FIGURE 5. The LS and MLS fits on data (a) with original measurements
(b) with contamination measurements

FIGURE 6. The scatter plot of the US population growth data vs stan-
dardized years (a) without fitted lines (b) with fitted lines

In absence of any outlier value the estimated coefficients from our proposed estimator and
the LS are in proximity such that one cannot distinguish between the fitted lines without
looking critically on given data.
Now we intentionally corrupted some certain values by adding identical amount of (1.2,
50) in given data(xi yi) in order to produce gross errors in some measurements. The LS
method based on the estimated values of the regression coefficients from uncontaminated
data were taken as benchmarks. The relative mean absolute error (RMAE) value for the
regression coefficients were calculated according to (5. 13 ).
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RMAE =
1
k

k∑

j=1

∣∣∣∣∣
β̂j − βj

βj

∣∣∣∣∣ (5. 13)

whereβ̂j is jth coefficient estimated value for contaminated data,βj is a benchmark
value for the coefficient andk is total number of the estimated coefficients which is three
for our quadratic fit including the intercept term.
By taking (5. 13 ) into consideration, the results summary for the relative performance of
the MLS is described in Table 5.

TABLE 5. The estimation results of proposed method and others con-
ventional methods on the US population growth (in million) in time span
of 1790 to 1990

RMAE
Number of Outliers OLS MLS Huber Cauchy Welsch

1 0.2233 0.0126 0.0127 0.0108 0.0132
2 0.1826 0.0100 0.0097 0.0104 0.0131
3 0.4529 0.0515 0.0711 0.0105 0.0136
4 0.4227 0.0541 0.0725 0.0107 0.0145
5 0.6186 0.4540 0.4539 0.4544 0.4539

To better understand the effectiveness of the procedure, we have presented the results of
comparative performance of the proposed estimator to that of the LS estimator and other
conventional robust procedures. All other robust procedures were evaluated at respective
tuning constant values of equal efficiency of 95%. The results reported in Table 5, indi-
cates that the proposed procedure is not very sensitive to outlying values. In, the presence
of different number of deliberated outliers the performance of the MLS is excellent in
comparison to that of the LS method. In the occurrence of extreme outlying values the per-
formance of the MLS was a slightly affected like the other M-estimators. However, such
extreme offset values usually do not occur and can readily be diagnosed. In addition, its
performance is almost identical to the other conventional robust procedures.

6. CONCLUSION

In this study, a new robust MLS estimator has been introduced. The MLS estimator pro-
vides a more general approach that can be converted to the LS estimator for some specific
value of the tuning parameter. In addition a robust approach for estimating the regression
parameters has been described which showed the bounded influence in the directions of
response and explanatory variable. The simulation studies exhibited that estimated results
from the MLS approach are accurate as those produced from the LS estimator in absence
of outlying values. Whereas, contaminated measurements have less influence on the es-
timated results from MLS estimator. Moreover, the real data examples also revealed the
robustness property of the proposed estimator.
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