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Abstract. This work involves development of an optimum third order
single-step explicit method for Cauchy problems. The proposed method
is analyzed for consistency, stability, local and global error bounds, and
convergence. Further, numerical investigation is carried out to assess ef-
fectiveness of the method in comparison to existing numerical schemes,
including Modified Improved Modified Euler (MIME) method, Third or-
der Euler method (TOEM) and classical Runge-Kutta method of order
three (RK3). The testing factors are error and CPU time which have been
computed using Matlab R2014b. It is observed that the proposed method
possesses minimum error bounds; and is also favourable in terms of both
accuracy and computational cost.
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1. INTRODUCTION

Mathematical modeling of many real world phenomena often leads to ordinary or partial
differential equations. Most of these equations are highly nonlinear and the exact solutions
are not always possible. Therefore, researchers in engineering, applied mathematics and
other scientific fields often resort to numerical techniques which provide approximate so-
lutions. Numerical methods for the solution of nonlinear Cauchy problems are efficient
tools that have been gradually developed by many mathematicians since the eighteenth
century. Later on, with the invention of high speed digital computers in the late twentieth
century, the study of various phenomena in engineering and science has been made much
easier and efficient by the use of numerical techniques. These techniques have proved
their efficacy in a number of physical problems, for example, chemical kinetics [8,14,15],
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fluid dynamics [11, 25, 30, 32], electrical circuits [5, 13, 27], computer virology [3, 21],
image processing [26] and epidemiology [4, 10, 17, 19, 28, 29]. There has been exten-
sive study of single-step explicit methods for the numerical integration of Cauchy prob-
lems [1, 2, 7, 12, 18, 20, 22, 23]. This further stimulates the interest in their theoretical and
numerical investigation while carrying out computational studies for the real world appli-
cation problems. In this work, an explicit single-step method of third order is developed for
initial value problems of ordinary differential equations also known as Cauchy problems.
Although, there exist higher order methods but with an increased number of slope evalua-
tions per step. For example, the fourth order RK method requires four and the fifth order
method involves six slope evaluations; thereby increasing the time for numerical simula-
tion. This is the major concern in the present study - to develop a third order method which
offers significant accuracy while consuming less CPU time. The proposed method is ana-
lyzed for consistency, stability and convergence. We investigate performance of the method
on the basis of stability interval, local and global error bounds, accuracy and computational
time in comparison to the following methods:

• Modified Improved Modified Euler (MIME) method [20]: It is a second order
accurate method involving three function evaluations per integration step. The
iterative scheme for MIME method is given as:

ur = ur−1 + d3

d1 = ∆t g (tr−1, ur−1)

d2 = ∆t g

(
tr−1, ur−1 +

d1

2

)

d3 = ∆t g

(
tr−1 +

∆t

2
, ur−1 +

d2

2

)
(1. 1)

• Third Order Euler Method (TOEM) [1]: It involves three function evaluations
per step and is given by the following iterative scheme:

ur = ur−1 + d3

d1 = ∆t g (tr−1, ur−1)

d2 = ∆t g

(
tr−1 +

∆t

2
, ur−1 +

d1

3

)

d3 = ∆t g

(
tr−1 +

∆t

2
, ur−1 +

d2

2

)
(1. 2)

• Classical Runge-Kutta method of third order (RK3) [24]: Proposed by Runge
in 1895, it involves three function evaluations per integration step as given in ( 1.
3 ):

ur = ur−1 +
1
6

(d1 + 4d2 + d3)

d1 = ∆t g (tr−1, ur−1)

d2 = ∆t g

(
tr−1 +

∆t

2
, ur−1 +

d1

2

)

d3 = ∆t g (tr−1 + ∆t, ur−1 − d1 + 2d2)

(1. 3)
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It is found that TOEM, RK3 and proposed method all have the same interval of stability
which is larger than that of MIME. The proposed method possesses the minimum error
bounds followed by RK3, TOEM and MIME, and also outperforms these methods with
respect to accuracy and CPU time.

2. PROPOSEDMETHOD

Let
ur = ur−1 + c1d1 + c2d2 + c3d3

d1 = ∆t g (tr−1, ur−1) = ∆t g

d2 = ∆t g (tr−1 + a2∆t, ur−1 + b21d1)

d3 = ∆t g (tr−1 + a3∆t, ur−1 + b31d1 + b32d2)

(2. 4)

Herea2, a3, b21, b31, b32, c1, c2 andc3 are unknowns. Taylor series expansion of ( 2. 4 )
yields

ur = ur−1 + (c1 + c2 + c3) ∆t g + (a2c2 + a3c3) (∆t)2 gt + {b21c2

+(b31 + b32) c3} (∆t)2 ggu +
1
2

(
a2

2c2 + a3
2c3

)
(∆t)3 gtt + {a2b21c2

+(a3b31 + a3b32) c3} (∆t)3 ggtu +
1
2

{
b21

2c2 + (b31 + b32)
2
c3

}
(∆t)3 g2guu

+ a2b32c3 (∆t)3 gtgu + b21b32c3 (∆t)3 gg2
u + O (∆t)4

(2. 5)
The Taylor’s expansion ofur is given by

ur = ur−1 + ∆t g +
(∆t)2

2
(gt + ggu) +

(∆t)3

6
(
gtt + 2ggtu + g2guu + gtgu + gg2

u

)

+ O (∆t)4

(2. 6)
Comparing the coefficients of∆t in ( 2. 5 ) as far as(∆t)3 with the Taylor’s expansion ( 2.
6 ) yields the following order conditions:

c1 + c2 + c3 = 1

a2c2 + a3c3 =
1
2

b21c2 + (b31 + b32) c3 =
1
2

a2
2c2 + a2

3c3 =
1
3

a2b21c2 + (a3b31 + a3b32) c3 =
1
3

b2
21c2 + (b31 + b32)

2
c3 =

1
3

a2b32c3 =
1
6

b21b32c3 =
1
6

(2. 7)
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An optimal solution of ( 2. 7 ) leads to following third order accurate method:

ur = ur−1 +
1
4

(d1 + 3d3)

d1 = ∆t g (tr−1, ur−1)

d2 = ∆t g

(
tr−1 +

2
3
∆t, ur−1 +

2
3
d1

)

d3 = ∆t g

(
tr−1 +

2
3
∆t, ur−1 +

1
3

(d1 + d2)
)

(2. 8)

Here, by optimal solution we mean the values of the unknowns present in the nonlinear
system ( 2. 7 ) which give rise to a numerical scheme with minimum error bounds and
maximum accuracy in comparison to other methods under consideration. The subsequent
sections have been accordingly expanded to delineate this notion of optimal solution, and
hence an optimal method.

3. ANALYSIS OF PROPOSEDMETHOD

3.1. Consistency.

Definition 1. A single-step method has the formur = ur−1 +∆t ψ(tr−1, ur−1;∆t) where
ψ(tr−1, ur−1;∆t) is known as the increment function of the method.

Definition 2. Given an initial value problemdu
dt = g(t, u); u(t0) = u0, a numerical

method with an increment functionψ (t, u; ∆t) is said to be consistent iflim
∆t→0

ψ (t, u;∆t) =

g(t, u).

Applying these definitions to the increment functionψ of proposed method,
lim

∆t→0
ψ (tr−1, ur−1 ; ∆t) = lim

∆t→0

1
4∆t (d1 + 3d3)= g (tr−1, ur−1).

Hence, the method is consistent.
Next, we state and prove two important theorems which are used to demonstrate stability
and convergence of proposed method.

Theorem 1. Let γ0, γ1, γ2, . . . , γn be real numbers satisfying|γi+1| ≤ (1 + α)|γi| + β,
with α > 0, β ≥ 0, i = 0, 1, 2, . . . , n− 1, then|γn| ≤ enα|γ0|+ enα−1

α β.

Proof. From the assumptions, we get
| γ1 | ≤ (1 + α) | γ0 |+ β

| γ2 | ≤ (1 + α) | γ1 |+ β = (1 + α)2 | γ0 |+ (1 + α)β + β
...

| γn | ≤ (1 + α)n | γ0 |+ β [ 1 + (1 + α) + (1 + α)2 + · · ·+ (1 + α)n−1 ]
≤ en α | γ0 |+ β en α−1

α
...0 < 1 + α ≤ eα for α > −1. ¤

Theorem 2. Suppose(tr−1, ur−1) and(tr−1, ûr−1) are any two points in the region T de-
fined byT =

{
(t, u) ∈ R2

∣∣ t0 ≤ t ≤ tn,−∞ < u < ∞}
, andg is a Lipschitz continuous

function on T such that|g (tr−1, ur−1)− g (tr−1, ûr−1)| ≤ L |ur−1 − ûr−1|, then the in-
crement functionψ is Lipschitz continuous, and|ψ (tr−1, ur−1;∆t)− ψ (tr−1, ûr−1; ∆t)|
≤ L̂ |ur−1 − ûr−1| whereL andL̂ are, respectively, the Lipschitz constants for g andψ.
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Proof. From the assumptions, we have∣∣∣d1 − d̂1

∣∣∣ = ∆t |g (tr−1, ur−1)− g (tr−1, ûr−1)| ≤ L∆t |ur−1 − ûr−1|∣∣∣d2 − d̂2

∣∣∣ = ∆t
∣∣∣g

(
tr−1 + 2

3∆t, ur−1 + 2
3d1

)− g
(
tr−1 + 2

3∆t, ûr−1 + 2
3 d̂1

)∣∣∣
≤ L∆t |(ur−1 − ûr−1)|+ 2

3L∆t
∣∣∣d1 − d̂1

∣∣∣
≤

(
L∆t + 2

3L2 (∆t)2
)
|ur−1 − ûr−1|∣∣∣d3 − d̂3

∣∣∣
= ∆t

∣∣∣g
(
tr−1 + 2

3∆t, ur−1 + 1
3 (d1 + d2)

)− g
(
tr−1 + 2

3∆t, ûr−1 + 1
3

(
d̂1 + d̂2

))∣∣∣
≤ L∆t |ur−1 − ûr−1|+ L∆t

3

∣∣∣d1 − d̂1

∣∣∣ + L∆t
3

∣∣∣d2 − d̂2

∣∣∣
≤

(
L∆t + 2

3L2 (∆t)2 + 2
9L3(∆t)3

)
|ur−1 − ûr−1|

Hence, for the increment functionψ of the proposed method:
|ψ (t, u;∆t)− ψ (t, û;∆t)|
= 1

4∆t

∣∣∣(d1 + 3d3)−
(
d̂1 + 3d̂3

)∣∣∣
≤ 1

4∆t

∣∣∣d1 − d̂1

∣∣∣ + 3
4∆t

∣∣∣d3 − d̂3

∣∣∣
≤ L̂ |ur−1 − ûr−1| ; L̂ = L + 1

2L2∆t + 1
6L3(∆t)2

This implies that the increment function of proposed method is Lipschitz continuous.¤
3.2. Stability.

Theorem 3. Letur andûr be two solutions to the differential equationu′ = g (t, u), gen-
erated by a numerical method, subject to the initial conditionsu (t0) = u0 and,û (t0) = û0

respectively, such that|u0 − û0| < ε, ε > 0. The condition|ur − ûr| ≤ K |u0 − û0| ,K >
0 is the necessary and sufficient condition for the method to be stable.

Applying Theorem 2 to the proposed method gives,
ur = ur−1 + ∆t ψ (tr−1, ur−1; ∆t)
ûr = ûr−1 + ∆t ψ (tr−1, ûr−1; ∆t)

... |ur − ûr| ≤ |ur−1 − ûr−1| + ∆t |ψ ( tr−1, ur−1 ; ∆t)− ψ ( tr−1, ûr−1 ; ∆t) |
≤

(
1 + L̂∆t

)
|ur−1 − ûr−1|

=
(
1 + L̂∆t

)r

|u0 − û0|
Using Theorem 1 withα = L̂∆t andβ = 0 gives
|ur − ûr| ≤ K |u0 − û0| , K = erL̂∆t.

This establishes that the proposed method is stable.
Applying proposed method to Dahlquist’s model problem [9]

u′ = λu, λ ∈ C, Re(λ) < 0 (3. 9)

gives

ur =
(

1 + z +
z2

2
+

z3

6

)
ur−1 (3. 10)

wherez = λ∆t.The ratiour/ur−1 is called stability functionφ(z). Hence, stability func-
tion of the proposed method is
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φ(z) = 1 + z +
z2

2
+

z3

6
(3. 11)

It is found that|φ(z)| ≤ 1 for −2.51 ≤ Re(z) ≤ 0. Table 1 compares stability function

TABLE 1. Stability functions and intervals of stability.

Method Linear stability function Interval of linear stability

MIME 1 + z + z2

2 + z3

4 (-2, 0)
TOEM 1 + z + z2

2 + z3

6 (-2.51, 0)
RK3 1 + z + z2

2 + z3

6 (-2.51, 0)
Proposed 1 + z + z2

2 + z3

6 (-2.51, 0)

and interval of stability of proposed method with those of MIME, TOEM and RK3 meth-
ods. While TOEM and proposed method each have same interval of stability as that of
conventional RK3 method, MIME possesses a smaller stability interval.

3.3. Local Error Bounds. The local truncation error for proposed method is

τr+1 =
(∆t)4

216
(
gttt + 3ggttu + 3g2gtuu + g3guuu + 3ggtguu + 3gtgtu − 3ggugtu

−3gttgu + 9gtg
2
u + 9gg3

u

)
+ O (∆t)5

(3. 12)
Thus, the principal error function is given as

Φ(tr, ur) =
1

216
(
gttt + 3ggttu + 3g2gtuu + g3guuu + 3ggtgu u + 3gtgt u − 3ggugtu

−3gttgu + 9gtg
2
u + 9gg3

u

)
(3. 13)

Lotkin [16] proposed following bounds for the functiong and its partial derivatives for
t ∈ [a , b] andu ∈ (−∞ , ∞):

| g ( t , u) | < M,

∣∣∣∣
∂i+jg

∂ti∂uj

∣∣∣∣ <
N i+j

M j−1
, i + j ≤ p

whereM andN are positive constants andp is order of accuracy. Using Lotkin’s bounds,

|Φ ( tr , ur) | < 19
108

MN3 (∆t)4

Hence, the bound on local truncation errorτr+1 of the proposed method is obtained as

|τr+1| < T, T =
19
108

MN3 (∆t)4

3.4. Convergence.Consider the proposed method:

ui+1 − ui −∆t ψ (ti, ui;∆t) = 0 (3. 14)

The quantity
τi = u (ti+1)− u (ti)−∆t ψ (ti, u (ti) ;∆t) (3. 15)
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is local error of the proposed method. On subtracting ( 3. 14 ) from ( 3. 15 ), it is deduced
that

|ei+1| ≤ |ei|+ ∆t |ψ (ti, u (ti) ; ∆t)− ψ (ti, ui;∆t)|+ |τi| (3. 16)

whereei is global error. Using Theorems 1 and 2, ( 3. 16 ) yields

|ei+1| ≤
(
1 + ∆t L̂

)
|ei|+ |τi| (3. 17)

Let T = max |τi| , i = 0, 1, 2, . . . , k − 1, then Theorem 1 implies that

|er| ≤ erL̂∆t |e0|+ T

L̂∆t

[
erL̂∆t − 1

]
(3. 18)

Finally, the global error bound for the proposed method is obtained as

|er| ≤ T

L̂∆t

[
eL̂(tr−t0) − 1

]
(3. 19)

whereT is its local error bound. As lim
∆t→0

|er| = 0, this implies convergence of our

method. Table 2 provides comparison of local and global error bounds of proposed method

TABLE 2. Comparison of error bounds.

Method Local Error Bound Global Error Bound

MIME 1
3MN2 (∆t)3 1

3MN2 (∆t)2
[

eL̂MIME (tr−t0)−1
L̂MIME

]

TOEM 53
144MN3 (∆t)4 53

144MN3 (∆t)3
[

eL̂
TOEM

(tr−t0)−1
L̂

TOEM

]

RK3 1
4MN3 (∆t)4 1

4MN3 (∆t)3
[

eL̂
RK3

(tr−t0)−1
L̂

RK3

]

Proposed 19
108MN3 (∆t)4 19

108MN3 (∆t)3
[

e
L̂

Proposed
(tr−t0)−1

L̂
Proposed

]

1 L̂MIME , L̂TOEM, L̂RK3 and L̂Proposedrespectively denote the Lip-
schitz constant for the increment functions of MIME, TOEM, RK3
and proposed methods.

2 L̂MIME = L + 1
2L2∆t + 1

4L3(∆t)2,
L̂TOEM = L̂RK3 = L̂Proposed= L + 1

2L2∆t + 1
6L3(∆t)2

with those of MIME, TOEM and RK3 methods. A simple analysis of these error bounds
leads to the following observation:

For given values ofM, N and∆t;
(Error Bound)Proposed<(Error Bound)RK3<(Error Bound)TOEM<(Error Bound)MIME

which holds for both local and global error bounds.

4. NUMERICAL EXAMPLES

4.1. Example 1.
du

dt
= u − tu2 subject tou (0) = 1. The exact solution isu (t) =

1
2e−t + t− 1

.
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TABLE 3. Absolute errors vs. step size(∆t) at t = 1.

Step size MIME TOEM RK3 Proposed Method

0.001 8.52E-08 1.03E-07 1.50E-10 5.64E-12
0.01 8.55E-06 1.04E-05 1.5E-07 4.93E-09
0.1 8.93E-04 1.12E-03 1.53E-04 3.23E-06
0.25 6.07E-03 8.07E-03 2.40E-03 3.28E-04

TABLE 4. CPU time(sec) vs. error tolerance att = 1.

Error tolerance MIME TOEM RK3 Proposed Method

E-03 1.16E-04 1.21E-04 1.52E-04 1.32E-04
E-04 1.52E-04 2.36E-04 1.63E-04 1.09E-04
E-05 4.21E-04 4.23E-04 2.08E-04 1.82E-04
E-06 8.58E-04 1.05E-03 2.54E-04 1.97E-04

For the nonlinear problem under consideration, we present a comparison of absolute errors
yielded by MIME, TOEM, RK3 and proposed method att = 1 corresponding to various
step sizes in Table 3 , whereas, Table 4 presents the CPU time consumed by these methods
against different values of error tolerance at the same point of domain. It can be clearly seen
that the proposed method not only produces the smallest errors for each step size value, but
also takes the least computational time to attain the desired accuracy.

4.2. Example 2.
du1

dt
= u2

2 − 2u1,
du2

dt
= u1 − u2 − tu2

2 subject tou1 (0) = 0 and

u2 (0) = 1. The exact solution isu1 (t) = te−2t, u2 (t) = e−t.

TABLE 5. L2 error norm vs. step size(∆t) at t = 2.

Step size MIME TOEM RK3 Proposed Method

0.001 3.92E-08 1.34E-08 9.92E-12 7.98E-12
0.01 3.93E-06 1.34E-06 9.98E-09 8.14E-09
0.1 3.99E-04 1.29E-04 1.1E-05 9.8E-06
0.25 2.41E-03 7.03E-04 2.04E-04 1.97E-04

1 L2 error norm=
√

Σ(Exact solution - Approximate solution)2

where the sum is taken over the number of components in
the solution of test problem.

Table 5 showsL2 error norm values given by MIME, TOEM, RK3 and proposed method at
t = 2 for the nonlinear system under consideration. It can be seen that the minimum error
norm values are obtained from the proposed method followed by RK3, TOEM and MIME
methods. In terms of CPU time, proposed method is found to be efficient in contrast to
both MIME and TOEM methods and is comparable to RK3 as illustrated from Table 6.
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TABLE 6. CPU time(sec) vs. L2 error norm tolerance att = 2.

Error tolerance MIME TOEM RK3 Proposed Method

E-03 6.18E-04 6.19E-04 6.24E-04 6.06E-04
E-04 2.08E-03 1.04E-03 8.72E-04 6.57E-04
E-05 8.24E-03 2.43E-03 1.10E-03 1.11E-03
E-06 1.74E-02 7.21E-03 2.43E-03 2.44E-03

4.3. Example 3 - Application in population dynamics.

du

dt
= a

(
1− u

C

)
u; u(0) = u0 (4. 20)

The nonlinear autonomous Cauchy problem ( 4. 20 ) is the population growth model known
as Verhulst or logistic equation [31]. The positive constantsa andC are respectively known
as intrinsic growth rate and saturation level for the given population. The analytical solution
is given as:

u(t) =
u0C

u0 + (C − u0)e−at
(4. 21)

In [6, p. 80], logistic equation is applied on Pacific halibut growth whereu denotes the
biomass (in kilogram) of halibut fishery andt is time. The parameter values used are
a = 0.71/year andC = 8.05 × 107 kg with initial biomassu0 = 2.0125 × 107 kg. We
integrate logistic equation fromt = 0 to t = 2 subject to these conditions using MIME,
TOEM, RK3 and proposed method. The results are presented in Tables 7 and 8.

TABLE 7. Absolute errors vs. step size(∆t) at t = 2.

Step size MIME TOEM RK3 Proposed Method

0.001 3.55E-01 2.72E-01 4.22E-05 9.34E-06
0.01 3.55E+01 2.72E+01 4.39E-02 1.08E-02
0.05 8.84E+02 6.77E+02 5.56E+00 1.30E+00
0.1 3.52E+03 2.70E+03 4.53E+01 9.87E+00
0.25 2.18E+04 1.67E+04 7.41E+02 1.29E+02

TABLE 8. CPU time(sec) vs. error tolerance att = 2.

Error tolerance MIME TOEM RK3 Proposed Method

E-03 1.09E-01 1.11E-01 6.84E-03 2.04E-03
E-04 2.72E-01 2.63E-01 5.75E-03 3.77E-03
E-05 1.11E+00 1.10E+00 1.26E-02 7.60E-03
E-06 1.67E+00 1.74E+00 3.20E-02 1.59E-02
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From the tables, it is evident that the performance of proposed method is far better than
each of MIME, TOEM and RK3 when implemented to a physical problem. The proposed
method leads to the minimal absolute errors, at the final timet = 2, corresponding to differ-
ent step-size values. It also shows the fastest convergence by consuming the least amount
of CPU time to achieve the specified accuracy levels. It is particularly noticeable here that
both MIME and TOEM give poor accuracy as depicted from the high error values at even
small step size of 0.01. Moreover, both these methods also prove to be computationally
expensive.

5. CONCLUSION

In this work, an optimal third order accurate scheme has been developed for solving Cauchy
problems. First, an abstract analysis of the proposed scheme is carried out for stability,
consistency, convergence and error bounds. The proposed method is then implemented on
three nonlinear problems for analyzing its performance in terms of accuracy and computa-
tional time in contrast to three existing methods – MIME, TOEM and Classical RK3. The
observations drawn are as follows:

(i) TOEM, RK3 and proposed methods all have the same interval of stability which is larger
than that of MIME.

(ii) Proposed method has the minimum local and global error bounds followed by RK3,
TOEM and MIME methods.

(iii) In terms of accuracy, proposed method yields errors significantly smaller in magnitude
than resulting from each of RK3, TOEM and MIME.

(iv) Overall, the proposed scheme proves to be computationally cost effective as it
consumes considerably less CPU time while attaining the desired level of accuracy.
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