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Abstract. This research paper is devoted towards the development of a
novel hybrid model and its application in the visualization of scientific
data. A hybrid model GPRC FIF, based on the spline and fractal inter-
polation, is established having four parameters and one scaling factor in
its description. Data dependent constraints are achieved on two parame-
ters and one scaling factor to envisage the inherit shape (positive) of the
data. While two parameters are kept free to provide the shape flexibility
to the user. The proposed scheme is also implemented on few numerical
data sets to demonstrate the proposed mathematical results graphically.
Moreover, the comparative analysis of proposed method with two existing
methods is also deliberated.
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1. INTRODUCTION

Data visualization is the major part of scientific studies [5]. The graphical exhibition
of data has long been cherished for conveying the message, inferring different data and
for having a quick comprehensive view of the data with ease and within no time. Data
visualization can be observed in manifold dimensions such as a stock exchange (where
the financial drifts can be anticipated), computer graphics, geographic modeling, medical
imaging, geology, reverse engineering, oceanography, aerospace firms, hydrology and bio-
electrical recording etc.
Data envisioned through classical interpolation manner such as polynomial and spline in-
terpolants, could only provide smooth curves. Particularly, spline interpolation, which has
been widely used in data visualization because they are easily constrained and well suited
for attaining the smooth structure between the data points. These approaches are effective
and functional, widely in designing industrial merchandiseonly; however, many real phe-
nomena such as coastline, snowflake, surface shapes of mountains etc. have non-smooth
(non-linear) configurations and characteristics which cannot be explained by classical inter-
polation techniques.To address this issue, the method of fractal interpolation is manifested
initially by Barnsley [3], grounded on iterated function system (IFS) theory [8]. It is an
unconventional technique for analysis data that has non-linear structure. Later, Barnsley
& Harrington [4] initiated to introduce differential IFS. Fractal interpolation has been a
worthy approach utilized frequently for irregular data visualization but hard to constrain.
Therefore, in this study, a novel hybrid model based on fractal and spline interpolation
is proposed, that exhibit flexibility in the choice ofsmooth or non-smooth interpolant in
contrast to specific approaches which only yields one structure at a time. The main ad-
vantageous feature of the hybrid model over the existing approaches are:(i) they provide a
method to render non-smooth approximants (ii) by suitable selection of parameters of the
underlying IFS, FIFs can be made smooth and these smooth FIFs include traditional inter-
polants as special cases (iii) interpolation scheme produced by fractal functions can have
local or global dependence on data points, depending on the choice of scaling factors.
A number of authors [2, 5, 9] considered a fractal spline technique to visualize non-linear
behavior of data comprehensively. But the core concern in the field of scientific data
which the practitioners come across is to visualize rough data in such a manner that the
curve should preserve the intrinsic shape. Generally, intrinsic shape of the data is termed
as monotone, convex and positive. For instance, blood sugar level, uric acid, hormonal
changes, blood pressure and rate of heart beat are a few illustrations of entities having
positive values only.Therefore, the required graph should preserve the shape of the data;
else it will portray the given sample improperly. Some work on intrinsic shape (positivity)
of the data has already been addressed through classical cubic spline for smooth curves
[6, 7, 10, 11, 12] .Such problem of visualized the shape of the data in the light of non-
linear behavior is studied in this article. In this paper, the problem of positive data visu-
alization is revealed by developing a hybrid model called general piecewise rational cubic
(GPRC)fractal interpolation function (FIF) with four free parameters in each sub-interval.
General piecewise rational cubic fractal interpolation function (GPRC FIF) generalizes the
corresponding traditional GPRC of Hussain and Sarfraz [6] that is highly useful for data
visualization. Data dependent conditions are established on two parameters to preserve the
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shape of data while two remaining parameters are kept free to transform the shape for the
betterment.

2. MATERIALS AND METHODS

First, the basic methodology of fractal interpolation function based on iterated function
system is discussed. Let the real intervalI[r1, rn] has partitioned such thatr1 < r2 <
. . . < rn. Further, suppose the data set is given(ri, zi) ∈ I × E : i = 1, 2, . . . , n, where E
is denoted as a compact set inR. TakeIi = [ri, ri+1], then following two mappings will
be contraction homeomorphism such thatαi : I → Ii, with

αi(r1) = ri, αi(rn) = ri+1, i = 1, 2, . . . , n− 1. (2.1)

|αi(e1)− αi(e2)| ≤ li|e1 − e2| ∀e1, e2 ∈ I, for some0 < li < 1.

AssumeD = I × E and there exist a mappingβi : D × E, wish is continuous if

βi(r1, z1) = zi, βi(rn, zn) = zi+1, i = 1, 2, . . . , n− 1.

|βi(r, y)− βi(r, x)| ≤ κi|y − x|, r ∈ I, ∀y, x ∈ E, for some− 1 < κi < 1. (2.2)

To construct the iterated function system (IFS), a functionγi : D → D is defined as:

γi(r, z) = (αi(r), βi(r, z)), ∀(r, z) ∈ D. (2.3)

The collection{D; γi : i = 1, 2, . . . , n − 1} is called the iterated function system. The
following proposition [3] will assist us in construction of FIF.

Proposition 2.1. The iterated function system (IFS){D; γi : i = 1, 2, . . . , n− 1} encloses
a unique attractorG, and this attractor is the graph ofV , whereV : I → R is continuous
function which interpolates the data{(ri, zi) ∈ I × E : i = 1, 2, . . . , n}, i.e., V (ri) =
zi, i = {1, 2, . . . , n}. The functionV is termed as FIF corresponding to the iterated
function system{D; γi : i = 1, 2, . . . , n − 1}, and it may also be generated based on the
subsequent.
Let M = {m|m : I → R is continuous,m(r1) = z1 andm(rn) = zn}, whereM is the
complete metric space with respect to the uniform metricϕ(m1,m2) = max{|m1(r) −
m2(r)|r ∈ I}. Define Read-Bajraktarevic operatorT on (M, ϕ) as:

Tm(αi(r)) = βi(r,m(r)), r ∈ I, i = 1, 2, . . . , n− 1. (2.4)

Equation 2.1 and Equation 2.2 ensures thatTm is continuous on the interval[ri, ri+1] and
on all the interior points. AlsoT is contraction mapping on(M, ϕ).

ϕ(Tm1, Tm2) ≤ |κ|∞ϕ(m1, m2),

with |κ|∞ = max{|κi| : i = 1, 2, 3, . . . , n − 1} < 1. Therefore, by Banach fixed point
theorem,T has a unique fixed pointV on M such thatT (V (r)) = V (r) ∀r ∈ I. From
Equation 2.4,the fractal interpolation functionV fulfills the functional equation

V (αi(r)) = βi(r, V (r)), r ∈ I, i = 1, 2, . . . , n− 1. (2.5)

The FIFs generated through the following IFS{D; γi : i = 1, 2, . . . , n− 1}
αi(r) = air + bi,

βi(r, z) = κiz + Fi(r), (2.6)
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with

ai =
ri+1 − ri

rn − r1
, bi =

rnri − r1ri+1

rn − r1
.

Whereκi are called vertical scale factors such that|κi| < 1, Fi(r) is a continuous function
such thatβi satisfies Equation 2.2. The subsequent proposition[4] confirms the presence
of a differentiable fractal interpolation function.

Proposition 2.2. Suppose the data set(ri, zi) ∈ I × E : i = 1, 2, . . . , n with r1 < r2 <
. . . < rn. Further, takeαi(r) andβi(r, z) such that satisfying Equation2.1 and Equation

2.2 respectively. Let for some integerg ≥ 0, |κi| < ag
i . Assume,βk

i (r, z) = κiz+F k
i (r)

ak
i

,

whereF k
i represents thekth derivative with respect to‘r′,

zk
n =

F k
1 (r1)

ak
1 − κ1

, zk
1 =

F k
n−1(r1)

ak
n−1 − κn−1

, k ∈ 1, 2, 3, . . . , g.

If βk
i−1(rn, zk

n) = βk
i (r1, z

k
1 ), i = 1, 2, 3, . . . , n− 1, k ∈ 1, 2, . . . , g,then(αi(r), βi(r, z))

determines the FIFV ∈ Cg(I), andV k is the FIF determined by{(αi(r), βk
i (r, z)) : i =

1, 2, . . . , n − 1}, for all k ∈ 1, 2, 3, . . . , g. Since,V ∈ C1(I), V ′ satisfy the functional
equation

V ′(αi(r)) = β
(1)
i (r, V ′(r)). (2.7)

3. A HYBRID MODEL GPRC FIF

Now, the hybrid model (GPRC FIF) with four free parameters is to be developed, made
on the IFS Equation 2.6, where the scaling factorκi and the polynomialFi(r) involved in
Equation 2.6 are chosen according to the Proposition 2.2. Suppose the data set{(ri, zi) ∈
I × E : i = 1, 2, . . . , n} with r1 < r2 < . . . < rn. Let di be the derivative value at the
knot pointri. Consider the iterated function system Equation 2.6 with

Fi(r) =
pi(r)
qi(r)

=
pi(µ)
qi(µ)

(3.1)

=
A1i(1− µ)3 + A2iµ(1− µ)2 + A3iµ

2(1− µ) + A4iµ
3

λi(1− µ)3 + δiµ(1− µ)2 + ρiµ2(1− µ) + ωiµ3
,

whereµ = r−r1
rn−r1

, r ∈ [r1, rn]. Here,A1i, A2i, A3i, A4i are constant andλi, δi, ρi, ωi are
the free parameters. To make fixed pointV aC1interpolant, the C1Hermite conditions are
applied.i.e.

V (ri) = zi, V (ri+1) = zi+1, V
′(ri) = di, V

′(ri+1) = di+1.

The values of the constantsA1i, A2i, A3i, A4i are evaluated based on above conditions.
The conditionsV (ri) = zi andV (ri+1) = zi+1 in Equation 2.5 leads to

A1i = λi(zi − κiz1).
A2i = λihidi − (rn − r1)λiκid1 + δi(zi − κiz1).
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The conditionsV ′(ri) = di andV ′(ri+1) = di+1 in Equation 2.7 leads to

A3i = −ωihidi+1 + (rn − r1)ωiκidn + ρi(zi+1 − κizn).
A4i = ωi(zi+1 − κizn).

Substituting the values ofA1i, A2i, A3i, A4i in Equation 3.1, the GPRC FIF is given by

V (αi(r)) = κiV (r) +
pi(µ)
qi(µ)

, (3.2)

where

pi(µ) = λi(zi − κiz1)(1− µ)3 + (λihidi − (rn − r1)λiκid1

+ δi(zi − λiz1))µ(1− µ)2 + (−ωihidi+1 + (rn − r1)ωiκidn

+ ρi(zi+1 − κizn))µ2(1− µ) + ωi(zi+1 − κizn)µ3,

qi(µ) = λi(1− µ)3 + δiµ(1− µ)2 + ρiµ
2(1− µ) + ωiµ

3,

µ =
r − r1

rn − r1
, z ∈ [r1, rn].

4. INTERACTIVE PROPERTIES OFGPRC FIF

(i) If κi = 0, ∀i ∈ {1, 2, · · · , n − 1}, then GPRC FIF shrinks to the classical rational
cubic interplant as:

S(r) =
E(ϑ)
G(ϑ)

, (4.1)

where

E(ϑ) = λizi(1− ϑ)3 + (λihidi + δizi)ϑ(1− ϑ)2

+(−ωihidi+1 + ρizi+1)ϑ2(1− ϑ) + ωizi+1ϑ
3,

G(ϑ) = λi(1− ϑ)3 + δiϑ(1− ϑ)2 + ρiϑ
2(1− ϑ) + ωiϑ

3,

ϑ = (r − ri)/(ri+1 − ri), r ∈ [r1, rn].

This shows that ifκi → 0, then the graph of GPRC FIF converts the graph of traditional
GPRC given in [4].

(ii) If κi = 0, λi = ωi = 1 andθi = ρi = 1 on each subinterval, then GPRC FIF
Equation 3.2 approaches to the standard cubic Hermite spline.

H(ϑ) = (δiϑ(1− ϑ)2 + λi(1− ϑ)3)zi + (λihiϑ(1− ϑ)2)di

+ (−ωihiϑ
2(1− ϑ))di+1 + (ρiϑ

2(1− ϑ) + ωiϑ
3)zi+1, (4.2)

(iii) GPRC FIFV given in Equation 3.2 can be written in the following form

V (αi(r)) = κiV (r) + [(1− µ)zi + µzi+1 +
A∗i (µ)
qi(µ)

]

− κi[(1− µ)z1 + µzn +
A∗∗i (µ)
qi(µ)

], (4.3)
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where,

A∗i (µ) = hiµ(1− µ)[µ(µρi − δi)∆iµ(1− µ) + λi(1− µ)(di − (1− µ)∆i)
+ ωiµ(∆iµ− di+1)]

A∗∗i (µ) = µ(1− µ)[(ρi − δi)∆∗
nµ(1− µ) + λihi(1− µ)(

d1

ai
− (1− µ)∆∗

n)

+ ωiµ(∆∗
nµ− dn

ai
]

with

∆∗
n = yn − y1.

From above equation, it can be easily concluded that the increase of the either one of the
parametersλi, δi, ρi, ωi, theV converges to the following affine FIF

V (αi(r)) = κiV (r) + (zi − κiz1)(1− µ) + (zi+1 − κizn)µ.

Moreover,κi → 0 thenV approaches to a straight line segment in the interval[ri, ri+1].

5. RESULTS AND DISCUSSION

Further,a procedure to develop a positive curve visualization of positive data through
a hybrid model (GPRC FIF)described in Equation 3.2 is being presented. Even if the
data are positive, random selection of scaling factors and free parameters may not supply
precise visualization of the data. Therefore, certain conditions are required on scaling
factors and free parameters to acquire a specific shape of the data. The following theorem
gives a sufficient condition on free parameters and scaling factor so that FIF preserves
inherit (positive) shape of data with the help of [12].

Theorem 5.1. Suppose{(ri, zi) : i = 1, 2, . . . , n} be a positive data set such thatzi > 0.
Assumingλi > 0, ωi > 0 anddi be the derivative at the knot pointszi. Then, the hybrid
model (GPRC FIF) given in Equation 3.2 preserves inherit (positive) shape of data if the
following conditions on scaling factor and free parameters satisfy.

0 ≤ κi < min{ai, κ
∗
1i, κ

∗
2i}, δi > max{0, δ∗i }, ρi > max{0, ρ∗i },

whereκ∗1i = zi

z1
, κ∗2i = zi+1

zn
,

δ∗i =
λihidi + (rn − r1)λiκid1

(zi − κiz1)
, ρ∗i =

+ωihidi+1 − (rn − r1)ωiκidn

(zi+1 − κizn)
.

Proof. ConsiderV (ρi(r)) = κiV (r) + pi(µ)
qi(µ) , Assuming thatκi ≥ 0, ∀i = 1, 2, . . . , n,

then it can be easily observed thatV (αi(r)) > 0 if pi(µ)
qi(µ) > 0. As all the free parameters

are considered positive, sinceqi(µ) > 0. So, the positivity of the FIF depends only on
numeratorpi(µ). Now from Equation 3.2,pi(µ) can be rewritten as

pi(µ) = â1iµ
3 + â2iµ

2 + â3iµ + â4i, (5.1)



Scientific Data Visualization via Hybrid Model based on Fractal Spline Interpolation 129

where

â1i = (λi + δi)(zi − κiz1) + (ωi − ρi)(zi+1 − κizn) + λihid
∗
i + ωihid

∗
i+1,

â2i = (3λi + 2δi)(zi − κiz1) + (ωi − ρi)(zi+1 − κizn) + 2λihid
∗
i + ωihid

∗
i+1,

â3i = (3λi + δi)(zi − κiz1) + λihid
∗
i ,

â4i = λi(zi − κiz1).

With d∗i = (di − κi

ai
d1), d∗i+1 = (di+1 − κi

ai
dn). By substitutingµ = ζ

ζ+1 in Equation 5.1,
pi(µ) > 0, µ ∈ [0, 1] is equivalent to

p∗i (ζ) = a∗1iζ
3 + a∗2iζ

2 + a∗3iζ + a∗4i, ∀ζ > 0. (5.2)

Here,

a1i
∗ = â1i + â2i + â3i + â4i = ωi(zi+1 − κizn),

a2i
∗ = â2i + 2â3i + 3â4i = ωihi(−di+1 + κi

dn

ai
) + ρi(zi+1 − κizn),

a3i
∗ = â3i + 3â4i = λihi(di − κi

d1

ai
) + δi(zi − κiz1),

a4i
∗ = â4i = λi(zi − κiz1).

From [12], we havep∗i (ζ) > 0, ∀ζ ≥ 0 if and only if (a∗1i, a
∗
2i, a

∗
3i, a

∗
4i) ∈ W1

⋃
W2.

Where,

W1 =
{

(a∗1i, a
∗
2i, a

∗
3i, a

∗
4i), if a∗1i ≥ 0, a∗2i ≥ 0, a∗3i ≥ 0, a∗4i ≥ 0 . ,

W2 =





(a∗1i, a
∗
2i, a

∗
3i, a

∗
4i), if a∗1i ≥ 0, a∗4i ≥ 0;

4a∗1ia
∗
3i

3 + 4a∗4ia
∗
2i

3 + 27a∗1i
2a∗4i

3 + 27a∗1i
2a∗4i

2

−18a∗1ia
∗
2ia

∗
3ia

∗
4i − a∗2i

2a∗3i
2 ≥ 0.

Let (a∗1i, a
∗
2i, a

∗
3i, a

∗
4i) ∈ W1, then we get

a∗4i > 0 ⇔ κi <
zi

z1
, (5.3)

a∗3i > 0 ⇔ δi >
λihi(−di + κi

d1
ai

)
(zi − κiz1)

, (5.4)

a∗2i > 0 ⇔ ρi >
ωihi(di+1 − κi

dn

ai
)

(zi+1 − κizn)
, (5.5)

a∗1i > 0 ⇔ κi <
zi+1

zn
. (5.6)

Due to the rigorous calculation, we omitW2. Hence, Equations (5.3-5.6) completes the
proof of theorem. This theorem certainly converts hybrid model (GPRC FIF) to positive
GPRC FIF. ¤

Corollary 5.2. If κi = 0, ∀i ∈ {1, 2, · · · , n − 1} in above Theorem 5.1, the sufficient
condition convert toλi, ωi ≥ 0,

δi >
λihidi

zi
, ρi >

ωihidi+1

zi+1
.
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This is sufficient condition of positivity for classical GPRC[6]. The subsequent examples
shows the legitimacy that how proposed scheme work for the inherit shape (positive) of the
data.

6. GRAPHICAL DEMONSTRATION

In the present section we find the numerical simulations of the proposed hybrid model,for
distinct values of free parameters and their comparison with two existing models.
This section elaborates the validity and versatility of the proposed model through graphical
demonstration of two data sets carry out given below as well as their comparison with two
existing models. In these examples, the derivatives values are calculated through arithmetic
mean method.

Example 6.1. Consider the positive data set enlisted in Table 1. The r-values represent

TABLE 1. Systolic Blood Pressure

i 1 2 3 4 5 6 7 8 9 10 11 12

ri 5 10 15 20 25 30 35 40 45 50 55 60
zi 186 111 99 102 121 105 110 107 103 104 107 105

time in minutes and z-values represent systolic blood pressure. The data of Table 1 is
demonstrated for random selection of parameters produced the curve in Figure 1 withλi =
0.0091, δi = 4.02, ρi = 0.001, ωi = 87.01, κi = 0.9 by Hybrid Model without imposing
proposed scheme. It can be easily detected that Figure 1 shows some negative behavior
of curve which misguides the observer as the original behavior of the data is throughout
positive.To avoid this drawback, Figure 2(withλi = 0.01, ωi = 0.3) is generated through
the hybrid model with proposed scheme of Theorem 5.1, which preserves the shape of data
comprehensively. Figure 3 (withλi = 0.001, ωi = 0.3)and Figure 4 are also constructed
through the aforementioned scheme. Figure 3 not only preserves the shape but also sheds
light on its special feature that it can behave like a classical spline by taking all scaling
factor equal to zero. Furthermore, Figure 4 reveals the flexibility of the model as one
can observe easily that various parameters may lead to different results but preserves the
inherit shape.

Example 6.2. Consider the positive data set enlisted in Table 2. The r-values represents

TABLE 2. Creatinine Level in Human Blood

i 1 2 3 4 5 6

ri 20 30 32 35 37 39
zi 1.51 0.18 1.05 0.6 0.51 0.58

age and z-values represent creatinine level in human blood. The continuous data of Ta-
ble 2 is demonstrated for random selection of parameters produced the curve in Figure 5
with λi = 0.1, δi = 22, ρi = 5, ωi = 0.1, κi = 0.9 by Hybrid Model without imposing
proposed scheme. It can be easily detected that Figure 5 shows some negative behavior of
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FIGURE 1. Non-Positive Hybrid Model
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FIGURE 2. Positive Hybrid Model

curve which misguides the observer as the original behavior of the data is throughout pos-
itive. To avoid this drawback, Figure 6 (withλi = 0.1, ωi = 0.2) is generated through the
hybrid model with proposed scheme of Theorem 1, which preserves the shape of data com-
prehensively. Figure 7(withλi = 0.0001,ωi = 0.0003) and Figure 8 are also constructed
through the aforementioned scheme. Figure 7 not only preserves the shape but also sheds
light on its special feature that it can behave like a classical spline by taking all scaling
factor equal to zero. Furthermore, Figure 8 reveals the flexibility of the model as one can
observe easily that various parameters may lead to different results but preserves the in-
herit shape . So, it is deduced that the execution of proposed scheme is equally efficient for
both discrete and continuous data. Hence, one can say that proposed hybrid scheme have
more flexibility and applicability.
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FIGURE 3. Positive Hybrid Model
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FIGURE 4. Positive Hybrid Model

7. COMPARISONANALYSIS

To ensure the worth of the proposed hybrid model, a comparison of hybrid model after
implementation of the proposed scheme with two existing techniques like, a spline [6] and
SAFIF [3] is discussed here. For this purpose, two data sets of Table 3 and 4 are chosen

TABLE 3. Positive data

i 1 2 3 4 5 6 7 8

ri 1 2 3 8 10 11 12 14
zi 14 8 2 0.8 0.5 0.25 0.40 0.37

from [6] to testify the consistency and the validity of the positive GPRC FIF. Figures 7
and 8 are illustrated in the data of Table 3 whereas Figures 9 and 10 are generated through
Table 4. Comparing the plots in Figures [7-10], one can identify the drawback of the
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FIGURE 5. Non-Positive Hybrid Model
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FIGURE 6. Positive Hybrid Model

TABLE 4. HCL and relative conductance

i 1 2 3 4 5 6 7

ri 2 3 7 8 9 13 14
zi 10 2 3 7 2 3 10

existing schemes clearly, as spline model only works smooth positive curves but do not
read the non-smooth pattern. SAFIF, On the other hand, read the non-smooth pattern, but
does not pledge positive model. However, our proposed positive hybrid model overcome
the problem, and work for both positive and non-smooth structure efficiently. Overall, as
can be concluded from Figures [7-10], proposed hybrid model give the precise results and
could read the inner pattern of data. The results show that the hybrid model is able to yield
comparable and better result than the existing two.
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FIGURE 7. Positive Hybrid Model
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FIGURE 8. Positive Hybrid Model
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FIGURE 9. 1st iteration with choice of parametersλi = ωi = 2.
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FIGURE 10. 2nd iteration with choice of parametersλi = ωi = 2.
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FIGURE 11. 1st iteration with choice of parametersλi = ωi = 0.5.
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FIGURE 12. 2nd iteration with choice of parametersλi = ωi = 0.5.



136 T. Arooj, F. Hussain and M. Z. Hussain

8. CONCLUSION

The work in this paper is devoted towards the development of the novel hybrid model
and its application towards the visualization of scientific data. A hybrid model GPRC
FIF, based on the spline and fractal interpolation, is developed along-with four parameters
and one scaling factor in its description. Fractal is renowned in non-linear data visualiza-
tion,whereas spline interpolation is prevalent to achieve particular shape of the data; the
combination of these two models enhanced the effectiveness of proposed schemes. Data-
dependent constraints are achieved on two parameters and one scaling factor to envisage
the inherit shape(positive) of the data. Remaining two parameters are kept free to upsurge
tractability. The method described here is considered to be efficient and permits users to
enhance required shape of the data. The recommended scheme has numerous exceptional
features like it works for both discrete as well as continuous data. It has also a unique
degree in each subinterval. In addition, numerical experiments have been conducted to il-
lustrate the feasibility and validity of the proposed method. Finally, the hybrid model is
proved to be better than spline and similarly fractal model in nonlinear inherited shape of
data visualization.
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