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Abstract. In this paper, we study the vertical, horizontal and complete
lifts of Frenet formulas given by ( 1. 1 ), the first acceleration pool cen-
ters and the Darboux vector defined on spaceR3 to its tangent space
TR3 = R6. In addition, we include all special cases of the curvature
κ and torsionτ0 of the Frenet formulas with respect to the vertical, hor-
izontal and complete lifts on spaceR3 to its tangent spaceTR3. As a
result of this transformation on spaceR3 to its tangent spaceTR3 , we
can speak about the features of Frenet formulas on spaceTR3 by looking
at the lifting of characteristics{T, N, B, κ, τ0} of the first curve on space
R3. Each curve transformation supported by examples.
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1. INTRODUCTION

In differentiable geometry, the lift method has an important role. Because, it is possible
to generalize it from the differentiable structures from any space (for exampleR3) to ex-
tended spaces(TR3) using the lift function [11, 12, 16, 17, 18, 20]. Also the Riemannian
manifolds and the tangent bundles studyed a lot of authors [1, 2, 3, 8, 9, 10, 11, 14, 15] too.
Thus, the Theorem 1.1 may be extended on spaceR3 to its tangent spaceTR3.

Theorem 1.1. For a unit speed curveα0(t) with curvaturesκ〉0 on R3, the derivatives of
Frenet frame{T, N, B} are given by[7, 18]

T
′
= κN, B′ = −τ0N, N ′ = −κT + τ0B (1. 1)
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whereκ, T,N, B, τ0 is the curvature, tangent vector, normal vector, binormal vector,
torsion of the curveα0(t), respectively.

Definition 1.2. Letα0(t) be a unit speed curve with curvaturesκ〉0 (the curve is a line for
κ = 0,thus we will acceptκ〉0) on R3, and suppose thatT,B, N be respectively tangent,
binormal, normal vectors of Frenet frame on any point ofα0(t). Then, we call that triple
{T,N,B} is Frenet frame such that[5, 7, 18]

T.N = B.N = B.T = 0, (1. 2)

T.T = B.B = N.N = 1,

where ”.” is a dot (scalar) product.
The paper is structured as follows. In section 2, the vertical, horizontal and complete lifts

of a vector field defined on any manifoldM of dimensionm and their lift properties will
be extended to spaceTR3. In section 3, vertical lift of the Theorem 1.1 will be obtained.
Then, smilar to vertical, horizontal and complete lifts analogues of the related theorem are
given. Later, we get the first acceleration pool centers according to vertical, complete and
horizontal lifts of the Frenet formulas onTR3. Finally, the Darboux vector with recpect to
vertical,complete and horizontal lifts onTR3 are defined.

In this study, all geometric objects will be assumed to be of classC∞ and the sum is
taken over repeated indices. Also,v, H andc denote the vertical, horizontal and complete
lifts of any differentiable geometric structures defined onR3 to its tangent spaceTR3.

2. L IFT OF VECTOR FIELD

The vertical lift of a vector fieldξ on the spaceR3 to the extendedTR3(= R6) is the
vector fieldξv ∈ χ(TR3) given by [11, 20]:

ξv(f c) = (ξf)v

wheref c ∈ z(TR3) is the complete lift of thef ∈ z(R3).
The vector fieldξc ∈ χ(TR3) defined by

ξc(f c) = (ξf)c, ∀f ∈ z(R3)

is called the complete lift of a vector fieldξ onR3 to its tangent spaceTR3.
The horizontal lift of a vector fieldξ on spaceR3 to TR3 is the vector fieldξH ∈

χ(TR3) determined by

ξH(fv) = (ξf)v, ∀f ∈ z(R3)

the general properties of vertical, horizontal and complete lifts of a vector field onR3

as follows:
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Proposition 2.1. [18, 19, 20]Let be functions allf, g ∈ z(R3) and vector fields allξ, η ∈
χ(R3). Then, the following equalities are satisfied.

(ξ + η)v = ξv + ηv, (ξ + η)c = ξc + ηc, (ξ + η)H = ξH + ηH ,

(fξ)v = fv + ξv, (fξ)c = f cξv + fvξc, ξv(fv) = 0, (fg)H = 0,

ξc(fv) = ξv(f c) = (ξf)v, ξc(f c) = (ξf)c, ξH(fv) = (ξf)v,

χ(U) = Sp

{
∂

∂xα

}
, χ(TU) = Sp

{
∂

∂xα
,

∂

∂yα

}
,

(
∂

∂xα

)c

=
∂

∂xα
,

(
∂

∂xα

)v

=
∂

∂yα
,

(
∂

∂xα

)H

=
∂

∂xα
− χΓα

β

∂

∂yα
.

whereΓα
β are Christoffel symbols,U andTU are respectively topolgical open sets of

R3 andTR3, fv, f c ∈ z(TR3), ξv, ηv, ξc, ηc, ξH , ηH ∈ χ(TR3), 1 ≤ α, β ≤ 3.

3. L IFTING FRENET FORMULAS

In this section, we compute the vertical, complete and horizontal lifts of Frenet formulas
given by means ofT,N andB Frenet vectors on a unit speed curveα0(t) with curvature
κ〉0 on spaceR3.

3.1. The vertical lifting Frenet formulas. Let T v be vertical lift of tangent vectorT on
a unit speed curveα0(t). Lenght ofT v is given as:

‖T v‖ = T vT v = (TT )v = 1

with respect to product rule, it follows

(T vT v)
′
= 0 = (T v)

′
T v + T v(T v)

′
= 2T v(T v)

′
. (3. 3)

From ( 3. 3 ), (T v)
′

is orthonormal toT v. Similarly, from ( 1. 2 ), we have

T v.Nv = Bv.T v = Bv.Nv = 0. (3. 4)

In this caseT v, Nv andBv are three orthonormal Frenet vectors onα1(t) = (α0(t))v

in the6−dimensional spaceTR3.

Theorem 3.2. For a unit speed curveα1(t) with curvatureκv〉0 on TR3, the derivative’s
vertical lifts of the Frenet vectors are given as follows:

(T
′
)v = κvNv, (B′)v = −(τ0)vNv, (N ′)v = −κvT v + (τ0)vBv

where(τ0)v = −Nv.(B′)v is the torsion of the curveα1(t).

Proof. Let (T
′
)v, (B′)v, (N ′)v be vertical lifts ofT

′
, B′, N ′ which are derivativesT, B,N,

respectively. We already know

(T
′
)v = (κ)vNv

by definition of (N)v, where the curvatureκv describes variation in direction ofT v.
Also, we shall find(B′)v and(N ′)v. In particular, given

(B′)v = a1(T )v + b1(N)v + c1(B)v.
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If it can be identifieda1, b1, c1, B
v, T v andNv then it will be known(B′)v. Firstly, we

have

T v(B′)v = a1T
vT v + b1T

vNv + c1T
vBv

= a1(TT )v + b1(TN)v + c1(TB)v

= a1.1 + b1.0 + c1.0
= a1.

Similarly, Nv.(B′)v = b1 and(B)v.(B′)v = c1. So, it follows

(B′)v = (T v(B′)v)(T )v + ((N)v.(B′)v)(N)v + ((B)v.(B′)v)(B)v.

Now let’s identifyT v(B′)v. We knowT v.(B)v = 0 = (T.B)v, so that

(T v.(B)v)
′
= 0 = (T

′
)v(B)v + T v(B′)v

by vertical lift properties and the product rule.

T v(B′)v = −(T
′
)v(B)v

= −(κ)v(N)v(B)v (from ( 3. 4 ))

a1 = 0.

From0 = ((N)v.(B)v)
′
= (N

′
)v.(B)v + (N)v.(B

′
)v, we get

(N)v.(B
′
)v = −(N

′
)v.(B)v

= −(−κvT v + (τ0)vBv)(B)v

= κvT v(B)v − (τ0)v(Bv)(B)v

b1 = −(τ0)v

From(B.B)v = 1 = (B)v(B)v, we have

0 = ((B
′
)v.(B)v)

′
+ (B)v(B

′
)v

= 2(B)v(B
′
)v.

Thus, we getc1 = (B)v(B
′
)v = 0. From the above,(B

′
)v is calculated as:

(B′)v = −(τ0)v(N)v

Now it will be obtained(N
′
)v for (B

′
)v. So, it follows

(N
′
)v = (T v(N ′)v)(T )v + ((N)v.(N ′)v)(N)v + ((B)v.(N ′)v)(B)v

From the same types of calculations, we get(T.N)v = T vNv = 0,therefore0 =
(T

′
)v.Nv+ T v(N ′)v and(T

′
)v = (κ)vNv so it is obtainedT v(N ′)v = −(κ)vNvNv =

−(κ)v. Also NvNv = 1, so (N)v.(N ′)v = 0, (B)v.(N)v = 0, in this case(B
′
)v.Nv+

Bv(N ′)v = 0. Thus, it is found to be(B)v.(N ′)v = −(B
′
)v.Nv = −Nv.(B

′
)v = (τ0)v

from definition 1.2. Hence,(N ′)v is computed to be

(N
′
)v = −(κ)vT v + (τ0)v(B)v.

Therfore, proof finished. ¤
Corollary 3.3. The Frenet formulas onTR3 are similar structure and apperance toR3

with respect to vertical lifts.
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Example 3.4. A circular helix curveα0(t) on R3 has similar appearance with the curve
α1(t) = (α0(t))v on TR3. Because of the curvatureκ and torsionτ0 of a circular helix
curve is constant[6], we writeκv = κ and(τ0)v = τ0. So, the curveα1(t) = (α0(t))v on
TR3 has the sameκ andτ0.

3.5. The complete and horizontal lifting Frenet formulas.

Theorem 3.6. For a unit speed curveα2(t) = (α0(t))c with curvatureκc〉0 on tangent
spaceTR3, complete lifts of the derivatives of the Frenet frame are given by the following
equalities:

(T
′
)c = κcN c, (N ′)c = −κcT c + (τ0)cBc, (B′)c = −(τ0)cN c, (3. 5)

where(τ0)c = −N c.(B′)c is the torsion of curveα2(t), respectively.

Proof. Similarly to vertical lifts, the theorem easily proved with respect to complete lift.
¤

Corollary 3.7. Let the curvatureκ and torsionτ0 of the curveα0(t) on R3 are non-
constant functions (for example the general helix curve[13]). The Frenet formulas onTR3

are similar structure and apperance toR3 with respect to complete lifts (see the formulas (
1. 1 ) and ( 3. 5 )).

Corollary 3.8. Let the curvatureκ and torsionτ0 of the curveα0(t) on R3 be constant
functions (for example circular helix curve[6]). Then the curveα2(t) = (α0(t))c onTR3

is line with respect to complete lifts.

Proof. Let the curvatureκ and torsionτ0 be constant, we getκc = 0 and(τ0)c = 0. So,
(T

′
)c = 0, (B′)c = 0, (N ′)c = 0 . Then the curveα2(t) = (α0(t))c onTR3 is line. ¤

Corollary 3.9. Let the curvatureκ and torsionτ0 of the curveα0(t) on R3 be constant
and non-constant functions, respectively (for example Salkowski curve[4]). Then the curve
α2(t) = (α0(t))c onTR3 is line with respect to complete lifts.

Proof. Let the curvatureκ be constant, we getκc = 0. So,(T
′
)c = 0, (N ′)c = (τ0)cBc,

(B′)c = −(τ0)cN c . Then the curveα2(t) = (α0(t))c onTR3 is line. ¤

Corollary 3.10. Let the curvatureκ and torsionτ0 of the curveα0(t) on R3 be non-
constant and constant functions, respectively (for example anti Salkowski curve[4]). Then
(T

′
)c = 0 and (N ′)c are on the same tangent plane with respect to complete lifts.

Proof. Let the curvatureτ0 be constant, we get(τ0)c = 0. So,(T
′
)c = κcN c, (N ′)c =

−κcT c, (B′)c = 0 . Then(T
′
)c = 0 and (N ′)c are on the same tangent plane. ¤

Theorem 3.11. All curvesα0(t) onR3 is line onTR3 with respect to horizontal lifts.

Proof. Let the curvatureκ and torsionτ0 of the curveα0(t) be constant or non-constant
functions onR3. For all functions onR3, we write fH = 0 with respect to horizontal
lifts. So,(κ)H = (τ0)H = 0 and(T

′
)H = (B′)H = (N ′)H = 0 on TR3.Consecuently,

α3(t) = (α0(t))H onTR3 is line. ¤
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3.12. The first acceleration pool centers of the Frenet formulas onTR3.

Definition 3.13. The first acceleration pool centers of the Frenet formulas onR3 are given
by the following equalities[7]:

T
′′

= −κ2T + κ
′
N + κ(τ0)B

N
′′

= −κ
′
T − (κ2 + (τ0)2)N − (τ0)

′
B

B
′′

= −κ(τ0)T − (τ0)
′
N − (τ0)2B

whereκ, T, N, B, τ0 is respectively curvature, tangent vector, normal vector, binormal
vector, torsion of the curveα0(t).

It is possible to generalize to the first acceleration pool centers with respect to vertical
lifts of the Frenet formulas on spaceR3 to its tangent spaceTR3 by using lift function
[11, 12, 18, 20].

Theorem 3.14.For a unit speed curveα1(t) with curvaturesκv〉0 onTR3, the first accel-
eration pool centers with respect to vertical lifts of the Frenet formulas onTR3 are given
as:

(T
′′
)v = −(κ2)vT v + (κ

′
)vNv + κv(τ0)vBv

(N
′′
)v = −(κ

′
)vT v − ((κ2)v + ((τ0)2)v)Nv + ((τ0)

′
)vBv

(B
′′
)v = (κ)v(τ0)vT v − ((τ0)

′
)vNv − ((τ0)2)vBv

where(κ)v, (τ0)v is respectively curvature and torsion of the curveα1(t) onTR3.

Proof. From the derivatives of the Theorem 3.2, we get the following results

(T
′′
)v = (κv)

′
Nv + κv(Nv)

′

= (κ
′
)vNv + κv(−κvT v + (τ0)vBv)

= −(κ2)vT v + (κ
′
)vNv + κv(τ0)vBv.

(N
′′
)v = −(κv)

′
T v − κv(T v)

′
+ ((τ0)v)

′
Bv + (τ0)v(Bv)

′

= −(κ
′
)vT v − κv(κvNv) + ((τ0)v)

′
Bv + (τ0)v(−(τ0)vNv)

= −(κ
′
)vT v − ((κ2)v + ((τ0)2)v)Nv + ((τ0)

′
)vBv

(B
′′
)v = −((τ0)v)

′
Nv − (τ0)v(Nv)

′

= −((τ0)v)
′
Nv − (τ0)v(−κvT v + (τ0)vBv)

= (κ)v(τ0)vT v − ((τ0)
′
)vNv − ((τ0)2)vBv

Therfore, proof finished. ¤

Similarly, we can easily prove the following theorem of the first acceleration pool cen-
ters with respect to complete lifts of the Frenet formulas onTR3 .
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Theorem 3.15. Let κc be the curvature of the curveα2(t) = (α0(t))c on TR3. The first
acceleration pool centers according to complete lifts of the Frenet formulas onTR3 are
given as:

(T
′′
)c = −(κ2)cT c + (κ

′
)cN c + κc(τ0)cBc

(N
′′
)c = −(κ

′
)cT c − ((κ2)c + ((τ0)2)c)N c + ((τ0)

′
)cBc

(B
′′
)c = (κ)c(τ0)cT c − ((τ0)

′
)cN c − ((τ0)2)cBc

whereα2(t) = (α0(t))c a unit speed curve with curvature(κ)c onTR3.

Corollary 3.16. Because of the Theorem 3.11, we get(T
′′
)H = (N

′′
)H = (B

′′
)H = 0.

3.17. The Darboux vector with recpect to vertical,horizontal and complete lifts on
TR3.

Definition 3.18. The Darboux vectorω onR3 defined as[7]:

ω = (τ0, 0, κ) = τ0T + κB

ω is a vector in the plane(T,B) and perpendicular to the normal vector of the curve.ω
vector field has the following properties:

ω.T = τ0, ω.N = 0, ω.B = κ

ωΛT = T
′
, ωΛN = N

′
, ωΛB = B

′
.

Theorem 3.19. Let α1(t) be a unit speed curve with curvatures(κ)v〉0 on TR3, Theωv

Darboux vector with respect to vertical lifts onTR3 defined as:

ωv = (τ0)v, 0, κv)
= (τ0)vT v + (κ)vBv

ωv vector field has the following properties

ωv.T v = (τ0)v, ωv.Nv = 0, ωv.Bv = (κ)v

ωvΛT v = (T
′
)v, ωvΛNv = (N

′
)v, ωvΛBv = (B

′
)v.

Proof. From Proposition 1 and Definition 3, we get the following results

ωv.T v = ((τ0)vT v + (κ)vBv).T v

= (τ0)v(T.T )v + (κ)v(B.T )v

= (τ0)v.1 + (κ)v.0
= (τ0)v

ωv.(N)v = ((τ0)vT v + (κ)vBv).(N)v

= (τ0)v(T.N)v + (κ)v(B.N)v

= 0
ωv.(B)v = ((τ0)vT v + (κ)vBv).(B)v

= (τ0)v(T.B)v + (κ)v(B.B)v

= (κ)v

¤
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Theorem 3.20. If we definedωc Darboux vector with respect to complete lifts onTR3,
thenωc = ((τ0)c, 0, (κ)c) = (τ0)cT c + (κ)cBc. we get

ωc.T c = ωc.(N)c = ωc.(B)c = 0

whereκ andτ0 non-constant functions.

Proof. The results get easily from ( 1. 2 ) and Proposition 1. ¤

Corollary 3.21. Let the curvatureκ and torsionτ0 be constant, we getκc = 0 and(τ0)c =
0. So,ωc = 0. Then the Darboux vectorωc with respect to complete lifts onTR3 is point.

Corollary 3.22. Let the curvatureκ and torsionτ0 of the curveα0(t) on R3 be non-
constant and constant functions, respectively. Then we getωc = (κ)cBc (the Darboux
vectorωc linear dependencyBc onTR3.

Corollary 3.23. Let the curvatureκ and torsionτ0 of the curveα0(t) on R3 be constant
and non-constant functions, respectively. Then we getωc = (τ0)cT c (the Darboux vector
ωc linear dependencyT c onTR3.

Theorem 3.24. Darboux vectorωH with respect to horizontal lifts onTR3 is a point
everytime.

Proof. From Theorem 3.11, we get(κ)H = (τ0)H = 0. So,ωH = 0 onTR3 with respect
to horizontal lifts. The theorem is proved. ¤

4. CONCLUSION

In this study, using lifting methods, we see that it may be generalized the Frenet formulas
given by ( 1. 1 ), the first acceleration pool centers and the Darboux vector defined on space
R3 to its tangent spaceTR3 = R6.
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