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Abstract. We consider a problem of calculus of variations motivated by
the model of a tank filled with a given volume of liquid and draining
through a small orifice according to Torricelli’s law. We prove that given
any length of time, some tank exists which drains in this time. Our main
interest in this optimization (i.e., minimization and maximization) prob-
lem is that the usual Euler–Lagrange equation may not be used here, at
least directly. We consider optimization for some similar physical mod-
els where Torricelli’s law has to be modified. We also study optimization
problems on the star graphs that are inspired by our physical model.
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1. INTRODUCTION

When a finite volume V of liquid inside a tank is allowed to drain through an aperture
according to Toricelli’s law, the time it takes to drain will be determined by the tank’s
shape. This is because the only factor influencing the exit speed is the liquid’s height. As
the volume of liquid decreases, the height decreases accordingly, thereby changing the exit
velocity.

For simplicity’s sake, we assumed Torricelli’s Law rather than conditions which engen-
der it. We have effectively stated that our liquid is Newtonian, incompressible, unaffected
by capillary action, non-viscous, and not affected by friction.
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We show that a tank short, wide allows for an arbitrarily large draining time and a tall,
narrow tank can give an arbitrarily small draining time. We also demonstrate that for any
positive number, there exists a tank draining in this many units of time.

Our main interest in this problem is that the usual Euler–Lagrange equation may not be
used here, at least directly. Instead, we proceed as in [4], where the mathematical situation
is similar though not identical. In short, we guess a specific family of tanks that has a
wide range of possible draining times. This family is constructed by revolving the graph
of a continuous function about the y-axis with its lowest point located at the origin. In the
optimization problem, we only consider the form of the tank as the input; the orifice surface
is supposed to be fixed.

In Section 2 we derive the representation of draining time based on Torricelli’s law and
formulate the main result for a single tank. We describe, in Section 3, simple families of
tanks which provided intuition when solving our main theorem in Section 4. Optimization
problems with similar physical models are explored in Section 5. In the sixth and final
section, we study a few optimization problems on star graphs that are inspired by the drain-
ing tank model. Everywhere, by optimization, we understand that both maximization and
minimization are sought.

Finally, our recent search of the literature has revealed several papers dealing with some
general variants of our work, namely [1, 2, 3, 5, 13, 14, 15, 16, 17, 18, 19, 20].

2. PROBLEM STATEMENT

Though Torricelli’s law has its limitations (see Remark 11) we proceed within its scope.
Firstly, we introduce the class of the tanks T we consider. In Cartesian coordinates (x, y),
let the y-axis be the vertical axis of a tank located at y ≥ 0, so that ymin = 0.

Definition 1. The tank T is formed by rotating the curve x = x(y) about the y-axis.
The function x(y) ∈ F := {x(y)

∣∣∣x : [0, y0]→ R+, x(y) ∈ C[0, y0]}.

Here C[0, y0] is the class of continuous functions on [0, y0], y0 the initial height of the
liquid, S the (given) area of the orifice, A(y) the cross sectional area at height y, and v(y)
the velocity of the liquid exiting from the orifice when the height is y (see Fig. 1). The vol-
ume which drains from the orifice in a given time interval dt is given by dV = Sv(y)dt, and
the liquid removed from the top of the tank during this same interval by A(y)dy. Setting
the two expressions equal yields Sv(y)dt = A(y)dy. We find the following differential
equation

dy

dt
=
Sv(y)

A(y)
. (2. 1)

We now apply Torricelli’s law [6]

v(y) = −
√

2gy, (2. 2)

where g is the acceleration due to gravity.
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Torricelli’s Law often contains a flow coefficient [12] that is generally found empirically;
we have set this coefficient to 1 in (2. 2 ) because the specific value of the coefficient does
not affect the results. We denote the time taken for the tank to drain completely as td.
Separating variables in (2. 1 ) we then integrate, keeping in mind that y = y0 when t = 0
and y = 0 when t = td

y0∫
0

A(ŷ)√
ŷ
dŷ = −

0∫
y0

A(ŷ)√
ŷ
dŷ =

td∫
0

S
√

2gdt = S
√

2gtd. (2. 3)

We introduce the notation
Td := S

√
2gtd (2. 4)

and (to the end of Section 5) call this the “draining time.” Thus, we have

Td =

y0∫
0

A(y)
√
y
dy. (2. 5)

Note that the prescribed initial volume of the liquid in the tank is given by

V =

y0∫
0

A(y)dy. (2. 6)

We consider the following

Problem I. Given the initial volume V > 0, find the rangeR(Td) of the functional Td.

ObviouslyR(Td) ⊆ (0,∞).



4 Boris P. Belinskiy and Douglas C. White

Remark 1. We emphasize that the height of the tank is not fixed in our problem. The
case when the height is fixed is considered in [10]. It appears that this constraint, y0 = H,
results in the existence of the positive lower bound for the draining time (which is not
attained though). We cite [10] for this bound

t∗ =
V

S
√

2gH
. (2. 7)

In our case, the lower bound appears to be zero. The author of [10] also finds the draining
time for several specific shapes of tank

Remark 2. The optimization problem for the functional (2. 5 ) subject to the constraint
(2. 6 ) does not belong to the traditional Calculus of Variations [8] in the sense that we
cannot use the Euler–Lagrange equation, at least directly. Instead, we proceed as in [4],
where the situation is similar though not identical. In short, we guess a specific family of
functions x = x(y) ∈ F and find the range R(Td) of the functional Td. Specifically, we
prove the following result.

Theorem 1. We have
R(Td) = (0,∞). (2. 8)

3. DRAINING TIME FOR PARABOLIC AND CYLINDRICAL TANKS

This section shows how we guess the family of tanks satisfying (2. 8 ). Firstly, we
consider a two-parametric family of parabolic tanks Tparab. ∈ F obtained by revolving a
“parabola” of the form x = αyγ , y ∈ [0, y0], about the y-axis (Fig. 2) (here α, γ, y0 are
positive parameters).

In this case, we can find an explicit expression for the draining time by substituting the
cross sectional area at height y, A(y) = πx2 = π(αyγ)2 into the general formulas (2. 5 )



Time Optimization of a Draining Tank and Some Similar Problems on Star Graphs 5

and (2. 6 ) for volume and draining time, so that

V =

y0∫
0

A(y)dy =

y0∫
0

π(αyγ)2dy =
πα2

2γ + 1
y2γ+1
0 (3. 9)

and

Td =

y0∫
0

A(y)
√
y
dy =

y0∫
0

π(αyγ)2
√
y

dy =
πα2

2γ + 1
2

y
2γ+ 1

2
0 . (3. 10)

We eliminate α2 to find the representation for the draining time in terms of γ

Td(γ) = V
2γ + 1

2γ + 1
2

y
− 1

2
0 . (3. 11)

Evaluating its derivative we conclude that the function T (γ) has no critical points. Hence,
its the supremum and infimum occur at the limiting cases, i.e.

sup
Tparab.

Td = lim
γ→0

V (2γ + 1)

2γ + 1
2

y
−1/2
0 = 2V y

−1/2
0 (3. 12)

and

inf
Tparab.

Td = lim
γ→∞

V (2γ + 1)

2γ + 1
2

y
−1/2
0 = V y

−1/2
0 . (3. 13)

In view of monotonicity of Td(γ), we conclude that for any T∗ ∈ (inf Td, supTd) there
exists a unique value of γ∗ ∈ (0,∞) such that Td(γ∗) = T∗. Hence, we find the range of
time for the family Fparab. to be R(T )parab. = (V y

−1/2
0 , 2V y

−1/2
0 ), so that for the given

volume of liquid and height of the tank, the draining time for this family is bounded both
above and below.

We further briefly consider the class of tanks Tcyl. that have a cylindrical shape. Let the
tank have a base area of A0 and a height a for some a ∈ (0, y0]. We intentionally chose
the height of the “parabola” y0 from Section 3 to be the upper limit for the parameter a to
compare the corresponding draining times. The volume and the draining time for the class
Tcyl. are given as follows

V =

a∫
0

A0dy = A0a, so that A0 =
V

a
; Td =

a∫
0

A0√
y
dy = 2V a−1/2. (3. 14)

Obviously, Td(a) is a monotonically decreasing function of a. Thus,

sup
Tcyl.

Td = lim
a→0+

Td(a) = lim
a→0+

2V√
a

=∞; min
Tcyl.

Td = Td(y0) = 2V y
−1/2
0 . (3. 15)

We observe that

R(T )cyl. = [2V y
−1/2
0 , ∞) and sup

Tparab.
Td = min

Tcyl.
Td, (3. 16)

i.e., the minimum of the draining time for the cylindrical tank coincides with the supremum
of the drain time for the parabolic tank. We may guess at this moment that the “optimal”
tank is a combination of a cylindrical and parabolic tanks. The goal of the next section is
to construct this combination.
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4. A FAMILY OF TANKS WITH AN ARBITRARY DRAINING TIME

4.1. Heuristic Approach. Here, we are making the first step toward the proof of Theorem
1; the complete proof to be shown in Subsection 4.2. Specifically, we construct a family of
the curves x(y) ∈ F that is “rich” enough to produce a broader range of draining times than
in Section 3. The corresponding tanks imitate a combination of a cylinder and paraboloid.
We proceed in terms of the cross section A(y). We let this function A(y) be a multiple of
some positive power of y, yξ, to imitate a paraboloid, and to cause a rapid decrease in area
after a certain point, we let this function be a multiple of another function ωε(y) := e−y

2/ε

with ε > 0 to be a parameter. Hence, we define the two-parametric family of functions
A(y) by

A(y) := Cεy
ξe−y

2/ε, or x(y) :=
(
Cεy

ξe−y
2/ε
)1/2

/
√
π, y ∈ [0, y0] (4. 17)

with a positive constant factor Cε and the corresponding set of tanks as Tε ∈ F . We find
for the corresponding volume that is supposed to be given

V =

y0∫
0

A(y)dy =

y0∫
0

yξCεe
−y2/εdy, so that Cε = V/

y0∫
0

yξe−y
2/εdy . (4. 18)

Furthermore, we have
y0∫
0

yξe−y
2/εdy = ε(ξ+1)/2

y0/
√
ε∫

0

sξe−s
2

ds.

The integrand here has a very small “tail”. Hence, its asymptotic approximation (as ε→ 0)
is given by the integral over the semi-axis [0,∞), i.e.,

ε(ξ+1)/2

y0/
√
ε∫

0

sξe−s
2

ds ∼ ε(ξ+1)/2

∞∫
0

sξe−s
2

ds =
1

2
ε(ξ+1)/2 Γ

(ξ + 1

2

)
. (4. 19)

Here and below, we use the Bachmann–Landau symbol for the asymptotic relation, f ∼ g.
Formulas (4. 18 ) and (4. 19 ) imply the asymptotic expression for Cε is

Cε ∼
V

ε(ξ+1)/2
∞∫
0

sξe−s2ds

=
2V

Γ
(
ξ+1
2

) ε−(ξ+1)/2. (4. 20)

Similarly, we find an asymptotic representation for the draining time (2. 5 )

Td(ε) =

y0∫
0

A(y)
√
y
dy =

y0∫
0

yξCεe
−y2/ε
√
y

dy

∼ Cε

∞∫
0

(s
√
ε)ξ−1/2e−s

2√
εds

=
1

2
Cεε

(ξ+1/2)/2Γ
(ξ

2
+

1

4

)
.

(4. 21)
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Excluding Cε from (4. 20 ) and (4. 21 ), we obtain

Td(ε) ∼
2V

Γ
(
ξ+1
2

)ε−(ξ+1)/2ε(ξ+
1
2 )/2

1

2
Γ
(ξ

2
+

1

4

)

= V
Γ( ξ2 + 1

4 )

Γ( ξ+1
2 )

ε−1/4

= v ε−1/4,

(4. 22)

where

v := V
Γ( ξ2 + 1

4 )

Γ( ξ+1
2 )

.

Hence, we come to the asymptotic expression for draining time

Td(ε) ∼ v ε−1/4 (4. 23)

with a positive constant v. Since the asymptotic formula for draining time is a monotonic
function of ε, we may hope that

sup
Tε

Td(ε) = lim
ε→0

v ε−1/4 =∞. (4. 24)

Remark 3. It is imperative to note that the asymptotic formulas above were constructed
only for small ε and we may not claim these formulas for all ε > 0.

4.2. A Family of Tanks with an Arbitrarily Large or Small Draining Time—Proof of
Theorem 1. We construct a family of tanks Tε,∗ similar to one in Subsection 4.1, for which
Theorem 1 holds. The family is defined by the cross-section area

A(y) := Cε,∗y
ξe−y

2/ε, y ∈ [0, y∗], (4. 25)
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where

y∗ :=

√
ξε

2
, Cε :=

V

ε(ξ+1)/2

√
ξ/2∫
0

sξe−s2ds

. (4. 26)

We will show that the corresponding draining time is

Td(ε) =

V

√
ξ/2∫
0

sξ−
1
2 e−s

2

ds

√
ξ/2∫
0

sξe−s2ds

ε−1/4. (4. 27)

Proof of Theorem 1. On noting that much of the preceding expression is a constant in ε
that depends on ξ, we find the following expression for draining time

Td(ε) = K1(ξ)ε−1/4 with K1(ξ) :=

V

√
ξ/2∫
0

sξ−
1
2 e−s

2

ds

√
ξ/2∫
0

sξe−s2ds

. (4. 28)

Since Td(ε) is a monotonically decreasing function of the parameter ε, the supremum and
infimum occur at the limiting cases. Hence,

inf Td(ε) = lim
ε→∞

K1(ξ)ε−1/4 = 0, supTd(ε) = lim
ε→0

K1(ξ)ε−1/4 =∞ (4. 29)

and

R(Td) = (0,∞). (4. 30)

This completes the proof of the theorem.

We now explain the origin of the family defined by (4. 26 ). It is formed by the monoton-
ically increasing part of the curve (4. 17 ), i.e. we restrict the domain [0, y0] to [0, y∗] with
the appropriately chosen y∗. Geometrically, we are “cutting” the top from the tank consid-
ered in Subsection 4.1. As a result, we prove that the asymptotic representation (4. 23 ) for
the draining time is actually exact for the constructed family, and this implies Theorem 1.
So, we consider the family of tanks Tε,∗ defined by the cross-section area (4. 25 ) and find
the critical point y∗ of A(y) as follows

d

dy
A(y)

∣∣∣
y=y∗

= Cε,∗
d

dy
yξe−y

2/ε
∣∣∣
y=y∗

= Cε,∗ y
ξ−1
∗ e−y

2
∗/ε
(
ξ − 2y2∗

ε

)
= 0, (4. 31)
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so that the expression (4. 26 ) for y∗ holds. We further proceed as in Subsection 4.1 and
find similarly to (4. 21 )

T (ε) =

y∗∫
0

A(y)
√
y
dy =

√
ξε/2∫
0

yξCε,∗e
−y2/ε

√
y

dy = Cε,∗

√
ξε/2∫
0

yξ−1/2e−y
2/εdy

= C∗ε

√
ξ/2∫

0

(s
√
ε)ξ−1/2e−s

2√
εds = C∗ε ε

(ξ+1/2)/2

√
ξ/2∫

0

sξ−
1
2 e−s

2

ds.

(4. 32)

Substituting y0 = y∗ into the volume constraint (2. 6 ) or (4. 18 ) yields

Cε,∗ =
V

√
ξε/2∫
0

yξe−y2/εdy

=
V

ε(ξ+1)/2

√
ξ/2∫
0

sξe−s2ds

. (4. 33)

Excluding the constant Cε,∗ from (4. 32 ) and (4. 33 ) we find the representation (4. 27 )
for the draining time

Td(ε) =

V ε(ξ+1/2)/2

√
ξ/2∫
0

sξ−
1
2 e−s

2

ds

ε(ξ+1)/2

√
ξ/2∫
0

sξe−s2ds

=

V

√
ξ/2∫
0

sξ−
1
2 e−s

2

ds

√
ξ/2∫
0

sξe−s2ds

ε−1/4

which allows to prove Theorem 1 (see the beginning of this section).
We now briefly discuss the dual problem to Problem I.

Problem II. Given the draining time T > 0, find the rangeR(V ) of the functional V .

We use the same family Tε,∗ of tanks as in 4. 17 ,A(y) := Ĉε y
ξ ê−y

2/ε; y ∈ [0, y∗], y∗ =√
ξε/2, though the factor Ĉε 6= Cε.

Theorem 2. Given the draining time T > 0, the range of the volumes of the family Tε,∗
of tanks satisfiesR(V ) = (0,∞).

We do not give the proof which is similar to one of Theorem 1. It appears that

supTd(ε) = lim
ε→∞

K2(ξ)ε1/4 =∞, inf Td(ε) = lim
ε→0

K2(ξ)ε1/4 = 0 (4. 34)

and

R(V ) = (0,∞) (4. 35)

with some function K2(ξ) independent of ε.
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5. OPTIMAL TANKS WHEN TORRICELLI’S LAW IS NOT VALID

We briefly discuss here two physical models for which our use of Torricelli’s law is
invalid, and hence, the preceding optimization methods must be changed.

Model 1. We consider the optimization of the draining time of a granular solid through
an orifice. We use the formula for the flow rate W of the granular solid through an orifice
at the bottom W = ζρBg

1/2(S − kd)5/2 (see [9], Ch. 7, pp. 105–106), where ζ and k are
positive constants, d is the diameter of a grain, ρB is the effective density of the granulate,
and S is the area of the orifice. Hence, we observe that the flow of a granular solid does
not depend on the height and Torricelli’s law does not apply. The draining time is derived
as follows. The volume which drains from the orifice in a given time interval dt can be
equated to the flow rate W . Thus, we have dV/dt = −W . This leads to the following
expression for the draining time Td = V/W = V/ζρBg

1/2(S − kd)5/2, which, for the
given volume V, is a constant. Since the draining time is independent of height and form
of a tank, the optimization problem is trivial.

Model 2. The authors of [7] describe a model that takes into account the effect of the
pressure head on the area of the orifice of a draining tank of liquid. They show that the
area of an orifice increases linearly with pressure as described by the equation S(y) =
S0 + my where S0 is the area of the orifice when there is no pressure and m is a positive
(small) constant of the model. The authors further apply Torricelli’s law and introduce a
dimensionless constant known as the coefficient of discharge Cd to obtain the volume flow
rate out of the tank. We rewrite their equation in terms of the infinitesimal element of
volume

dV = −Cd(S0 +my)
√

2gy dt = A(y)dy. (5. 36)

Rearranging terms and integrating yields

Cd
√

2g

td∫
0

dt =

y0∫
0

A(y)

(S0 +my)
√
y
dy. (5. 37)

Unlike in the previous sections, it is natural to define the draining time to be T̂d :=
Cd
√

2g td. We find

T̂d =

y0∫
0

A(y)dy

(S0 +my)
√
y
. (5. 38)

Theorem 3. R(T̂d) = (0,∞).

The proof is based on the inequalities

1

S0 +my0

y0∫
0

A(y)dy
√
y
≤

y0∫
0

A(y)dy

(S0 +my)
√
y

= T̂d ≤
1

S0

y0∫
0

A(y)dy
√
y

. (5. 39)
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Here, the right and left sides are proportional to the draining time Td (see Section 4).
By Theorem 1, and the squeeze theorem, the functional T̂d has the same range as the
corresponding functional in Section 4.

Remark 4. In [11] Torricelli’s law is rederived with the help of Bernoulli’s principle for
the case of unsteady flow from a cylindrical tank having the cross section S0 through the
orifice S is found in terms of a hypergeometric function. In our model, we assume that
S0/S � 1. The leading term of the series for the time found in [11] coincides with the
draining time (3. 14 ). We leave the optimization problem for this model for the future
project.

6. SIMILAR OPTIMIZATION PROBLEM ON THE STAR GRAPHS

Part I. We firstly consider a set {Tk}nk=1 of identically shaped and oriented tanks filled
to the same height where for every i ∈ {1, ..., n−1}, tank Ti drains into tank Ti+1 (see Fig.
4). It is easy to see that if liquid starts leaking from all tanks simultaneously, the amount
of liquid in the tanks will look, qualitatively, like on Fig. 5 since every tank Tk, k ≥ 2 is
losing the same amount of the liquid as it is gaining from the previous tank Tk−1 until the
previous tank is empty. These tanks may be viewed as a directed path graph Pn (see Fig.
4b). Having this analogy in mind we now ignore the physical nature of the original model
and consider the star graph K1,n, n > 1 that we call the star for brevity (see Fig. 6). We
denote J := {1, ..., n}, equip every edge ej , j ∈ J with the coordinates {y : 0 ≤ y ≤ yj},
so that all edges have the common vertex yj = 0, j ∈ J . In terms of the original physical
model, liquid is draining through an orifice located at y = 0.

T1

?
T 2

...
?

T n

?

(a)

• T1
?

• T2

...

?

• Tn
?

(b)

FIGURE 4. (a) Draining from a set of identically shaped and oriented
tanks Tk, k = 1, 2, ..., n. (b) Draining from the graph Pn.

Though we do not present a physical model similar to our original model that could be
described by this problem, we use the words “tank”, “orifice”, “draining time”, etc. for
brevity. On each edge of this graph, we introduce the function Aj(y) : [0, yj ] → R+ of
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the class F (see Definition 1). We further introduce the class of vector-functions A :=
(A1(y), ..., An(y)) and two functionals on this class, the “volume” and “draining time”

V [A] :=
∑
J

∫ yj

0

Aj(y)dy, T ∗[A] :=
∑
J

∫ yj

0

Aj(y)
√
y
dy. (6. 40)

-, t

6V1
@
@
@
@@

-, t

V2

6

@
@
@
@@

-, t

V3

6

@
@
@
@@

...

-, t

Vn

6

@
@
@
@@

FIGURE 5. Draining from the graph Pn. Vk is the volume of liquid in
the tank Tk, k = 1, 2, ..., n as a function of time t.

0 -y1e1

?yn

en

�
�
�
�
�
���
y2

e2

�
�
�

��+y4

· · ·
e4

A
A
A
AAK
y3

e3

FIGURE 6. Draining from the star graph

Here and below we use the abbreviation
∑
J :=

∑
j∈J . Note that T ∗[A] represents the

total draining time of the set of tanks. We consider the following problem.
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Problem III. Given the volume V > 0, find the rangeR(T ) of the functional T ∗.

Theorem 4. R(T ∗) = (0,∞).

Proof. We proceed as in Section 4.1. We specify the functions

Aj(y) := Cj y
ξje−y

2/ε, y ∈ [0, yj ], j ∈ J (6. 41)

with some positive parameters ξj , Cj , ε and yj :=
√
ξjε/2 and find, in a similar manner

to the proof of Theorem 1

V [A] = V =
∑
J

Cjε
(ξj+1)/2 vj , vj :=

∫ √ξj/2
0

sξje−s
2

ds (6. 42)

and

T ∗[A] =
∑
J

Cjε
(ξ+1/2)/2 τj , τj :=

∫ √ξj/2
0

sξj−1/2e−s
2

ds. (6. 43)

We let
aj := Cjε

(ξ+1)/2 vj
V
, so that

∑
J

aj = 1, (6. 44)

and
pj :=

τj
vj
, so that ε1/4T ∗[A] =

∑
J

pj aj . (6. 45)

Furthermore, we have

min
j
pj = min

j
pj
∑
J

aj ≤
∑
J

pj aj ≤ max
j
pj
∑
J

aj = max
j
pj . (6. 46)

We conclude that
min
j
pjε
−1/4 ≤ T ∗[A] ≤ max

j
pjε
−1/4. (6. 47)

The quantities pj are positive and do not depend on ε. We observe that the inequalities
(6. 47 ) are similar to the relation (4. 28 ).

Remark 5. It may be seen that the common reason for Theorems 1–4 to be valid is the
presence, due to Torricelli’s law, of the factor

√
y in the denominator of the integrals for the

draining time. It may be checked though that these theorems are still valid if we (formally)
change this factor for yβ with any exponent β > 0. Moreover, in Problem III we may
assume that exponents β are different for different edges.

Remark 6. For an arbitrary acyclic graph, the “orifices” are the support or interior ver-
tices, so that every “tank” (the edge) has either one “orifice” or two “orifices”. So, we
proceed in a slightly different fashion. For the “tanks” with one “orifice”, we know that
the “draining time” may be arbitrarily small or arbitrarily large. We now consider an edge
with two support (or interior) vertices, introduce the local coordinate y ∈ [−y0, y0] on it
and introduce the “draining time” as follows (see Remark 5)

T :=

∫ y0

−y0

A(y)

[(y0 − y)(y0 + y)]1/4
dy. (6. 48)
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If we take A(y) = Cε(y
2
0 − y2)ξ/2 e−

y20−y2

ε with some constant Cε, exclude Cε from the
formulas for T and V and make substitution y = y0 sin θ, we find

T = K3(ξ)ε−1/4, where K3(ξ) :=

∫ π/2
−π/2 cosξ+1/2 θ · e−

y20
ε sin2 θ dθ∫ π/2

−π/2 cosξ+1 θ · e−
y20
ε sin2 θ dθ

. (6. 49)

We observe that for y0 =
√
ε, the “draining time” has the same rangeR(Td) = (0,∞).

Remark 7. The optimization problem for a graph that contains a cycle is more compli-
cated. We explain this by considering a cycle that consists of four edges, {e1, e2, e3, e4}
that imitate the identical tanks with the agreement that the edge e1 is draining into the edge
e2, e2 is draining into e3, e3 is draining into e4, and e4 is draining into e1 (see Fig. 7). We
assume that the tanks have the same amount of liquid at the initial moment and start drain-
ing simultaneously. Using the basic equations (2. 1 ), (2. 2 ), in the appropriate system of
units, we come to the Cauchy problem for the system of the differential equations

A(y1)dy1 = −√y1 +
√
y4,

A(y2)dy2 = −√y2 +
√
y1,

A(y3)dy3 = −√y3 +
√
y2,

A(y4)dy4 = −√y4 +
√
y3,

with
y1(0) = y2(0) = y3(0) = y4(0) = 1.

The symmetry of the physical system implies that, for any given moment of time, the level
of the liquid is the same in all tanks. Indeed, y1(t) = y2(t) = y3(t) = y4(t) ≡ 1 is the
solution of this Cauchy problem. Hence, the optimization problem makes no sense for this
graph.

Remark 8. If we split the “orifice” (located at the vertex y = 0) into n pieces, so that
each of the edges is “draining” through its own “orifice”, Theorem 4 still holds. But a
modification of this model leads us to another optimization problem with variable size of
the “orifices”.
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Part II. We now consider another optimization problem when the form of all “tanks”
is given but the size of their “orifices” is not given. We need the following version of the
Cauchy–Schwartz inequality.

Lemma 1. For any positive numbers {τj}nj=1 and positive numbers {sj}nj=1 satisfying∑
J sj = 1 the inequality (∑

J

√
τj

)2

≤
∑
J

τj
sj

(6. 50)

holds. The equality holds iff the vectors (τ1, ..., τn) and (s1, ..., sn) are proportional.

Proof. We have

∑
J

√
τj ≤

(∑
J

sj

)1/2(∑
J

τj
sj

)1/2

=

(∑
J

τj
sj

)1/2

.

Introduce the set of all sequences of n positive numbers {sj}, j ∈ J, such that∑
J

sj = 1, all sj > 0. (6. 51)

We denote the area of the orifice for the j−th edge to be Sj := sjS, so that
∑
J Sj = S >

0 is given. The “real draining time” for this edge may be defined as follows (see Section 2)

td,j =
1√

2gSj

∫ yj

0

Aj(y)
√
y

dy.

Previously, we scaled the time according to (2. 4 ). Since the size of the “orifices” may be
different for different “tanks”, we have to change the scaling (2. 4 ). We define “draining
time” for the jth edge as follows

T ∗∗j := S
√

2g td,j =
1

sj

∫ yj

0

Aj(y)
√
y
dy (6. 52)

and introduce the functional that we call ”draining time for the star”

T ∗∗[A] :=
∑
J

T ∗∗j =
∑
J

1

sj

∫ yj

0

Aj(y)
√
y
dy. (6. 53)

Problem IV. Given the constraint (6. 51 ), find the rangeR(T ∗∗) of the functional T ∗∗.

Theorem 5. The range R(T ∗∗) of the “draining time for the star” subject to the con-
straint (6. 51 ) satisfies

R(T ∗∗) = [m,∞), (6. 54)

where

m :=

(∑
J

√
τj

)2

with τj :=

∫ yj

0

Aj(y)
√
y

dy, j ∈ J. (6. 55)
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Proof. We find the “draining time” using (6. 53 ) and (6. 55 ),

T ∗∗[A] =
∑
J

τj
sj

:= F (s1, ..., sn), (6. 56)

so that we need to optimize the function F (s1, ..., sn), subject to the constraint (6. 51 ).
We use Lagrange multipliers method to find the critical point (s01, ..., s

0
n),

s0j =

√
τj∑

J

√
τj
.

Hence,

F (s01, ..., s
0
n) =

(∑
J

√
τj

)2

. (6. 57)

Lemma 1, along with (6. 57 ), implies that

min
sj

T ∗∗[A] = min
sj

F (s1, ..., sn) =

(∑
J

√
τj

)2

. (6. 58)

It is clear that if we choose one of sj to be arbitrarily small, then the function F (s1, ..., sn)
becomes arbitrarily large, so that supA T ∗∗ =∞.

Remark 9. We note that the range R(T ∗∗) = [m,∞) 6= (0,∞) as we might expect
based on all previous results of this paper. This is because the values of τj in (6. 55 ) are
supposed to be given, unlike in all previous optimization problems. The range is bounded
below since we can only make m as small as the given edges in the star allow. But it is not
bounded above since we can make at least one sj arbitrarily small.

7. CONCLUSION

We consider some isoperimetric problems motivated by the physical problem of finding
time taken for a tank filled with liquid of the given volume V to drain from a small orifice at
the bottom. For a tank, the draining time is derived from Torricelli’s law. We find that this
time has a range ofR(T ) = (0,∞), i.e. for any given time T ∈ (0,∞), there exists a tank
with this draining time. The proof is based on asymptotic analysis. We consider the dual
problem and prove that for the given draining time T , the range of the corresponding values
of the volume is similar, R(V ) = (0,∞). We consider two models for which Torricelli’s
law takes an atypical form and discuss the optimization problems for the draining time of
each. We also consider optimization problems on star graphs motivated by the previous
physical model.

Remark 10. The results of Theorem 1 have the following physical meaning. Torricelli’s
law results from Bernoulli’s principle [6], which states that the sum of potential and kinetic
energy per unit volume, and pressure is constant (the energy conservation law). At the top
of the tank, the velocity of a cross sectional area is small (all energy is potential); at the
bottom the height is taken to be zero and the velocity is maximal (all energy is kinetic).
Hence, velocity will be faster when the liquid level is higher. The larger velocity (and
hence, larger volume flow rate) in a tall tank results in a smaller draining time than that of



Time Optimization of a Draining Tank and Some Similar Problems on Star Graphs 17

a short, wide tank with the same volume. We conclude that the supremum of the draining
time occurs for a short, wide tank and the infimum occurs for a tall, thin tank.

Remark 11. The assumption that the velocity of the exiting liquid be given by Torricelli’s
law is crucial for the physical model. Yet, liquid may not drain at all out of a long narrow
tube due to the effects of capillary action (which we ignore from the very beginning). We
also have to assume that the area of the orifice S is sufficiently smaller that A(y), and that
the velocity is small at the liquid’s surface. We conclude that the result inf Td(ε) = 0
(Section 4) is pure mathematical. The same observation might be made for the result in
[10].
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