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Abstract. The Lipschitz class of functions was introduced by McFadden
while Zygmund developed the method of trigonometric approximation of
periodic functions and their Fourier series. Recently, researchers have es-
tablished many results on different product summability transformations
for approximating Fourier series and their conjugate series of periodic
functions of different Lipschitz classes. However, in the present article
we established a result for approximating conjugate series of a signal of
class Lip(β, p) by the product of Euler and matrix summability.
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1. INTRODUCTION

Determination of trigonometric approximation of signals has a rich history associated
with several names of mathematicians in the field of theory of summability. Authors like
Alexits [1], Bernstein [3], Chandra [4,5], Sahney and Goel [37] and several others have de-
termined the trigonometric approximation of functions of Lipschitz class and their Fourier
series by Nörlund and Cesàro transformations of their Fourier series. Subsequently, deal-
ing with functions of class Lip α, 0 < α ≤ 1, for p ≥ 1, Lip(α, p), Lip(ξ(τ), p), and
W(Lr, ξ(τ)) classes, several researchers like Khan [8], Qureshi [36], Rhoades [35] and
others established many results on different summability methods for approximating the
functions. By the end of twentieth century many researchers such as Khan [9-11], Mittal et
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al. [30] and Misra et al. [14] studied degree of trigonometric approximation of functions of
various classes using different types of summability transformations. Later, using Nörlund
and generalized Nörlund means researchers like Khan [8, 10], Lal and Nigam [13] studied
for finding approximations of signals of Lip(β, p) as well as W(Lr, ξ(x)) classes. Fol-
lowing these results, using linear operators Mishra et al. [24, 25] and Mishra [26] studied
approximating signals of classW(Lp, ξ(x)). There after using product summability means
(E, s)(C, 1), Nigam and Sharma [31] estimated the degree of conjugate series of a signal
of classW(ξ(x), p).

Working in this direction, Nigam and Sharma [31, 32], Khatri et al. [12], Chandra [6]
and V. Mishra et al. [27-29] have also studied the approximation of functions of different
classes using different product summability methods and their applications.

Following this, M.Misra et al. [15-21] and U.K.Misra et al. [22, 23] also have estab-
lished certain results on different product summability methods. In the present study, we
continued the work in a similar direction by extending the work of Padhy et al. [33] and
obtained a result on the product mean (E, s)A.

2. NOTATIONS AND PRELIMINARIES

Let
∑
an be a series and the sequence {sn} its partial sums. If A = (amn)∞×∞ is a

lower triangular matrix, then the transformation

tn =

n∑
i=0

anisi, n ε N (2. 1)

represents the A-mean of the sequence {sn}. Further, if

tn → s, as n→∞ (2. 2)

then we say that the series
∑
an is matrix summable to s [34].

It is known that matrix summability orA-summability is regular if and only if the following
conditions are satisfying [34]

(i) sup
m

∞∑
n=0

|amn| < K,where K is an absolute constant

(ii) lim
m→∞

amk = 0, for every k = 1, 2, . . .

(iii) lim
m→∞

∞∑
n=0

amn = 1.

For any sequence {sn}, the sequence τn defined by the transformation

τn =
1

(1 + r)n

n∑
v=0

(
n

v

)
rn−vsv , r > 0 (2. 3)

is called the (E, r) mean of {sn} [39]. The series
∑
an is summable to s by (E, r) method,

if
lim
n→∞

τn = s. (2. 4)
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It is also known, (E, r) method is regular [7]. Now we define the sequencce of (E, r)-
transform of the sequence {tn} of matrix transform of {sn} as follows:

Tn =
1

(1 + r)n

n∑
i=0

(
n

i

)
rn−iti =

1

(1 + r)n

n∑
i=0

(
n

i

)
rn−i

{
i∑

v=0

aivsv

}
(2. 5)

The series
∑
an is summable to s by the (E, r)A-summablity method, if

Tn → s, as n→∞, (2. 6)

where A = (amn) is lower triangular.

For a 2π periodic signal f(t) which is integrable in the sense of Lebesgue over (−π, π),
the series

∞∑
k=0

Ak(x) ≡ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) (2. 7)

is called Fourier series of the signal f at x and

∞∑
k=1

Bk(x) ≡
∞∑
k=1

(bk cos kx− ak sin kx) , (2. 8)

where a0 =
1

π

∫ π

−π
f(x) dx, ak =

1

π

∫ π

−π
f(x) cos kx dx, bk =

1

π

∫ π

−π
f(x) sin kx dx

is called its conjugate series.

2.1. Definition-1. The L∞-norm, of the function f : R → R usually denoted by ‖f‖∞,
is

‖f‖∞ = sup
xεR
|f(x)| (2. 9)

and Lv-norm, usually denoted as ‖f‖v , defined over [0, 2π] is defined as

‖f‖v =

(∫ 2π

0

|f(x)|v
) 1
v

, v ≥ 1. (2. 10)

2.2. Definition-2. The degree of approximation of a real function f by a trigonometric
polynomial Pk(x) of degree k under the norm ‖ . ‖∞ is given by

‖ Pk − f ‖∞= sup
xεR
|Pk(x)− f(x)| (2. 11)

and the degree of approximation Ek(f) of a function f ∈ Lv is defined by

Ek(f) = min
Pk
‖Pk − f‖v . (2. 12)
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2.3. Definition-3. A real valued signal f is of Lipschitz class usually denoted by f ∈
Lip α, if for 0 < α ≤ 1

|f(y + θ)− f(y)| = O(|θ|α). (2. 13)

If (∫ 2π

0

|f(y + θ)− f(y)|p dx
) 1
p

= O(|θ|β), (2. 14)

where θ > 0, 0 < y ≤ 2π, p ≥ 1, 0 < β ≤ 1 then we say f ∈ Lip(β, p).

2.4. Notations. Throughout this article the following notations will be used

ψ(t) =
1

2
{f(y + t)− f(y − t)} , (2. 15)

S̄m(f ;x) =

m∑
k=1

Bk(x) (2. 16)

κ̄m(t) =
1

π(r + 1)m

m∑
k=0

(
m

k

)
rm−k

{
k∑
v=0

akv
cos t2 − cos(v + 1

2 )t

sin t
2

}
(2. 17)

(E, q)A−method is regular, where A is a matrix. (2. 18)

3. KNOWN RESULTS

In 2010, Nigam and Sharma [32] proved

Theorem 3.1. If the signal f is 2π-periodic and of class Lipβ, then its approximation by
(E, s)(C, 1) method, of Fourier series of

∑∞
n=0An(t) of f is given by∥∥EsnC1

n − f
∥∥
∞ = O

(
1

(1 + n)β

)
, 0 < β < 1,

where EsnC
1
n represents (E, s) mean of (C, 1) mean of Sn(f ;x).

For the function f ∈ Lip(α, l), l ≥ 1, Padhy et.al. [33] established a result using
(E, s)A-method of Fourier series of f .

Theorem 3.2. If the signal f is 2π-periodic and of class Lip(β, l), then approximation by

(E, s)A method, of the Fourier series of f satisfies ‖Tn − f‖∞ = O
(

1

(1+n)β−
1
l

)
, 0 <

β < 1, l ≥ 1, where Tn is as defined in (2.5).

In the next section, we have established a parallel theorem for conjugate series, which
is our main result.
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4. MAIN THEOREM

Theorem 4.1. If the signal f is 2π-periodic and of class Lip (β, l), then the approximation

by (E, s)A-method of the conjugate series of f is of order ‖Tn − f‖∞ =O
(

1

(1+n)β−
1
l

)
,

0 < β < 1, l ≥ 1, where Tn is as defined in (2.5) and A is a lower-triangular matrix.

5. REQUIRED LEMMA

The followoing lemma is necessary for our proof:

Lemma 5.1.

|κ̄n(t)| =
{

O(n), 0 ≤ t ≤ 1
1+n

O( 1
t ),

1
1+n ≤ t ≤ π

The proof of the Lemma is in [32].

6. PROOF OF THEOREM 4.1

Using Riemann-Lebesgue theorem we get

S̄n(f ;x)− f(x) =
2

π

∫ π

0

ψ(u)
cos u2 − cos(n+ 1

2 )u

2 sin u
2

du

Following Titchmarsh [38] and using (2.1), the A-transform of n-th partial sum of the
conjugate series of f(x), we get

un − f(x) =
2

π

∫ π

0

ψ(u)

n∑
k=0

ank
cos u2 − cos(k + 1

2 )u

2 sin u
2

du,

Denoting (E, s)A transformation of the n-th partial sum by τn, we get the

|Tn − f(x)| = 2

π(1 + s)n

∫ π

0

ψ(u)

n∑
i=0

(
n

i

)
rn−i

{
i∑

v=0

aiv
cos u2 − cos(v + 1

2 )u

2 sin u
2

}
du

=

∫ π

0

ψ(u)κ̄n(u)du

=

∫ 1
1+n

0

ψ(u)κ̄n(u)du+

∫ π

1
1+n

ψ(u)κ̄n(u)du

(A) = I1 + I2

Now, we have

|I1| ≤

∣∣∣∣∣
∫ 1

1+n

0

ψ(u)κ̄n(u)du

∣∣∣∣∣
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Using Hölder’s inequality, by taking 1
l + 1

m = 1, we get

|I1| =

(∫ 1
1+n

0

|ψ(u)|l dt

) 1
l
(∫ 1

1+n

0

|κ̄n(u)|m du

) 1
m

= O

(
1

(1 + n)β

)(∫ 1
1+n

0

nmdu

) 1
m

= O

(
1

(1 + n)β

)(
nm

1 + n

) 1
m

= O

(
1

(1 + n)
1
m−1+β

)
(B) = O

(
1

(1 + n)β−
1
l

)
Next, similarly to the estimation of |I1|, we obtain with the help of Lemma - 5.1

|I2| ≤
∫ π

1
1+n

|ψ(u)||κ̄n(u)|du

=

(∫ π

1
1+n

|ψ(u)|l du

) 1
l
(∫ π

1
1+n

|κ̄n(u)|m du

) 1
m

= O

(
1

(1 + n)β

)(∫ π

1
1+n

(
1

u

)m
du

) 1
m

= O

(
1

(1 + n)β

)([
u−m+1

]π
1

1+n

) 1
m

= O

(
1

(1 + n)β

)(
1

1 + n

) 1−m
m

= O

(
1

(1 + n)β−1+
1
m

)
(C) = O

(
1

(1 + n)β−
1
l

)
Now from (B) and (C), we get

|Tn − f(x)| = O

(
1

(1 + n)β−
1
l

)
, 0 < β < 1, l ≥ 1

Therefore,

‖Tn − f(x)‖ = sup
−π<x<π

O

(
1

(1 + n)β−
1
l

)
= O

(
1

(1 + n)β−
1
l

)
, 0 < β < 1, l ≥ 1.

This ends the proof.
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