Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 51(7)(2019) pp. 35-41

Vk- Super Vertex Out-Magic Labeling of Digraphs

Sivagnanam Mutharasu¹, Duraisamy Kumar², N. Mary Bernard³

^{1,2} Department of Mathematics, C. B. M. College, Coimbatore - 641 042 Tamil Nadu, India. ³ Department of Mathematics, TDMNS College, T. Kallikulam - 627 113, Tamil Nadu, India. Email: skannanmunna@yahoo.com¹, dkumarcnc@gmail.com², nmarybernard@gmail.com³

Received: 21 June, 2018 / Accepted: 08 February, 2019 / Published online: 01 May, 2019

Abstract. Let D(V, A) be a digraph of order p and size q. For an integer $k \ge 1$ and for $v \in V(D)$, let $w_k(v) = \sum_{e \in E_k(v)} f(e)$, where $E_k(v)$

is the set containing all arcs which are at distance at most k from v. The digraph D is said to be E_k -regular with regularity r if and only if $|E_k(e)| = r$ for some integer $r \ge 1$ and for all $e \in A(D)$. A V_k -super vertex out-magic labeling (V_k -SVOML) is an one-to-one onto function $f: V(D) \cup A(D) \to \{1, 2, \dots, p+q\}$ such that $f(V(D)) = \{1, 2, \dots, p\}$ and there exists a positive integer M such that $f(v) + w_k(v) = M$, $\forall v \in V(D)$. A digraph that admits a V_k -SVOML is called V_k -super vertex out-magic (V_k -SVOM). This paper contains several properties of V_k -SVOML in digraphs. We characterized the digraphs which are V_k -SVOM. Also, the magic constant for E_k -regular graphs has been obtained. Further, we characterized the unidirectional cycles and union of unidirectional cycles which are V_2 -SVOM.

AMS (MOS) Subject Classification Codes: 05C78

Key Words: V_k -super vertex out-magic labeling, E_k -regular graphs, digraph labeling.

1. INTRODUCTION

Let D(V, A) be a digraph of order p and size q. For a vertex $v \in V(D)$, the outneighborhood of v is defined by $O(v) = \{u : (v, u) \in A(D)\}$. The out-degree of v is defined by $deq^+(v) = |O(v)|$. For basic definition and results we follow [3].

A graph labeling is an assignment of integers (usually positive or non-negative integers), which assigned to vertices /or edges /or both into a set of numbers. Lot of labelings have been defined and studied by many authors and an excellent survey of graph labeling can be found in [5].

The magic labeling in graphs was introduced by Sedlàček [11]. A magic labeling is an one-to-one onto function f from E(G) onto $\{1, 2, ..., q\}$ such that for all $v \in V(G)$, $\sum_{u \in N(v)} f(uv) = M \text{ for some positive integer } M.$

In 2002, MacDougall et al. [8] introduced the notion of vertex magic total labeling (VMTL) in graphs. Let G(V, E) be a graph with |V(G)| = p and |E(G)| = q. A one-to-one map f from $E(G) \cup V(G)$ onto the integers $\{1, 2, \ldots, p+q\}$ is a VMTL if there is a constant M so that for every vertex $x \in V(G)$, $f(x) + \sum f(xy) = M$, where the sum is taken over all vertices y adjacent to x.

In 2004, MacDougall et al. [9] defined the super vertex-magic total labeling (SVMTL) in graphs. They call a VMTL is *super* if $f(V(G)) = \{1, 2, ..., p\}$. In this labeling, the smallest labels are assigned to the vertices.

Another labeling parameter called 'Super Edge magic total labeling' with different meaning has been defined and studied in [1, 6, 7, 10].

In 2008, Bloom et al. [2] extended the idea of magic labeling to digraphs.

The V-super vertex out-magic total labeling (V-SVOMTL) in digraph was introduced by Durga Devi et al. [4]. A V-SVOMTL is an one-to-one onto function $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, p+q\}$ such that $f(V(D)) = \{1, 2, \dots, p\}$ and for every $v \in V(D)$, $f(v) + \sum_{u \in O(v)} f((u, v)) = M$ for some positive integer M.

This paper generalizes the definition of V-SVOMTL and defines a new labeling called V_k -super vertex out-magic labeling (V_k -SVOML). For an integer $k \ge 1$, let $E_k(u) = \{(u, v) : d(u, v) \le k\}$ and $w_k(u) = \sum_{e \in E_k(u)} f(e)$. Note that if (u, v) is an directed edge,

then d(u, v) = 1. A V_k -SVOML is an one-to-one onto function $f : V(D) \cup A(D) \rightarrow \{1, 2, \dots, p + q\}$ such that $f(V(D)) = \{1, 2, \dots, p\}$ and there exists a positive integer M such that $f(v) + w_k(v) = M$, $\forall v \in V(D)$. A digraph that admits a V_k -SVOML is called V_k -super vertex out-magic (V_k -SVOM). If x_1 and y_1 are vertices of a digraph D then the distance from x_1 to y_1 in D, is the minimum length of a directed $x_1 - y_1$ path if y_1 is reachable from x_1 , and otherwise it is taken as infinity.

Let k be an integer such that $1 \le k \le \operatorname{diam}(D) + 1$. For $e = (u, v) \in A(D)$, we define $E_k(e) = \{w \in V(D) : 1 \le d(u, w) \le k\}$. The digraph D is said to be E_k -regular with regularity r if and only if $|E_k(e)| = r$ for some integer $r \ge 1$ and for all $e \in A(D)$. Consider the digraph D(see Figure 1). In $D, E_2(v_2) = \{e_2, e_3, e_8, e_9\}, E_2(v_7) = \{e_7, e_4\}, E_2(e_1) = \{v_2, v_3, v_8\}$ and $E_2(e_7) = \{v_4, v_5\}$.

Observation 1.1. Let D be a digraph of order $p(\geq 2)$. If $E_k(x_1) = E_k(x_2)$ for $x_1, x_2 \in V(D)$ ($x_1 \neq x_2$), then D is not V_k -SVOM.

Proof. Let D be a digraph of order $p(\geq 2)$. Suppose $E_k(x_1) = E_k(x_2)$ for a pair of vertices x_1 and x_2 ($x_1 \neq x_2$) of D. Then $f(x_1) + w_k(x_1) \neq f(x_2) + w_k(x_2)$ for any V_k -SVOML f of D (since f is one to one). In this case, D does not admit V_k -SVOML. \Box

A digraph D is said to be strongly connected if every pair of vertices are mutually reachable.

Remark 1.2. Let D be a strongly connected digraph. If $k \ge diam(D) + 1$, then $E_k(u) = A(D)$ for every $u \in V(D)$.

Proof. Let $u \in V(D)$. Then $E_k(u) \subseteq A(D)$. Let $(x, y) \in A(D)$. Since D is strongly connected, there exist directed u-x path and u-y path in D with length $\leq diam(D)$. Then there exist a directed u-x-y path of length $\leq diam(D)+1 \leq k$ and so $(x, y) \in E_k(u)$. Thus $A(D) \subseteq E_k(u)$.

2. V_k -SVOML IN DIGRAPHS

This section will explore the basic properties of V_k -SVOML.

Theorem 2.1. Let D be a digraph and f_1 be an one-to-one function from A(D) onto $\{p+1, p+2, \ldots, p+q\}$. Then f_1 can be extended to a V_k -SVOML of D if and only if $\{w_k(v) : v \in V(D)\}$ is a set of p successive integers.

Proof. Assume that $\{w_k(v) : v \in V(D)\}$ is a set of p successive integers. Let $t = min\{w_k(v) : v \in V(D)\}$. Define $f_2 : V(D) \cup A(D) \rightarrow \{1, 2, \dots, p+q\}$ as $f_2((u, v)) = f_1((u, v))$ for $(u, v) \in A(D)$ and $f_2(v) = t + p - w_k(v)$ for $v \in V(D)$. Since $\{w_k(v) - t : v \in V(D)\}$ is a set of successive integers, $f_2(V(D)) = \{1, 2, \dots, p\}$. Also $f_2(A(D)) = \{p+1, p+2, \dots, p+q\}$. Hence f_2 is V_k -SVOML of D with magic constant M = t + p. Conversely, assume that f_1 can be extended to a V_k -SVOML f_2 of D. Let M be the magic constant. Since $f_1(v) + w_k(v) = M$ for every $v \in V(D)$, $\{w_k(v) : v \in V(D)\} = \{M - p, M - p + 1, \dots, M - 1\}$ is a set of p successive integers.

Lemma 2.2. If a digraph D(p,q) is V_k -SVOM and E_k -regular with regularity r, then the magic constant $M = \frac{p+1}{2} + rq + \frac{r}{p} \frac{q(q+1)}{2}$.

Proof. Let f be a V_k -SVOML of D and M be the magic constant. Note that $M = f(x) + w_k(x)$ for all $x \in V(D)$. Summing over all $x \in V(D)$, we get $pM = \sum_{x \in V(D)} f(x) + \sum_{x \in V(D)} \sum_{e \in E_k(x)} f(e) = \sum_{x \in V(D)} f(x) + r \sum_{e \in A(D)} f(e)$ (since each edge is counted exactly r times in the sum $\sum_{x \in V(D)} \sum_{e \in E_k(x)} f(e)$).

Since $f(V(D)) = \{1, 2, \dots, p\}$ and $f(A(D)) = \{p + 1, p + 2, \dots, p + q\},$ $pM = \frac{p(p+1)}{2} + r(pq) + r\frac{q(q+1)}{2}$ and so $M = \frac{p+1}{2} + rq + \frac{r}{p}\frac{q(q+1)}{2}.$

Lemma 2.2 gives the magic constant for E_k -regular graphs which are V_k -SVOM for $k \ge 1$. In 2017, Durga Devi et al. [4] obtained the following result which gives the magic constant for all digraphs which admit V-SVOMTL.

Lemma 2.3. [4] If a non-trivial digraph D is V-SVOMT, then the magic constant M is given by $M = q + \frac{p+1}{2} + \frac{q(q+1)}{2p}$.

When k = 1, we have $r = |E_1(e)| = 1$ for all $e \in A(D)$. The above result is a corollary of Lemma 2.2 when k = 1.

Theorem 2.4. For $k \ge 2$, trees are not V_k -SVOM.

Proof. Suppose there is a tree that is V_k -SVOM. Let $V(D) = \{v_1, v_2, \ldots, v_p\}$. Since D is a tree, q = p - 1 and so at least one vertex of D has out-degree zero, let it be v_p . Then by Observation 1.1, v_p is the only vertex of D with out-degree zero. Since $w_k(v_p) = 0$, by Theorem 2.1, $\{w_k(v) : v \in V(D)\} = \{0, 1, 2, \ldots, p - 1\}$, which is impossible since $f(A) = \{p, p + 1, p + 2, p + 3, \ldots, 2p - 1\}$.

Remark 2.5. From Theorem 2.4, we observe that a connected digraph is not V_k -SVOM $(k \ge 2)$ when q = p - 1. Thus if a connected digraph is V_k -SVOM $(k \ge 2)$, then $q \ge p$.

Corollary 2.6. Let D be a connected E_k -regular digraph $(k \ge 2)$ with regularity r. If D is V_k -SVOM, then $M \ge \frac{p+1}{2} + \frac{r(3p+1)}{2}$.

Proof. When q = p - 1, D is a tree. By Theorem 2.4, D is not V_k -SVOM. Assume that $q \ge p$. Then by Lemma 2.2, $M \ge \frac{p+1}{2} + \frac{r(3p+1)}{2}$.

Remark 2.7. From Corollary 2.6, we get $M = \frac{p+1}{2} + \frac{r(3p+1)}{2}$ when p = q. For example consider the following digraph $\overrightarrow{C_7}$.

Figure 2: V_2 -SVOML of $\overrightarrow{C_7}$

The unidirectional cycle $\overrightarrow{C_7}$ is E_2 -regular with regularity r = 2 and V_2 -SVOM with magic constant $M = \frac{p+1}{2} + \frac{r(3p+1)}{2} = 26$.

3. V_2 -SVOML of unidirectional cycles and union of unidirectional cycles

Durga Devi et al. [4] proved that all the unidirectional cycles admit V-SVOMTL. When k = 2, not all the unidirectional cycles admit V_2 -SVOML. The next result characterize the unidirectional cycles which are V_2 -SVOM.

Theorem 3.1. Let $n(\geq 3)$ be an integer. Then the unidirectional cycle $\overrightarrow{C_n}$ is V_2 -SVOM if and only if n is an odd integer.

Proof. Suppose there exists a V_2 -SVOML f of $\overrightarrow{C_n}$. Since $|E_2(e)| = r = 2$ for all $e \in A(\overrightarrow{C_n})$, by taking k = 2, p = q = n and r = 2 in Lemma 2.2, we get $M = \frac{7n+3}{2}$. If n is an even integer, then M is not an integer, a contradiction. Thus n must be odd. Conversely, assume that n is odd and $n \geq 3$. Let $V(\overrightarrow{C_n}) = \{a_i : 1 \leq i \leq n\}$ and

Conversely, assume that n is odd and $n \ge 0$. Let $V(\mathbb{O}_n) = \{a_i : 1 \le i \le n\}$ and $A(\overline{C_n}) = \{(a_i, a_{i\oplus_n 1}) : 1 \le i \le n\}$, where the operation \oplus_n stands for addition modulo n. Define $f : V(D) \cup A(D) \to \{1, 2, ..., 2n\}$ as follows:

 $\begin{array}{l} f((a_i,a_{i+1})) = n + \frac{i+1}{2} \text{ when } i \text{ is odd and } f((a_i,a_{i+1})) = \frac{3n+1}{2} + \frac{i}{2} \text{ when } i \text{ is even. Then } \\ \{w_2(a_n), w_2(a_1), \dots, w_2(a_n-1)\} = \{\frac{5n+3}{2}, \frac{5n+5}{2}, \dots, \frac{7n+1}{2}\}, \text{ is a set of } n \text{ successive integers. Thus by Theorem 2.1, } \overrightarrow{C_n} \text{ is } V_2\text{-SVOM.} \end{array}$

Theorem 3.2. Let $m \ge 1$ be an integer. Then $m\overrightarrow{C_n}$ is V_2 -SVOM if and only if m and n are odd integers.

Proof. Suppose there exists a V_2 -SVOML f of $m\overrightarrow{C_n}$. Since $|E_2(e)| = r = 2$ for all $e \in A(m\overrightarrow{C_n})$, by taking k = 2, p = q = mn and r = 2 in Lemma 2.2, we get $M = \frac{7mn+3}{2}$. Either m or n is even then M is not an integer, a contradiction. Thus both m and n are odd integers.

Conversely, assume that *m* and *n* are odd integers. Let $V(m\overrightarrow{C_n}) = V_1 \cup V_2 \cup \ldots \cup V_m$, where $V_i = \{v_i^1, v_i^2, \ldots, v_i^n\}$ for $i = 1, 2, \ldots, m$. Let $A(m\overrightarrow{C_n}) = A_1 \cup A_2 \cup \ldots \cup A_m$, where $A_i = \{e_i^1, e_i^2, \ldots, e_i^n\}$ with $e_i^j = (v_i^j, v_i^{j \oplus n})$ for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$. Define $f : V(D) \cup A(D) \rightarrow \{1, 2, \ldots, 2mn\}$ as follows: For $1 \le i \le \frac{m-1}{2}$,

$$f(v_i^j) = \begin{cases} (n-j)m+1-2i & \text{for } j = 1, 2, \dots n-2 \\ i & \text{for } j = n-1 \\ \frac{2mn-m+1}{2} + i & \text{for } j = n \end{cases}$$

$$f(e_i^j) = \begin{cases} \frac{(j-1)m}{2} + i + nm & \text{for } j = 1, 3, \dots, n-2 \\ \frac{(n+j)m+1}{2} + i + nm & \text{for } j = 2, 4, \dots, n-1 \\ \frac{(n+1)m}{2} + 1 - 2i + nm & \text{for } j = n. \end{cases}$$

For $\frac{m+1}{2} \le i \le m$,

$$f(v_i^j) = \begin{cases} (n+1-j)m+1-2i & \text{for } j = 1, 2, \dots, n-2 \\ i & \text{for } j = n-1 \\ \frac{(2n-3)m+1}{2} + i & \text{for } j = n \end{cases}$$
$$f(e_i^j) = \begin{cases} \frac{(j-1)m}{2} + i + nm & \text{for } j = 1, 3, \dots, n-2 \\ \frac{(n+j-2)m}{2} + \frac{1}{2} + i + nm & \text{for } j = 2, 4, \dots, n-1 \\ \frac{(n+3)m}{2} + 1 - 2i + nm & \text{for } j = n. \end{cases}$$

To prove $f(v) + w_2(v) = \frac{7mn+3}{2}$ for every vertex $v \in V(m\overrightarrow{C_n})$. Let $v \in V(m\overrightarrow{C_n})$. Then $f(v_i^j) + w_2(v_i^j) = f(v_i^j) + f((v_i^j, v_i^{j+1})) + f((v_i^{j+1}, v_i^{j+2})) = f(v_i^j) + f(e_i^j) + f(e_i^{j+1})$. **Case 1:** Suppose $1 \le i \le \frac{m-1}{2}$ and $j \ge 5$. If *j* is even, then $f(v_i^j) + f(e_i^j) + f(e_i^{j+1}) = (n-j)m + 1 - 2i + \frac{(n+j)m+1}{2} + i + nm + i$

 $\begin{aligned} &\text{If } j \text{ is even, then } f(v_i^j) + f(e_i^j) + f(e_i^{j+1}) = (n-j)m + 1 - 2i + \frac{(n+j)m+1}{2} + i + nm + \frac{jm}{2} + i + nm = nm - jm + 1 + nm + \frac{nm+jm+1}{2} + nm + \frac{jm}{2} = \frac{7mn}{2} + \frac{3}{2} = \frac{7mn+3}{2}. \end{aligned}$ $\begin{aligned} &\text{If } j \text{ is odd, then } f(v_i^j) + f(e_i^j) + f(e_i^{j+1}) = (n-j)m + 1 - 2i + \frac{(j-1)m}{2} + i + nm + \frac{(n+j+1)m+1}{2} + i + nm = 3nm - jm + 1 + \frac{jm-m}{2} + \frac{nm+jm+m+1}{2} = 3nm + 1 + \frac{nm+1}{2} = \frac{7mn+3}{2}. \end{aligned}$

Case 2: Suppose $\frac{m+1}{2} \le i \le m$ and $j \ge 5$. If j is even, then $f(v_i^j) + f(e_i^j) + f(e_i^{j+1}) = (n+1-j)m + 1 - 2i + \frac{(n+j-2)m}{2} + \frac{1}{2} + i + nm + \frac{jm}{2} + i + nm = 3nm + m - jm + 1 + \frac{nm+jm-2m}{2} + \frac{1}{2} + \frac{jm}{2} = \frac{1}{2} + \frac{mm+jm-2m}{2} + \frac{1}{2} + \frac{mm+jm}{2} = \frac{1}{2} + \frac{mm+jm-2m}{2} + \frac{1}{2} + \frac{1$ $\begin{array}{l} 3nm + m - jm + 1 + jm - m + \frac{nm}{2} + \frac{1}{2} = \frac{7mn+3}{2}.\\ \text{If } j \text{ is odd, then } f(v_i^j) + f(e_i^j) + f(e_i^{j+1}) = (n+1-j)m + 1 - 2i + \frac{(j-1)m}{2} + i + nm + \frac{(n+j-1)m}{2} + \frac{1}{2} + i + nm = 3nm + m - jm + 1 + \frac{jm-m}{2} + \frac{nm+jm-m}{2} + \frac{1}{2} = 3nm + m - jm + 1 + \frac{nm}{2} + jm - m + \frac{1}{2} = \frac{7mn+3}{2}.\\ \text{Similarly, } f(v_i^j) + f(e_i^j) + f(e_i^{j+1}) = \frac{7mn+3}{2} \text{ for } 1 \le j \le 4 \text{ and } 1 \le i \le m. \text{ Hence } f \text{ is a } V_2\text{-SVOML of } m\overline{C_n} \text{ with magic constant } M = \frac{7mn+3}{2}. \end{array}$

In the next result, we find the magic constant for unidirectional crown digraph which is not E_k -regular for all $k \ge 2$.

Theorem 3.3. The unidirectional crown digraph $\overrightarrow{C_p^+}$ is V_2 -SVOML if p is odd with magic constant $\frac{15p+3}{2}$.

 $\begin{array}{l} \textit{Proof. Let } V(\overrightarrow{C_p^+}) = \{a_i : 1 \leq i \leq p\} \cup \{b_i : 1 \leq i \leq p\} \text{ and } A(\overrightarrow{C_p^+}) = \{(a_i, a_{i \oplus_p 1}) : 1 \leq i \leq p\} \cup \{(b_i, a_i) : 1 \leq i \leq p\}. \text{ Note that } \left| V(\overrightarrow{C_p^+}) \right| = 2p, \left| A(\overrightarrow{C_p^+}) \right| = 2p. \\ \textbf{Define } f : V(\overrightarrow{C_p^+}) \cup A(\overrightarrow{C_p^+}) \to \{1, 2, \dots, 4p\} \text{ by} \\ f(b_i) = 2p - \frac{i-1}{2} \text{ when } i \text{ is odd, } f(b_i) = \frac{3p-1}{2} - \frac{i-2}{2} \text{ when } i \text{ is even. } f(a_i) = i, 1 \leq i \leq p. \\ \textbf{The arc labels are defined by } f((b_i, a_i)) = 2p + i, 1 \leq i \leq p \text{ and } f((a_i, a_{i \oplus_p 1})) = \frac{7p+2}{2} - \frac{i}{2} \\ \text{when } i \text{ is odd, } f((a_i, a_{i \oplus_p 1})) = 4p - \frac{i-2}{2} \text{ when } i \text{ is even.} \\ \textbf{To prove } f(b_i) + w_2(b_i) = \frac{15p+3}{2} \text{ for } 1 \leq i \leq p \text{ and } b_i \in V(\overrightarrow{C_p^+}). \\ \textbf{Let } b_i \in V(\overrightarrow{C_p^+}). \text{ Then } w_2(b_i) = f((b_i, a_i)) + f((a_i, a_{i \oplus_p 1})). \\ \textbf{Case 1: Suppose } i \text{ is odd, then } f(b_i) + f((b_i, a_i)) + f((a_i, a_{i \oplus_p 1})) \\ = 2p - \frac{i-1}{2} + 2p + i + \frac{7p+2}{2} - \frac{i}{2} = 4p + \frac{7p+3}{2} = \frac{15p+3}{2}. \\ \textbf{Case 2: Suppose } i \text{ is even, then } f(b_i) + f((b_i, a_i)) + f((a_i, a_{i \oplus_p 1})) \\ = \frac{3p-1}{2} - \frac{(i-2)}{2} + 2p + i + 4p - \frac{(i-2)}{2} = \frac{3p-1}{2} + 6p + 2 = \frac{15p+3}{2}. \\ \textbf{Similarly, we can prove that } f(a_i) + w_2(a_i) = \frac{15p+3}{2} \text{ for } 1 \leq i \leq p. \end{array}$

Example 3.4. The above result has been illustrated through an example. Consider the following digraph $D_1 = \overrightarrow{C_5^+}$. Here $V(D_1) = \{a_1, a_2, \dots, a_5\} \cup \{b_1, b_2, \dots, b_5\}$ and $A(D_1) = \{(a_i, a_{i\oplus_51}) : 1 \le i \le 5\} \cup \{(b_i, a_i) : 1 \le i \le 5\}.$

Here p = 5. The function f is given by $f : V(D_1) \cup A(D_1) \to \{1, 2, ..., 20\}$ by $f(b_i) = 2p - \frac{i-1}{2} = 10 - \frac{i-1}{2}$ when i is odd; $f(b_i) = \frac{3p-1}{2} - \frac{i-2}{2} = 7 - \frac{i-2}{2}$ when i is even; and $f(a_i) = i$ for $1 \le i \le 5$. The arc labels are given by $f((b_i, a_i)) = 2p + i = 10 + i, 1 \le i \le 5$; $f((a_i, a_{i\oplus 51})) = \frac{7p+2}{2} - \frac{i}{2} = \frac{37}{2} - \frac{i}{2}$ when i is odd; and $f((a_i, a_{i\oplus 51})) = 4p - \frac{i-1}{2} = 20 - \frac{i-2}{2}$ when i is even. From the above Figure, we can easily see that f is V_2 -SVOML with magic constant M = 39.

CONCLUSION

In this paper, we introduced a new labeling in digraphs, namely V_k -SVOM. We obtain a necessary and sufficient condition for the existence of V_k -SVOML in digraphs and the magic constant for E_k -regular digraphs. Further, we characterized the unidirectional cycles and union of unidirectional cycles which are V_2 -SVOM. In future we study V_k -SVOM $(k \ge 2)$ for directed circulant graph and the generalized de-Bruijn digraph.

4. ACKNOWLEDGMENTS

The authors thank the anonymous referees for their useful comments and suggestions which improved the quality and the readability of the paper.

REFERENCES

- A. Ali, M. Javaid and M. A. Rehman, SEMT Labeling on Disjoint union of Subdivided Stars, Punjab Univ. j. math. 48, No. 1 (2016) 111-122.
- [2] G. S. Bloom, A. Marr and W. D. Wallis, *Magic Digraphs*, J. Combin. Math. Combin. Comput. 65, (2008) 205-212.
- [3] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Elsevier, North Holland, New York, (1986).
- [4] G. Durga Devi, M. Durga and G. Marimuthu, V-Super Vertex Out-Magic Total Labelings of Digraphs, Commun. Korean Math. Soc. 32, No. 2 (2017) 435-445.
- [5] J. A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin. (2018), DS6.
- [6] S. Kanwal and I. Kanwal, SEMT Valuations of Disjoint Union of Combs, Stars and Banana Trees, Punjab Univ. j. math. 50, No. 3 (2018) 131-144.
- [7] A. Khalid. A, G. Sana, M. Khidmat and A. Q. Baig, Super Edge-Magic Deficiency of Disjoint Union of Shrub Tree, Star and Path Graphs, Punjab Univ. j. math. 47, No. 2 (2015) 1-10.
- [8] J. A. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61, (2002) 3-21.
- [9] J. A. MacDougall, M. Miller and K. A. Sugeng, *Super vertex-magic total labelings of graphs*, in: Proceedings of the 15th Australian Workshop on Combinatorial Algorithms (2004) 222-229.
- [10] Salma Kanwal, Aashfa Azam and Zurdat Iftikhar, SEMT Labelings and Deficiencies of Forests with Two Components (II), Punjab Univ. j. math. 51, No. 4 (2019) 1-12.
- [11] J. Sedlàček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice. June (1963) 163-167.