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Abstract. This paper presents the Ulam’s type stability results of non–
linear Hammerstein impulsive integro–dynamic system on time scales with
delay, by using fixed point method. In order to overcome difficulties arises
in our considered model, we pose some conditions along with Lipschitz
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1. INTRODUCTION

In 1940, Ulam gave a famous talk before a mathematical seminar at the university of
Wisconsin [21, 22]. He raised a question in the matter of stability of homomorphisms.
His question was answered by Hyers [9] for the case of Banach spaces, by using direct
method. So this interesting stability concept, initiated by Ulam and Hyers, was named as
Hyers–Ulam stability. In 1978, Rassias [17] extended Hyers–Ulam stability concept by
introducing new function variables and this stability concept was named as Hyers–Ulam–
Rassias stability. For more details and discussions on Hyers–Ulam types stability, see
[10–13, 15, 18–20, 23–27, 29–38].

The theory of time scale analysis has been rising fast and has acknowledged a lot of
interest. The pioneer of this theory was Hilger [8]. He introduced this theory in 1988, in
his PhD thesis. For further details on time scale, see [1–7, 14, 16, 19, 20, 28, 34, 36].

Agarwal et al. [1], in 2014, discussed some results about the stability of linear impul-
sive Volterra integro–dynamic system on time scales. Then Zada et al. [36] extended the
stability results of [1] to non–linear impulsive Volterra integro–delay dynamic system on
time scales. As we studied, no one has checked the Hyers–Ulam stability of non–linear
Hammerstein impulsive integro–delay dynamic systems on time scales. So motivated by
the work done in [36], for the first time, using fixed point method, we obtain Hyers–Ulam
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stability and Hyers–Ulam–Rassias stability of non–linear Hammerstein impulsive integro–
delay dynamic system of the form:

ω∆(t) =M(t)ω(t) + G(t, ω(t), ω(p(t)))

∫ t

t0

g(t, s)H(s, ω(s), ω(p(s)))∆s,

t ∈ TS ′ = TS
0\{t1, t2, · · · , tm},

Γω(tk) = ω(t+k )− ω(t−k ) = Υk(ω(t−k )), k = 1, m

ω(t) = α(t), t ∈ [t0 − λ, t0]TS
,

ω(t0) = α(t0) = ω0,

(1. 1)

where λ > 0, 1, m denotes 1, 2, · · · ,m, the m × m regressive square matrix M(t) is
piecewise continuous on TS0 := [t0, tf ]TS

, tf > s > t0 ≥ 0 and G : TS
0×Rn×Rn → Rn,

H : TS
0 × Rn × Rn → Rn, Υk : Rn → Rn, α : [t0 − λ, t0]TS

→ R, the kernal g :
TS

0×TS0 → Rn are continuous functions. Also the right and left side limits, respectively
ω(t+k ) = limτ→0+ ω(tk + τ) and ω(t−k ) = limτ→0− ω(tk − τ) of ω(t) at tk satisfies
t0 < t1 < t2 < · · · < tm < tm+1 = tf < +∞. Moreover, p : TS

0 → TS
0 ∪ [t0−λ, t0]TS

with p(t) ≤ t, is a continuous delay function.

2. PRELIMINARIES

Any non–empty arbitrary closed subset of real numbers is called time scale, which is
denoted by TS . The forward jump operator Θ : TS → TS is defined as:

Θ(s) = inf{t ∈ TS : t > s}.

The derived form of a time scale TS , denoted by TSz , is defined as:

TS
z =

{
TS\(ρ(supTS), supTS ], if supTS <∞,
TS , if supTS =∞.

The delta derivative and ∆−integral of H : TS → R are respectively defined as

H∆(t) = lim
s→t, s6=Θ(t)

H(Θ(t))−H(s)

Θ(t)− s
, t ∈ TSz,

∫ b

a

H(t)∆t = h(b)−h(a), ∀ a, b ∈ TS ,

where h∆ = H on TSz .
The equation ξ∆(t) = M(t)ξ(t), ξ(t0) = ξ0, t ∈ TS

0 has general solution called
fundamental matrix denoted by ΨM(t, t0).

3. BASIC CONCEPTS AND REMARKS

Let C(TS
0 ∪ [t0 − λ, t0]TS

,Rn) (resp. PC(TS
0 ∪ [t0 − λ, t0]TS

,Rn)) be the Banach
space of continuous functions (resp. the Banach space of piecewise continuous functions)
with the norm
‖ω‖ = supt∈TS

0∪[t0−λ,t0]TS
‖ω(t)‖. Also, we denote PC1(TS

0 ∪ [t0 − λ, t0]TS
,Rn) =

{ω ∈ PC(TS
0 ∪ [t0 − λ, t0]TS

,Rn) : ω∆ ∈ PC(TS
0 ∪ [t0 − λ, t0]TS

,Rn)}, the Banach
space with norm ‖ω‖1 = max{‖ω‖, ‖ω∆‖}.
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Consider the following inequalities in the sequel:

∣∣∣∣∣∣∣∣ζ∆(s)−M(s)ζ(s)−G(s, ζ(s), ζ(p(s)))

∫ s

s0

g(s, t)H(t, ζ(t), ζ(p(t)))∆t

∣∣∣∣∣∣∣∣ ≤ ε;
s ∈ TS ′,∣∣∣∣∣∣∣∣Γζ(sk)−Υk(ζ(s−k ))

∣∣∣∣∣∣∣∣ ≤ ε, k = 1, m

(3. 2)

∣∣∣∣∣∣∣∣ζ∆(s)−M(s)ζ(s)−G(s, ζ(s), ζ(p(s)))

∫ s

s0

g(s, t)H(t, ζ(t), ζ(p(t)))∆t

∣∣∣∣∣∣∣∣ ≤ ϕ(s);

s ∈ TS ′,∣∣∣∣∣∣∣∣Γζ(sk)−Υk(ζ(s−k ))

∣∣∣∣∣∣∣∣ ≤ κ, k = 1, m

(3. 3)
where ϕ : TS

0 ∪ [t0 − λ, t0]TS
→ R+ is right dense continuous and increasing.

Definition 3.1. Equation (1. 1 ) is said to be Hyers–Ulam stable on TS0 ∪ [t0 − λ, t0]TS
if

for every ζ ∈ PC1(TS
0∪[t0−λ, t0]TS

,Rn) satisfying (3. 2 ), there exists ζ0 ∈ PC1(TS
0∪

[t0−λ, t0]TS
,Rn) of (1. 1 ) with ‖ζ0(s)−ζ(s)‖ ≤ Cε, C > 0, ∀ s ∈ TS0∪ [t0−λ, t0]TS

.

Definition 3.2. Equation (1. 1 ) is said to be Hyers–Ulam–Rassias stable on TS0 ∪ [t0 −
λ, t0]TS

if for every ζ ∈ PC1(TS
0 ∪ [t0 − λ, t0]TS

,Rn) that satisfies (3. 3 ), there exists
ζ0 ∈ PC1(TS

0∪ [t0−λ, t0]TS
,Rn) of (1. 1 ) with ‖ζ0(s)−ζ(s)‖ ≤ Cϕ(s), C > 0, ∀ s ∈

TS
0 ∪ [t0 − λ, t0]TS

.

Remark 3.3. A function ζ ∈ PC1(TS
0 ∪ [t0 − λ, t0]TS

,Rn) satisfies (3. 2 ) if and only if
there exist f ∈ PC(TS

0∪ [t0−λ, t0]TS
,Rn) and a finite sequence fk such that ‖f(t)‖ ≤ ε,

∀ t ∈ TS0 ∪ [t0 − λ, t0]TS
, ‖fk‖ ≤ ε, ∀ k = 1, m,

ζ∆(t) =M(t)ζ(t) + G(t, ζ(t), ζ(p(t)))

∫ t

t0

g(t, s)H(s, ζ(s), ζ(p(s)))∆s+ f(t),

ζ(t0) = ζ0, t ∈ TS ′,
Γζ(tk) = Υk(ζ(t−k )) + fk.

(3. 4)

Lemma 3.4. Every solution ζ ∈ PC1(TS
0 ∪ [t0 − λ, t0]TS

,Rn) of (3. 2 ) also satisfies

∣∣∣∣∣∣∣∣ζ(t)− ζ(t0)−ΨM(t, t0)ζ0 −
m∑
j=1

Υ(ζ(t−j ))

−
∫ t

t0

ΨM(t,Θ(s))G(s, ζ(s), ζ(p(s)))

∫ s

s0

g(s, r)H(r, ζ(r), ζ(p(r)))∆r∆s

∣∣∣∣∣∣∣∣ ≤ (m

+ C(tf − t0))ε,

for t ∈ (tk, tk+1] ⊂ TS0, where C is the bound of fundamental matrix ΨM(t,Θ(s)).
Proof: If ζ ∈ PC1(TS

0∪[t0−λ, t0]TS
,Rn) satisfies (3. 2 ), so by Remark 3.3, the solution
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of equation (3. 4 ) is given as

ζ(t) = ζ(t0) + ΨM(t, t0)ζ0 +
m∑
j=1

Υ(ζ(t−j )) +
m∑
i=1

fi

+

∫ t

t0

ΨM(t,Θ(s))G(s, ζ(s), ζ(p(s)))

∫ s

s0

g(s, r)H(r, ζ(r), ζ(p(r)))∆r∆s

+

∫ t

t0

ΨM(t,Θ(s))f(s)∆s.

So, ∣∣∣∣∣∣∣∣ζ(t)− ζ(t0)−ΨM(t, t0)ζ0 −
m∑
j=1

Υ(ζ(t−j ))

−
∫ t

t0

ΨM(t,Θ(s))G(s, ζ(s), ζ(p(s)))

∫ s

s0

g(s, r)H(r, ζ(r), ζ(p(r)))∆r∆s

∣∣∣∣∣∣∣∣
≤

∫ t

t0

‖ΨM(t,Θ(s))‖‖f(s)‖∆s+
m∑
i=1

‖fi‖

≤ (m+ C(t− t0))ε

≤ (m+ C(tf − t0))ε.

Similar remarks also holds for (3. 3 ).

4. MAIN RESULTS

Before proving our result on Hyers–Ulam stability for equation (1. 1 ), we assume the
following conditions:
(C1) H : TS

0×Rn×Rn → Rn is continuous with the Lipschitz condition
∣∣∣∣H(t, x1, x2)−

H(t, y1, y2)
∣∣∣∣ ≤ ∑2

i=1 L‖xi − yi‖, L > 0, for all t ∈ TS0 and xi, yi ∈ Rn, i ∈ {1, 2};
(C2) Υk : Rn → Rn is such that ‖Υk(x1)−Υk(x2)‖ ≤ Mk‖x1 − x2‖, Mk > 0, for all
k ∈ {1, 2, . . . ,m} and x1, x2 ∈ Rn, i ∈ {1, 2};
(C3) For some positive constants C, δ and τ , we have ‖ΨM(t,Θ(s))‖ ≤ C,
‖G(s, ω1(s), ω1(p(s)))−G(s, ω2(s), ω2(p(s)))‖ ≤ δ, ‖g(t, s)‖ ≤ τ for every t, s ∈ TS0;

(C4)

(∑m
j=1Mj + 2

∫ t
t0

∫ s
s0
CδτL∆r∆s

)
< 1;

(C5) ϕ : TS
0 ∪ [t0 − λ, t0]TS

→ R+ is right dense continuous and increasing such that∫ t

t0

ϕ(s)∆s ≤ ρϕ(t), ρ > 0.

Theorem 4.1. If conditions (C1)− (C4) hold, then equation (1. 1 ) has unique solution
in PC1(TS

0 ∪ [t0 − λ, t0]TS
,Rn).
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Proof. Consider an operator Λ : PC(TS
0 ∪ [t0 − λ, t0]TS

,Rn) → PC(TS
0 ∪ [t0 −

λ, t0]TS
,Rn) by

(Λω)(t) =



α(t), t ∈ [t0 − λ, t0]TS
,

α(t0) + ΨM(t, t0)ω0

+

∫ t

t0

ΨM(t,Θ(s))G(s, ω(s), ω(p(s)))

∫ s

s0

g(s, r)H(r, ω(r), ω(p(r)))∆r∆s,

t ∈ (t0, t1],

α(t0) +
i∑

j=1

Υj(ω(t−j )) + ΨM(t, t0)ω0

+

∫ t

t0

ΨM(t,Θ(s))G(s, ω(s), ω(p(s)))

∫ s

s0

g(s, r)H(r, ω(r), ω(p(r)))∆r∆s,

t ∈ (ti, ti+1], i = 1, m.
(4. 5)

We see that for any ω1, ω2 ∈ PC(TS
0 ∪ [t0 − λ, t0]TS

,Rn) and for all t ∈ [t0 − λ, t0]TS
,

we have ‖(Λω1)(t)− (Λω2)(t)‖ = 0. For t ∈ (tm, tm+1], simple calculation shows that

‖(Λω1)(t)− (Λω2)(t)‖ ≤
m∑
j=1

‖Υj(ω1(t−j ))−Υj(ω2(t−j ))‖

+

∫ t

t0

‖ΨM(t,Θ(s))‖
∣∣∣∣∣∣∣∣(G(s, ω1(s), ω1(p(s)))

−G(s, ω2(s), ω2(p(s)))

)∣∣∣∣∣∣∣∣ ∫ s

s0

‖g(s, r)‖
∣∣∣∣∣∣∣∣H(r, ω1(r), ω1(p(r)))

−H(r, ω2(r), ω2(p(r)))

∣∣∣∣∣∣∣∣∆r∆s
≤

m∑
j=1

Mj‖ω1(t−j )− ω2(t−j )‖+

∫ t

t0

Cδ

∫ s

s0

τL‖ω1(r)− ω2(r)‖∆r∆s

+

∫ t

t0

Cδ

∫ s

s0

τL‖ω1(p(r))− ω2(p(r))‖∆r∆s

≤
m∑
j=1

Mj sup
t∈TS

0∪[t0−λ,t0]TS

‖ω1(t)− ω2(t)‖

+2

∫ t

t0

Cδ

∫ s

s0

τL sup
t∈TS

0∪[t0−λ,t0]TS

‖ω1(t)− ω2(t)‖∆r∆s

≤
m∑
j=1

Mj‖ω1 − ω2‖+ 2‖ω1 − ω2‖
∫ t

t0

∫ s

s0

CδτL∆r∆s

≤ ‖ω1 − ω2‖
( m∑
j=1

Mj + 2

∫ t

t0

∫ s

s0

CδτL∆r∆s

)
.
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From (C4), Λ is contractive and so it is a Picard operator on PC(TS
0∪ [t0−λ, t0]TS

,Rn).
The operator Λ has a unique fixed point which is the unique solution of (1. 1 ) (from (4. 5 ))
in PC1(TS

0 ∪ [t0 − λ, t0]TS
,Rn). �

Theorem 4.2. If conditions (C1)− (C4) hold, then equation (1. 1 ) has Hyers–Ulam
stability on TS0 ∪ [t0 − λ, t0]TS

.

Proof. Let ζ ∈ PC1(TS
0 ∪ [t0 − λ, t0]TS

,Rn) satisfies (3. 2 ). The unique solution ω ∈
PC1(TS

0 ∪ [t0 − λ, t0]TS
,Rn) of the dynamic equation

ω∆(t) =M(t)ω(t) + G(t, ω(t), ω(p(t)))

∫ t

t0

g(t, s)H(s, ω(s), ω(p(s)))∆s,

t ∈ TS ′ = TS
0\{t1, t2, · · · , tm},

Γω(tk) = ω(t+k )− ω(t−k ) = Υk(ω(t−k )), k = 1, m,

ω(t) = ζ(t), t ∈ [t0 − λ, t0]TS
,

ω(t0) = ζ(t0) = ω0,

is

ω(t) =



ζ(t), t ∈ [t0 − λ, t0]TS
,

ζ(t0) + ΨM(t, t0)ω0

+

∫ t

t0

ΨM(t,Θ(s))G(s, ω(s), ω(p(s)))

∫ s

s0

g(s, r)H(r, ω(r), ω(p(r)))∆r∆s,

t ∈ (t0, t1],

ζ(t0) +
i∑

j=1

Υj(ω(t−j )) + ΨM(t, t0)ω0

+

∫ t

t0

ΨM(t,Θ(s))G(s, ω(s), ω(p(s)))

∫ s

s0

g(s, r)H(r, ω(r), ω(p(r)))∆r∆s,

t ∈ (ti, ti+1], i = 1, m.

Since for all t ∈ [t0 − λ, t0]TS
, ‖ζ(t)− ω(t)‖ = 0. For t ∈ (tm, tm+1], using Lemma 3.4,

‖ζ(t)− ω(t)‖ ≤
∣∣∣∣∣∣∣∣ζ(t)− ζ(t0)−ΨM(t, t0)ζ0 −

m∑
j=1

Υ(ζ(t−j ))

−
∫ t

t0

ΨM(t,Θ(s))G(s, ζ(s), ζ(p(s)))

∫ s

s0

g(s, r)H(r, ζ(r), ζ(p(r)))∆r∆s

∣∣∣∣∣∣∣∣
+

m∑
j=1

‖Υj(ζ(t−j ))−Υj(ω(t−j ))‖+

∣∣∣∣∣∣∣∣ ∫ t

t0

ΨM(t,Θ(s))

(
G(s, ζ(s), ζ(p(s)))

−G(s, ω(s), ω(p(s)))

)∫ s

s0

g(s, r)

(
H(r, ζ(r), ζ(p(r)))

−H(r, ω(r), ω(p(r)))

)
∆r∆s

∣∣∣∣∣∣∣∣
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≤ (m+ C(tf − t0))ε+
m∑
j=1

Mj‖ζ(t−j )− ω(t−j )‖

+

∫ t

t0

‖ΨM(t,Θ(s))‖
∣∣∣∣∣∣∣∣(G(s, ζ(s), ζ(p(s)))

−G(s, ω(s), ω(p(s)))

)∣∣∣∣∣∣∣∣ ∫ s

s0

‖g(s, r)‖
∣∣∣∣∣∣∣∣(H(r, ζ(r), ζ(p(r)))

−H(r, ω(r), ω(p(r)))

)∣∣∣∣∣∣∣∣∆r∆s
≤ (m+ C(tf − t0))ε+

m∑
j=1

Mj‖ζ(t−j )− ω(t−j )‖+

∫ t

t0

Cδ

∫ s

s0

τL‖ζ(r)

−ω(r)‖∆r∆s+

∫ t

t0

Cδ

∫ s

s0

τL‖ζ(p(r))− ω(p(r))‖∆r∆s.

Now we define an operator T : PC(TS
0 ∪ [t0 − λ, t0]TS

,R+) → PC(TS
0 ∪ [t0 −

λ, t0]TS
,R+) and we will show that it is an increasing Picard operator on PC(TS

0 ∪ [t0 −
λ, t0]TS

,R+),

(Tw)(t) =



0, t ∈ [t0 − λ, t0]TS
,

(tf − t0)ε+

∫ t

t0

Cδ

∫ s

s0

τLw(r)∆r∆s

+

∫ t

t0

Cδ

∫ s

s0

τLw(p(r))∆r∆s, t ∈ (t0, t1],

(i+ tf − t0)ε+
i∑

j=1

Mjw(t−j ) +

∫ t

t0

Cδ

∫ s

s0

τLw(r)∆r∆s

+

∫ t

t0

Cδ

∫ s

s0

τLw(p(r))∆r∆s, t ∈ (ti, ti+1], i = 1, m.

(4. 6)

For t ∈ (tm, tm+1], following the same steps as in Theorem 4.1, we get

‖(Tw1)(t)− (Tw2)(t)‖ ≤ ‖w1 − w2‖
( m∑
j=1

Mj + 2

∫ t

t0

∫ s

s0

CδτL∆r∆s

)
.

From (C4), T is contractive on PC(TS
0∪[t0−λ, t0]TS

,R+). By using Banach contraction
principle, T is Picard operator with unique fixed point w∗ ∈ PC(TS

0 ∪ [t0−λ, t0]TS
,R+)

i.e.

w∗(t) = (m+ C(tf − t0))ε+
m∑
j=1

Mjw
∗(t−j ) +

∫ t

t0

Cδ

∫ s

s0

τLw∗(r)∆r∆s

+

∫ t

t0

Cδ

∫ s

s0

τLw∗(p(r))∆r∆s.
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As w∗ is increasing, so w∗(p(s)) ≤ w∗(s) and we get

w∗(t) ≤ (m+ C(tf − t0))ε+
m∑
j=1

Mjw
∗(t−j ) + 2

∫ t

t0

Cδ

∫ s

s0

τLw∗(r)∆r∆s.

By applying Grönwall’s inequality ( [14], Lemma 2.1), we get

w∗(t) ≤ (m+ C(tf − t0))ε
∏

t0<tj<t

(1 +Mj)eP (t, t0),

where P =
∫ s
s0

2CδτL∆r. By setting w(t) = ‖ζ(t) − ω(t)‖ and from (4. 6 ), w(t) ≤
(Tw)(t) and hence by abstract Grönwall lemma, we get w(t) ≤ w∗(t), so

‖ζ(t)− ω(t)‖ ≤ (m+ C(tf − t0))ε
∏

t0<tj<t

(1 +Mj)eP (t, t0).

�

Similarly, we can prove the following theorem.

Theorem 4.3. If conditions (C1)− (C5) hold, then (1. 1 ) has Hyers–Ulam–Rassias sta-
bility on TS0 ∪ [t0 − λ, t0]TS

.

Remark 4.4. Following the same procedure, results of Hyers–Ulam stability and Hyers–
Ulam–Rassias stability of (1. 1 ) can be extended to noninstantaneous impulses of the
form:

ω∆(t) = A(t)ω(t) + G(t, ω(t), ω(p(t)))

∫ t

t0

G(t, s)H(s, ω(s), ω(p(s)))∆s,

t ∈ (si, ti+1] ∩ TS , i = 0, 1, m,

ω(t) = gi(t, ω(t), ω(p(t))), t ∈ (ti, si] ∩ TS , i = 1, m,

ω(t) = α(t), t ∈ [s0 − λ, s0] ∩ TS ,
ω(t0) = α(t0) = ω0,

where λ > 0,A(t) is a piecewise continuous regressive square matrix, 0 = t0 = s0 < t1 ≤
s1 ≤ t2 < . . . tm ≤ sm ≤ tm ≤ tm+1 = tf are pre–fixed numbers, gi : (ti, si]∩TS×Rn×
Rn → Rn, i = 1, m are continuous functions and G : (si, ti+1] ∩ TS × Rn × Rn → Rn,
H : (si, ti+1] ∩ TS × Rn × Rn → Rn, the kernal G : (si, ti+1] ∩ TS × (si, ti+1] ∩ TS →
Rn, i = 0, 1, m, are continuous functions. Also α : [t0 − λ, t0]TS

→ R is a history
function. Moreover, h : [s0 − λ, tf ] ∩ TS → (si, ti+1] ∩ TS is a delay function with the
consumption of continuity, additionally h(t) ≤ t.

5. CONCLUSION

In this paper, we established the Hyers–Ulam stability and Hyers–Ulam–Rassias stabil-
ity of equation (1. 1 ) with the help of fixed point method together with abstract Grönwall
lemma and Grönwall’s inequality. When finding the exact solution is difficult, then the con-
cept of Hyers–Ulam stability is very important i.e. our results are fruitful in approximation
theory.
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Birkhäuser, Boston, Mass, USA 2001.

[5] M. Bohner and A. Peterson, Advances in dynamics equations on time scales, Birkhäuser, Boston, Mass,
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