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1. INTRODUCTION

The inequalities involving integral operators have a fundamental role in differential
equations concerning Mathematics and many fields of sciences. Furthermore, the inves-
tigation of fractional integral inequalities is also of great significance. Over the past two
decades, a great development in this subject has been contributed by many researchers.
A large bulk of work is available in the literature on the integral inequalities by involv-
ing fractional integral operators and thek-analogues of fractional integral operators, see
[2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 19, 20, 33, 34] and references therein. The further
details and information can be studied in [6]-[30]. Now, we present some existing results
that have motivated our study. Let us begin by the work of Ngo et al. [28], in which the
following result is established

∫ 1

0

gλ+1(y)dy ≥
∫ 1

0

yλg(y)dy (1. 1)

99



100 Siddra Habib and Shahid Mubeen

and ∫ 1

0

gλ+1(y)dy ≥
∫ 1

0

ygλ(y)dy, (1. 2)

provided thatλ > 0 andg > 0 is a continuous function on0 ≤ y ≤ 1 satisfying
∫ 1

τ

g(y)dy ≥
∫ 1

τ

ydy, τ ∈ [0, 1].

In [25], W. J. Liu. et. al. proved that
∫ b

a

gλ+δ(y)dy ≥
∫ b

a

(y − a)λgδ(y)dy, (1. 3)

whereλ > 0, δ > 0 andg > 0 is a continuous function ona ≤ y ≤ b such that
∫ b

τ

gγ(y)dy ≥
∫ b

τ

(y − a)γdy; γ ∈ [a, b].

In [26], the following two theorems were presented by using the results ( 1. 1 )-( 1. 3 )

1.1. Theorem. For two continuous positive functionsg andh on a ≤ y ≤ b whereg is
increasing on[a, b] such thatg ≤ h on [a, b] and g

h is decreasing, then for a convex function
ϕ; ϕ(0) = 0, the relation ∫ b

a
g(y)dy

∫ b

a
h(y)dy

≥
∫ b

a
ϕ(g(y))dy

∫ b

a
ϕ(h(y))dy

(1. 4)

holds. And

1.2. Theorem. For three continuous and positive functionsg1, g2 andh on a ≤ y ≤ b
whereg1 andg2 are increasing on[a, b] such thatg1 ≤ h on [a, b] and g1

h is decreasing,
then for a convex functionϕ; ϕ(0) = 0, the relation

∫ b

a
g1(y)dy

∫ b

a
h(y)dy

≥
∫ b

a
ϕ(g1(y))g2(y)dy

∫ b

a
ϕ(h(y))g2(y)dy

(1. 5)

holds. A considerable attention is given by many researchers in literature to ( 1. 1 ), (
1. 2 ) and ( 1. 3 ). Numerous generalizations, extensions and variations have existed in
the literature,(e.g. [8, 9, 17, 18, 24, 31]). The following studies [27, 29, 31, 32] and the
references therein can be referred for details. In [11], Dahmani has proved the following
integral inequalities by using the fractional Riemann-Liouville integral operator.

1.3. Theorem. For two continuous and positive functionsg andh on a ≤ t ≤ b where
g is increasing on[a, b] such thatg ≤ h on [a, b] and g

h is decreasing, then for a convex
functionϕ; ϕ(0) = 0, the relation

Jα[g(t)]
Jα[h(t)]

≥ Jα[ϕ(g(t))]
Jα[ϕ(h(t))]

, (1. 6)

is valid.
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1.4. Theorem. For three continuous and positive functionsg1, g2 andh on a ≤ t ≤ b
whereg1 andg2 are increasing on[a, b] such thatg1 ≤ h on [a, b] and g1

h is decreasing,
then for a convex functionϕ; ϕ(0) = 0, the relation

Jα[g1(t)]
Jα[h(t)]

≥ Jα[ϕ(g1(t))g2(t)]
Jα[ϕ(h(t))g2(t)]

, (1. 7)

holds. In [10], Chinchane has extended the above integral inequalities by using the Hadamard
fractional integral operator.

1.5. Theorem. For two continuous and positive functionsg andh on a ≤ t ≤ b where
g is increasing on[a, b] such thatg ≤ h on [a, b] and g

h is decreasing, then for a convex
functionϕ; ϕ(0) = 0, the relation

Hα[g(t)]
Hα[h(t)]

≥ Hα[ϕ(g(t))]
Hα[ϕ(h(t))]

, (1. 8)

is valid.

1.6. Theorem. Let g1, g2 andh be three continuous and positive functions ona ≤ t ≤ b
whereg1 andg2 are increasing on[a, b] such thatg1 ≤ h on [a, b] and g1

h is decreasing,
then for any convex functionϕ; ϕ(0) = 0, the relation

Hα[g1(t)]
Hα[h(t)]

≥ Hα[ϕ(g1(t))g2(t)]
Hα[ϕ(h(t))g2(t)]

, (1. 9)

holds. Recently, a new generalized fractional integral operator known as generalizedk−fractional
conformable integral operator and the related integral inequalities are introduced by Habib
et. al. [22].
Motivated by the above work, the objective of the presented manuscript is the general-
ization of some classical integral inequalities of [26] for convex functions by means of
generalizedk−fractional conformable integral operators. Theorem 1 and Theorem 2 can
be concluded for our results as some particular cases.

2. NOTATIONS AND PRELIMINARIES

This section recalls some basic definitions of generalizedk−fractional conformable de-
rivative and integral as given in [22].

2.1. Definition. A functionf(z) is said to be inLp[a, b] if

(∫ b

a

|f(z)|pdz

) 1
p

< ∞, 1 ≤ p < ∞.

2.2. Definition. A functionf(z) is said to be inLp,s[a, b] if

(∫ b

a

|f(z)|pzsdz

) 1
p

< ∞, 1 ≤ p < ∞, s ≥ 0.
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2.3. Definition. If f ∈ L1[a, b]. Then the left conformable fractional integral operator of
orders > 0 defined by Abdeljawad [1] is given by

Is
af(x) =

∫ x

a

(t− a)s−1f(t)dt, 0 ≤ a < x < b ≤ ∞, 0 < s ≤ 1. (2. 10)

2.4. Definition. If f ∈ L1[a, b], Then the right conformable fractional integral operator of
orders > 0 defined by Abdeljawad [1] is given by

Is
b f(x) =

∫ b

x

(b− t)s−1f(t)dt, 0 ≤ a < x < b ≤ ∞, 0 < s ≤ 1. (2. 11)

2.5. Definition. If f ∈ L1,s[a, b], then the generalized left conformable fractional integral
operatorTα,s

a of orderα ∈ C, Re(α) > 0 and0 < s ≤ 1, introduced by Jarad et al. [23] is
defined by

Tα,s
a f(t) =

s1−α

Γ(α)

∫ t

a

((t− a)s − (x− a)s)α−1 (x−a)s−1f(x)dx, 0 ≤ a < t < b ≤ ∞,

(2. 12)
whereΓ is the Euler gamma function.

2.6. Definition. If f ∈ L1,s[a, b], then the generalized right conformable fractional inte-
gral operatorTα,s

b of orderα ∈ C, Re(α) > 0 and0 < s ≤ 1, introduced by Jarad et al.
[23] is defined by

Tα,s
b f(t) =

s1−α

Γ(α)

∫ b

t

((b− x)s − (b− t)s)α−1 (b−x)s−1f(x)dx, 0 ≤ a < t < b ≤ ∞,

(2. 13)
whereΓ is the Euler gamma function.

2.7. Definition. If f ∈ L1,s[a, b], then the(k, s)-fractional conformable integrals (left and
right) [22] of orderα ∈ C, Re(α) > 0 of a continuous functionf(x) on [0,∞), are given
as

Fα,s
a+,kf(t) =

(s)1−
α
k

kΓk(α)

∫ t

a

((t− a)s − (x− a)s)
α
k−1 (x−a)s−1f(x)dx, 0 ≤ a < t < b ≤ ∞,

(2. 14)
and

Fα,s
b−,kf(t) =

(s)1−
α
k

kΓk(α)

∫ b

t

((b− x)s − (b− t)s)
α
k−1 (b−x)s−1f(x)dx, 0 ≤ a < t < b ≤ ∞,

(2. 15)
respectively, if integrals exist, wherek > 0, 0 < s ≤ 1. The existence of the(k, s)-
fractional conformable integrals ( 2. 14 ) and ( 2. 15 ) is proved in [22].

3. FRACTIONAL INTEGRAL INEQUALITIES INVOLVING CONVEX FUNCTIONS

This section contains our main theorems.
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3.1. Theorem. For two continuous and positive functionsg, h on a ≤ t < ∞ whereg
is increasing on[a,∞) such thatg ≤ h on [a,∞) and g

h is decreasing, then for a convex
functionϕ; ϕ(0) = 0, for anyα > 0, β > 0, t > a, the relation

Fα,s
a+,k (g(t))Fβ,s

a+,k (ϕ(h(t))) + Fβ,s
a+,k (g(t))Fα,s

a+,k (ϕ(h(t)))

Fα,s
a+,k (h(t))Fβ,s

a+,k (ϕ(g(t))) + Fβ,s
a+,k (h(t))Fα,s

a+,k (ϕ(g(t)))
≥ 1, (3. 16)

is valid.

Proof. Since the functionϕ is convex satisfyingϕ(0) = 0, so the functionϕ(t)
t is increas-

ing. The functiong is increasing, then the functionϕ(g(t))
g(t) is also increasing. Given that

g(t)
h(t) is decreasing, so for allτ, ρ ∈ [a, t), t > a, we have

(
ϕ(g(τ))

g(τ)
− ϕ(g(ρ))

g(ρ)

) (
g(ρ)
h(ρ)

− g(τ)
h(τ)

)
≥ 0, (3. 17)

implies that

ϕ(g(τ))
g(τ)

g(ρ)
h(ρ)

+
ϕ(g(ρ))

g(ρ)
g(τ)
h(τ)

− ϕ(g(τ))
g(τ)

g(τ)
h(τ)

− ϕ(g(ρ))
g(ρ)

g(ρ)
h(ρ)

≥ 0. (3. 18)

Multiplying ( 3. 18 ) byh(τ)h(ρ), we have

ϕ(g(τ))
g(τ)

g(ρ)h(τ) +
ϕ(g(ρ))

g(ρ)
g(τ)h(ρ)

−ϕ(g(τ))
g(τ)

g(τ)h(ρ)− ϕ(g(ρ))
g(ρ)

g(ρ)h(τ) ≥ 0. (3. 19)

Multiplying ( 3. 19 ) on both sides by 1
kΓk(α)

(
(t−a)s−(τ−a)s

s

)α
k−1

1
(τ−a)1−s , then inte-

grating the resulting identity w.r.tτ from a to t, we get

g(ρ)Fα,s
a+,k

(
ϕ(g(t))

g(t)
h(t)

)
+

ϕ(g(ρ))
g(ρ)

h(ρ)Fα,s
a+,k (g(t))

−h(ρ)Fα,s
a+,k

(
ϕ(g(t))

g(t)
g(t)

)
− ϕ(g(ρ))

g(ρ)
g(ρ)Fα,s

a+,k (h(t)) ≥ 0. (3. 20)

Again, multiplying ( 3. 20 ) on both sides by 1
kΓk(β)

(
(t−a)s−(ρ−a)s

s

) β
k−1

1
(ρ−a)1−s , then

integrating the resulting identity w.r.tρ from a to t, we get

Fβ,s
a+,k (g(t))Fα,s

a+,k

(
ϕ(g(t))

g(t)
h(t)

)
+ Fβ,s

a+,k

(
ϕ(g(t))

g(t)
h(t)

)
Fα,s

a+,k (g(t))

≥ Fα,s
a+,k (h(t)) Fβ,s

a+,k

(
ϕ(g(t))

g(t)
g(t)

)
+ Fα,s

a+,k

(
ϕ(g(t))

g(t)
g(t)

)
Fβ,s

a+,k (h(t)) . (3. 21)

sinceg ≤ h on [a,∞) and functionϕ(t)
t is increasing, so forτ, ρ ∈ [a, t), we have

ϕ (g(τ))
g(τ)

≤ ϕ (h(τ))
h(τ)

, (3. 22)
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Multiplying ( 3. 22 ) on both sides by 1
kΓk(β)

(
(t−a)s−(τ−a)s

s

) β
k−1

1
(τ−a)1−s h(τ), then

integrating the resulting identity w.r.tτ from a to t, we get

Fβ,s
a+,k

(
ϕ (g(t))

g(t)
h(t)

)
≤ Fβ,s

a+,k (ϕ (h(t))) (3. 23)

Hence, from ( 3. 33 ), ( 3. 21 ) and ( 3. 23 ), the required result ( 3. 16 ) is obtained.¤

3.2. Corollary. For two continuous and positive continuous functionsg, h ona ≤ t < ∞
whereg is increasing on[a,∞) such thatg ≤ h on [a,∞) and g

h is decreasing, then for a
convex functionϕ; ϕ(0) = 0, for anyα > 0, t > a, the relation

Fα,s
a+,k (g(t))

Fα,s
a+,k (h(t))

≥
Fα,s

a+,k (ϕ(g(t)))

Fα,s
a+,k (ϕ(h(t)))

, (3. 24)

is valid.

Proof. Since the functionϕ is convex satisfyingϕ(0) = 0, so the functionϕ(t)
t is increas-

ing. The functiong is increasing, then the functionϕ(g(t))
g(t) is also increasing. Given that

g(t)
h(t) is decreasing, so for allτ, ρ ∈ [a, t), t > a, we have

(
ϕ(g(τ))

g(τ)
− ϕ(g(ρ))

g(ρ)

) (
g(ρ)
h(ρ)

− g(τ)
h(τ)

)
≥ 0, (3. 25)

implies that

ϕ(g(τ))
g(τ)

g(ρ)
h(ρ)

+
ϕ(g(ρ))

g(ρ)
g(τ)
h(τ)

− ϕ(g(τ))
g(τ)

g(τ)
h(τ)

− ϕ(g(ρ))
g(ρ)

g(ρ)
h(ρ)

≥ 0. (3. 26)

Multiplying ( 3. 26 ) byh(τ)h(ρ), we have

ϕ(g(τ))
g(τ)

g(ρ)h(τ) +
ϕ(g(ρ))

g(ρ)
g(τ)h(ρ)

−ϕ(g(τ))
g(τ)

g(τ)h(ρ)− ϕ(g(ρ))
g(ρ)

g(ρ)h(τ) ≥ 0. (3. 27)

Multiplying ( 3. 27 ) on both sides by 1
kΓk(α)

(
(t−a)s−(τ−a)s

s

)α
k−1

1
(τ−a)1−s , then inte-

grating the resulting identity w.r.tτ from a to t, we get

g(ρ)Fα,s
a+,k

(
ϕ(g(t))

g(t)
h(t)

)
+

ϕ(g(ρ))
g(ρ)

h(ρ)Fα,s
a+,k (g(t))

−h(ρ)Fα,s
a+,k

(
ϕ(g(t))

g(t)
g(t)

)
− ϕ(g(ρ))

g(ρ)
g(ρ)Fα,s

a+,k (h(t)) ≥ 0. (3. 28)

Again, multiplying ( 3. 28 ) on both sides by 1
kΓk(α)

(
(t−a)s−(ρ−a)s

s

)α
k−1

1
(ρ−a)1−s , then

integrating the resulting identity w.r.tρ from a to t, we get

Fα,s
a+,k (g(t))Fα,s

a+,k

(
ϕ(g(t))

g(t)
h(t)

)
+ Fα,s

a+,k

(
ϕ(g(t))

g(t)
h(t)

)
Fα,s

a+,k (g(t))
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≥ Fα,s
a+,k (h(t)) Fα,s

a+,k

(
ϕ(g(t))

g(t)
g(t)

)
+ Fα,s

a+,k

(
ϕ(g(t))

g(t)
g(t)

)
Fα,s

a+,k (h(t)) . (3. 29)

which follows that

Fα,s
a+,k (g(t))Fα,s

a+,k

(
ϕ(g(t))

g(t)
h(t)

)
≥ Fα,s

a+,k (h(t)) Fα,s
a+,k

(
ϕ(g(t))

g(t)
g(t)

)
(3. 30)

Fα,s
a+,k (g(t))

Fα,s
a+,k

(
ϕ(g(t))

g(t) g(t)
) ≥

Fα,s
a+,k (h(t))

Fα,s
a+,k

(
ϕ(g(t))

g(t) h(t)
) (3. 31)

sinceg ≤ h on [a,∞) and functionϕ(t)
t is increasing, so forτ, ρ ∈ [a, t), we have

ϕ (g(τ))
g(τ)

≤ ϕ (h(τ))
h(τ)

, (3. 32)

Multiplying ( 3. 32 ) on both sides by 1
kΓk(α)

(
(t−a)s−(τ−a)s

s

)α
k−1

1
(τ−a)1−s h(τ), then

integrating the resulting identity w.r.tτ from a to t, we get

Fα,s
a+,k

(
ϕ (g(t))

g(t)
h(t)

)
≤ Fα,s

a+,k (ϕ (h(t))) (3. 33)

Hence, from ( 3. 31 ) and ( 3. 33 ), the required result ( 3. 24 ) is obtained. ¤

3.3. Remark. Clearly, Theorem (1.1) would follow as a special case of Corollary (3.2)
whenk = 1, α = 1, s = 1 andt = b.

3.4. Theorem. For three continuous and positive functionsg1, g2 andh on a ≤ t < ∞
whereg1 andg2 are increasing on[a,∞) such thatg1 ≤ h on [a,∞) and g1

h is decreasing,
then for a convex functionϕ; ϕ(0) = 0, for anyα > 0, β > 0, t > a, the relation

Fα,s
a+,k (f1(t)) Fβ,s

a+,k (ϕ(h(t))g2(t)) + Fβ,s
a+,k (f1(t)) Fα,s

a+,k (ϕ(h(t))g2(t))

Fα,s
a+,k (h(t)) Fβ,s

a+,k (ϕ(g1(t))g2(t)) + Fβ,s
a+,k (h(t))Fα,s

a+,k (ϕ(g1(t))g2(t))
≥ 1, (3. 34)

is valid.

Proof. since the functionϕ is convex satisfyingϕ(0) = 0, so the functionϕ(t)
t is increas-

ing. The functiong1 is increasing, then the functionϕ(g1(t))
g1(t)

is also increasing. Given that
g1(t)
h(t) is decreasing, so for allτ, ρ ∈ [a, t), t > a, we have

(
ϕ(g1(τ))

g1(τ)
g2(τ)− ϕ(g1(ρ))

g1(ρ)
g2(ρ)

)
(g1(ρ)h(τ)− g1(τ)h(ρ)) ≥ 0, (3. 35)

implies that
ϕ(g1(τ))g2(τ)

g1(τ)
g1(ρ)h(τ) +

ϕ(g1(ρ))g2(ρ)
g1(ρ)

g1(τ)h(ρ)

−ϕ(g1(τ))g2(τ)
g1(τ)

g1(τ)h(ρ)− ϕ(g1(ρ))g2(ρ)
g1(ρ)

g1(ρ)h(τ) ≥ 0. (3. 36)
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Multiplying ( 3. 36 ) on both sides by 1
kΓk(α)

(
(t−a)s−(τ−a)s

s

)α
k−1

1
(τ−a)1−s , then inte-

grating the resulting identity w.r.tτ from a to t, we get

g1(ρ)Fα,s
a+,k

(
ϕ(g1(t))g2(t)

g1(t)
h(t)

)
+

ϕ(g1(ρ))g2(ρ)
g1(ρ)

h(ρ)Fα,s
a+,k (g1(t))

−h(ρ)Fα,s
a+,k

(
ϕ(g1(t))g2(t)

g1(t)
g1(t)

)
− ϕ(g1(ρ))g2(ρ)

g1(ρ)
g1(ρ)Fα,s

a+,k (h(t)) ≥ 0. (3. 37)

Again, multiplying ( 3. 37 ) on both sides by 1
kΓk(β)

(
(t−a)s−(ρ−a)s

s

) β
k−1

1
(ρ−a)1−s , then

integrating the resulting identity w.r.tρ from a to t, we get

Fβ,s
a+,k (g1(t)) Fα,s

a+,k

(
ϕ(g1(t))g2(t)

g1(t)
h(t)

)
+Fβ,s

a+,k

(
ϕ(g1(t))g2(t)

g1(t)
h(t)

)
Fα,s

a+,k (g1(t)) ≥

Fα,s
a+,k (h(t)) Fβ,s

a+,k (ϕ(g1(t))g2(t)) + Fα,s
a+,k (ϕ(g1(t))g2(t)) Fβ,s

a+,k (h(t)) . (3. 38)

sinceg1 ≤ h on [a,∞) and the functionϕ(t)g2(t)
t is increasing, we obtain

Fp,s
a+,k

(
ϕ(g1(t))g2(t)

g1(t)
h(t)

)
≤ Fp,s

a+,k (ϕ(h(t))g2(t)) , p = α, β. (3. 39)

Hence from ( 3. 38 ) and ( 3. 39 ), we obtain ( 3. 34 ). ¤

3.5. Corollary. For three continuous and positive functionsg1, g2 andh on a ≤ t < ∞
whereg1 andg2 are increasing on[a,∞) such thatg1 ≤ h on [a,∞) and g1

h is decreasing,
then for a convex functionϕ; ϕ(0) = 0, for anyα > 0, t > a, the relation

Fα,s
a+,k (g1(t))

Fα,s
a+,k (h(t))

≥
Fα,s

a+,k (ϕ(g1(t))g2(t))

Fα,s
a+,k (ϕ(h(t))g2(t))

, (3. 40)

is valid.

Proof. sinceg1 ≤ h on [a,∞) and functionϕ(t)
t is increasing, so forτ, ρ ∈ [a, t), we have

ϕ (g1(τ))
g1(τ)

≤ ϕ (h(τ))
h(τ)

, (3. 41)

Multiplying ( 3. 41 ) on both sides by 1
kΓk(α)

(
(t−a)s−(τ−a)s

s

)α
k−1

1
(τ−a)1−s h(τ)g2(τ),

then integrating the resulting identity w.r.tτ from a to t, we get

Fα,s
a+,k

(
ϕ (g1(t))

g1(t)
h(t)g2(t)

)
≤ Fα,s

a+,k (ϕ (h(t)g2(t))) (3. 42)

Also, since the functionϕ is convex satisfyingϕ(0) = 0, so the functionϕ(t)
t is increasing.

The functiong1 is increasing, then the functionϕ(g1(t))
g1(t)

is also increasing. Given thatg1(t)
h(t)

is decreasing, so for allτ, ρ ∈ [a, t), t > a, we have
(

ϕ(g1(τ))
g1(τ)

g2(τ)− ϕ(g1(ρ))
g1(ρ)

g2(ρ)
)

(g1(ρ)h(τ)− g1(τ)h(ρ)) ≥ 0, (3. 43)
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implies that

ϕ(g1(τ))g2(τ)
g1(τ)

g1(ρ)h(τ) +
ϕ(g1(ρ))g2(ρ)

g1(ρ)
g1(τ)h(ρ)

−ϕ(g1(τ))g2(τ)
g1(τ)

g1(τ)h(ρ)− ϕ(g1(ρ))g2(ρ)
g1(ρ)

g1(ρ)h(τ) ≥ 0. (3. 44)

Multiplying ( 3. 44 ) on both sides by 1
kΓk(α)

(
(t−a)s−(τ−a)s

s

)α
k−1

1
(τ−a)1−s , then inte-

grating the resulting identity w.r.tτ from a to t, we get

g1(ρ)Fα,s
a+,k

(
ϕ(g1(t))g2(t)

g1(t)
h(t)

)
+

ϕ(g1(ρ))g2(ρ)
g1(ρ)

h(ρ)Fα,s
a+,k (g1(t))

−h(ρ)Fα,s
a+,k

(
ϕ(g1(t))g2(t)

g1(t)
g1(t)

)
− ϕ(g1(ρ))g2(ρ)

g1(ρ)
g1(ρ)Fα,s

a+,k (h(t)) ≥ 0. (3. 45)

Again, multiplying ( 3. 45 ) on both sides by 1
kΓk(α)

(
(t−a)s−(ρ−a)s

s

)α
k−1

1
(ρ−a)1−s , then

integrating the resulting identity w.r.tρ from a to t, we get

Fα,s
a+,k (g1(t))

Fα,s
a+,k (h(t))

≥
Fα,s

a+,k (ϕ(g1(t))g2(t))

Fα,s
a+,k

(
ϕ(g1(t))

g1(t)
h(t)g2(t)

) , (3. 46)

Hence, from ( 3. 42 ) and ( 3. 46 ), we obtain ( 3. 40 ). ¤

3.6. Remark. Clearly, Theorem (1.2) would follow as a special case of Corollary (3.5)
whenk = 1, α = 1, s = 1 andt = b.

4. CONCLUSION

The inequalities presented in this manuscript contribute the fractional calculus theory
and related integral inequalities and are projected to direct to applications for developing
uniqueness of solutions in fractional differential and integral equations.
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