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Abstract. In this paper, we propose a new family of distributions called
the Marshall-Olkin odd Lindley-G family of distributions. It is constructed
from the Marshall-Olkin transformation and the odd Lindley-G family of
distributions introduced by Gomes-Silvaet al. [10]. We study the funda-
mental mathematical properties of this new family and highlight its ability
to provide appropriate statistical models for various kinds of data. A par-
ticular attention is paid on a special model with four parameters, using the
Burr III distribution as baseline. We then estimate the model parameters
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by the maximum likelihood method. A simulation study is performed to
check the asymptotic behavior of the maximum likelihood estimates. Four
applications with practical data sets are considered to see the usefulness
of the proposed family.

AMS (MOS) Subject Classification Codes: 62N05; 90B25.
Key Words: Odd Lindley distribution, Marshall-Olkin transformation, Hazard rate func-

tion, Maximum likelihood estimation.

1. INTRODUCTION

Among the existing one-parameter lifetime distributions, the Lindley distribution intro-
duced by [16] is one of the most useful, with applications in various areas such as en-
gineering, demography, reliability, medicine and biology. In some sense, it can provide a
better statistical model than the standard exponential distribution (see [9] and the references
therein). However, the deep analysis of certain real-life data by the standard Lindley model
found some limitations, mainly due to the presence of only one tuning parameter. For this
reason, numerous efforts have been made to provide suitable generalizations or extensions
of this distribution. Among them, there are the two-parameter Lindley distribution by [21],
the two-parameter weighted Lindley distribution by [9], the generalized Poisson Lindley
distribution by [17], the exponentiated Lindley distribution by [5], the beta exponential
Lindley distribution by [20], the transmuted Lindley geometric distribution by [19] and the
complementary Lindley geometric distribution by [12]. For recent developments in this
direction, we refer to the review by [23] and the references therein. On the other side, the
Lindley distribution can be used to construct new general families of distributions, as those
proposed by [6] and [10]. In particular, [10] introduced the odd Lindley-G (OL-G) family
of distributions constructed from the T-X transformation developed by [4], the odd trans-
formation and the Lindley distribution. It is characterized by the cumulative distribution
function (cdf) given by

FOL(x;α, φ) = 1− α + Ḡ(x; φ)
(1 + α) Ḡ(x;φ)

exp
[
−α

G(x;φ)
Ḡ(x;φ)

]
, x ∈ R,

whereα > 0, G(x; φ) is a cdf of a baseline distribution with vector of parameters denoted
by φ andḠ(x;φ) = 1−G(x;φ). The associated probability density function (pdf) is given
by

fOL(x; α, φ) =
α2

1 + α

g(x;φ)
Ḡ3(x; φ)

exp
[
−α

G(x; φ)
Ḡ(x; φ)

]
, x ∈ R.

It is shown in [10] that the OL-G family of distributions has a strong physical interpretation
and a great potential as statistical models to analyze data with different nature.

In this paper, we propose a natural extension of the OL-G family of distributions by
using the Marshall-Olkin transformation introduced by [18]. This transformation is defined
by

M(y; p) =
y

1− p(1− y)
, y ∈ (0, 1), (1. 1)
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wherep ∈ (0, 1) is an additional tuning parameter. The role of the Marshall-Olkin trans-
formation is to bring more flexible shapes of a given model, which is welcome for the
complete analysis of various types of practical data. Naturally, other transformations can
be considered as, for instance, the beta transformation by [8], the McDonald transformation
by [1], the Kumaraswamy Marshal-Olkin transformation by [2], the odd Burr transforma-
tion by [3], the beta Weibull transformation by [25], the odd Bur III transformation by [13]
or the cosine-sine transformation by [7]. We however focus on the Marshall-Olkin trans-
formation thanks to its simplicity and its great potential in terms of applicability. Hence
we propose a new family of distributions called Marshall-Olkin Odd Lindley G family of
distributions (MOOL-G for short) characterizing by the cdf given by

R(x; p, α, φ) = M(FOL(x;α, φ); p) =
FOL(x; α, φ)

1− pF̄OL(x; α, φ)

=
1− α+Ḡ(x;φ)

(1+α) Ḡ(x;φ)
exp

[
−αG(x;φ)

Ḡ(x;φ)

]

1− p α+Ḡ(x;φ)
(1+α) Ḡ(x;φ)

exp
[
−αG(x;φ)

Ḡ(x;φ)

] , x ∈ R. (1. 2)

The main goal of this paper is to study and discuss the main features of the MOOL-
G family of distributions. We also show that it is more reliable and gives better results
compared to other existing models.

The rest of the paper is organized as follows. In Section 2, important properties of the
MOOL-G family of distributions are given, including the associated pdf, the hazard rate
function and quantile function, a study of the shapes of the pdf and the hrf, moments, skew-
ness and kurtosis. A special model using the Burr III distribution as baseline is presented
in Section 3, with plots of the related pdfs and hrfs, and numerical results on moments,
skewness and kurtosis. Section 4 is devoted to the estimation of the parameters for this
special model, with simulation. Applications to four data sets are presented to illustrate the
potentially of the MOOL-G family of distributions. A conclusion is given in Section 5.

2. PROPERTIES OF THEMOOL-G DISTRIBUTION

2.1. Crucial functions. By using the cdfR(x; p, α, φ) given by (1. 2 ), the pdf and hazard
rate function (hrf) of the of the MOOL-G family of distributions are respectively given by

r(x; p, α, φ) =
(1− p) α2

1+α
g(x;φ)

Ḡ3(x;φ)
exp

[
−αG(x;φ)

Ḡ(x;φ)

]

[
1− p α+Ḡ(x;φ)

(1+α) Ḡ(x;φ)
exp

[
−αG(x;φ)

Ḡ(x;φ)

]]2 (2. 3)

and

h(x; p, α, φ) =
α2

1+α
g(x;φ)

Ḡ3(x;φ)

[
α+Ḡ(x;φ)

(1+α) Ḡ(x;φ)

]−1

1− p α+Ḡ(x;φ)
(1+α) Ḡ(x;φ)

exp
[
−αG(x;φ)

Ḡ(x;φ)

] . (2. 4)

By solving the equationR(Q(u; p, α, φ); p, α, φ) = u, u ∈ (0, 1) and using [10, Equation
(14)], the quantile function of the MOOL-G family of distributions is given by

Q(u; p, α, φ) = G−1

[
1 + α

{
1 + W−1

(
(1 + α)(u− 1)

1− u p
e−(1+α)

)}−1

; φ

]
,
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whereG−1(x; φ) denotes the inverse function (or quantile function) ofG(x; φ), W−1(x)
denotes the lower branch of the so-called Lambert functionW (x) defined the solution of
the equation:W (x)eW (x) = x.

2.2. Asymptotes and shapes.Let us now present the asymptotes of the crucial functions
of the MOOL-G family of distributions. WhenG(x; φ) → 0, we have

R(x; p, α, φ) ∼ α

1− p
G(x; φ), r(x; p, α, φ) ∼ α2 g(x;φ)

(1 + α)(1− p)

and

h(x; p, α, φ) ∼ α2 g(x;φ)
(1 + α)(1− p)

.

WhenG(x;φ) → 1, we have

R(x; p, α, φ) ∼
1− α

(1+α)Ḡ(x;φ)
exp

[
− α

Ḡ(x;φ)

]

1− p α
(1+α)Ḡ(x;φ)

exp
[
− α

Ḡ(x;φ)

] ,

r(x; p, α, φ) ∼
(1− p) α2

1+α
g(x;φ)

Ḡ3(x;φ)
exp

[
− α

Ḡ(x;φ)

]

[
1− p α

(1+α) Ḡ(x;φ)
exp

[
− α

Ḡ(x;φ)

]]2

and

h(x; p, α, φ) ∼
α2

1+α
g(x;φ)

Ḡ3(x;φ)

[
α

(1+α) Ḡ(x;φ)

]−1

1− p α
(1+α) Ḡ(x;φ)

exp
[
− α

Ḡ(x;φ)

] .

We thus now see the role of the parametersp andα in the asymptotes. The shapes of the
pdf and the hrf the MOOL-G family of distributions can be described analytically. Let us

setw = α+Ḡ(x;φ)
(1+α)Ḡ(x;φ)

andz = exp
[
−α G(x;φ)

Ḡ(x;φ)

]
. The critical points of the pdf are the roots

of the following equation:

∂xg(x; φ)
g(x; φ)

+ 3
g(x; φ)
Ḡ(x; φ)

− α g(x; φ)
Ḡ2(x;φ)

+ 2p
∂x(w) z + ∂x(z)w

1− p w z
= 0

and the critical points of the hrf are the roots of the following equation:

∂xg(x;φ)
g(x; φ)

+ 3
g(x;φ)
Ḡ(x; φ)

− α g(x; φ)
Ḡ2(x; φ)

+ 2p
∂x(w) z + ∂x(z) w

1− pw z
+ h(x; p, α, φ) = 0,

with ∂x(w) = αg(x;φ)
(1+α)Ḡ2(x;φ)

and ∂x(z) = −α g(x;φ)
Ḡ2(x;φ)

exp
[
−α G(x;φ)

Ḡ(x;φ)

]
. Note that the

above equations may have more than one roots.
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2.3. Moments, skewness and kurtosis.Let X be a random variable having the MOOL-G
pdf. Then thes-th moment ofX can be obtained as

µ′s = E(Xs) =
∫ +∞

−∞
xsr(x; p, α, φ)dx =

∫ 1

0

Qs(u; p, α, φ)du, (2. 5)

which can be computed numerically for a given cdfG(x; φ). The mean ofX is given by
E(X) = µ′1. The variance ofX is given byV(X) = µ′2 − (µ′1)

2. Thes-th central moment
of X is given by

µs = E [(X − µ′1)
s] =

s∑

k=0

(
s

k

)
(−1)k(µ′1)

kµ′s−k.

Thes-th cumulants ofX can be obtained by the following equation:

κs = µ′s −
s−1∑

k=1

(
s− 1
k − 1

)
κkµ′s−k,

with κ1 = µ′1. The skewness and the kurtosis ofX are respectively given by

γ1 =
κ3

κ
3/2
2

, γ2 =
κ4

κ2
2

.

Again, for a givenG(x; φ), all these quantities can be evaluated, as it is done for a special
case in Section 3.

3. MARSHALL-OLKIN ODD L INDLEY BURR III (MOOL-BIII) DISTRIBUTION

In this section, we present a special case of the MOOL-G family of distribution. We
chose the Burr III distribution as baseline distribution, with cdf and pdf respectively given
by

G(x; θ, β) =
(
1 + x−θ

)−β
, g(x; θ, β) = θ β x−θ−1

(
1 + x−θ

)−β−1
, x > 0,

with θ > 0 andβ > 0. We thus define the Marshall-Olkin Odd Lindley Burr III distribution
(MOOL-BIII for short) by puttingG(x; θ, β) in the definition of the cdf given by (1. 2 ).
Thus the associated cdf of the MOOL-BIII distribution is given by

R(x; p, α, θ, β) =
1−

[
α+1−(1+x−θ)−β

(1+α){1−(1+x−θ)−β}

]
exp

[
− α

(1+x−θ)β−1

]

1− p
[

α+1−(1+x−θ)−β

(1+α){1−(1+x−θ)−β}

]
exp

[
− α

(1+x−θ)β−1

] , x > 0. (3. 6)

The associated pdf and the hrf are respectively given by

r(x; p, α, θ, β) =
(1− p) α2

1+α

(
θ β x−θ−1

(1+x−θ)β+1 [1−(1+x−θ)−β]3

)
exp

[
− α

(1+x−θ)β−1

]

[
1− p

[
α+1−(1+x−θ)−β

(1+α){1−(1+x−θ)−β}

]
exp

[
− α

(1+x−θ)β−1

]]2 , x > 0,

(3. 7)
and
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h(x; p, α, θ, β) =

α2

1+α

(
θ β x−θ−1

(1+x−θ)β+1 [1−(1+x−θ)−β]3

)[
α+1−(1+x−θ)−β

(1+α){1−(1+x−θ)−β}

]−1

1− p
[

α+1−(1+x−θ)−β

(1+α){1−(1+x−θ)−β}

]
exp

[
− α

(1+x−θ)β−1

] , x > 0.

(3. 8)
Plots for pdfsr(x; p, α, θ, β) given by (3. 7 ) and hrfsh(x; p, α, θ, β) given by (3. 8 ),

with selected values for the parametersp, α, θ andβ are presented in Figure 1.
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FIGURE 1. Plots for (a) pdfs (left skewed, right skewed and reverse J
shape) and (b) hrfs (increasing, decreasing, constant, bathtub and upside
down bathtub) of the MOOL-BIII distribution.

Let X be a random variable following the MOOL-BIII distribution, i.e. with cdf given
by (3. 6 ). Table 1 presents the numerical values of some moments (of order1, 2, 3 and4),
the skewnessγ1 and the kurtosisγ2 of X for selected values of the parameters.

To conclude this section, let us mention that other special cases of this family can be
studied with other choices forG(x;φ).

4. ESTIMATION OF THE PARAMETERS, SIMULATION AND APPLICATIONS

4.1. Estimation of the parameters. In this section, we will consider the maximum like-
lihood estimates (MLEs) of the model parameters of the MOOL-G family of distributions.
Let x1, x2, . . . , xn be a independent and identically distributed random sample having the
cdf given in (3. 6 ). The log-likelihood function for the vector of parametersΘ = (p, α, φ)
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TABLE 1. Some moments, skewness and kurtosis ofX for MOOL-
BIII distribution for the following selected parameters values in or-
der (p, α, θ, β); (i): (0.5, 0.5, 1.5, 2), (ii): (0.5, 1.5, 0.5, 2), (iii):
(0.5, 1.5, 5, 0.2) and (iv): (0.1, 2, 1, 0.2).

(i) (ii) (iii) (iv)

E(X) 2.7767 1.7478 0.3209 0.0254
E(X2) 10.4402 8.3125 0.1478 0.0037
E(X3) 48.5986 52.9391 0.08039 0.0009
E(X4) 264.5586 385.2934 0.0483 0.0003
V(X) 2.7297 5.2576 0.0447 0.0031
γ1 1.4406 2.2089 1.4148 4.3180
γ2 2.4271 5.5760 2.2151 26.6793

is given by

`(Θ) = n log(1− p) + 2 n log(α)− n log(1 + α) +
n∑

i=1

log[g(xi; φ)]

− 3
n∑

i=1

log
[
Ḡ(xi; φ)

]− α

n∑

i=1

G(xi; φ)
Ḡ(xi; φ)

− 2
n∑

i=1

log (1− pwi zi) ,

wherewi = α+Ḡ(xi;φ)
(1+α) Ḡ(xi;φ)

andzi = exp
[
−αG(xi;φ)

Ḡ(xi;φ)

]
.

The components of the score vectorU = (Up, Uα, Uφ) are given by

Up = − n

1− p
+ 2

n∑

i=1

wi zi

1− pwi zi
,

Uα =
2 n

α
− n

1 + α
−

n∑

i=1

G(xi; φ)
Ḡ(xi; φ)

+ 2 p

n∑

i=1

[
∂α(wi) zi + ∂α(zi) wi

1− pwi zi

]
,

with ∂α(wi) = G(xi;φ)
(1+α)2Ḡ(xi;φ)

and∂α(zi) = −G(xi;φ)
Ḡ(xi;φ)

exp
[
−αG(xi;φ)

Ḡ(xi;φ)

]
and

Uφ =
n∑

i=1

∂φg(xi; φ)
g(xi;φ)

+ 3
n∑

i=1

∂φG(xi;φ)
Ḡ(xi;φ)

− α

n∑

i=1

∂φG(xi; φ)
Ḡ2(xi; φ)

+ 2 p

n∑

i=1

[
∂φ(wi) zi + ∂φ(zi) wi

1− pwi zi

]
,

with ∂φ(wi) = α∂φG(xi;φ)

(1+α)Ḡ2(xi;φ)
and∂φ(zi) = −α

∂φG(xi;φ)

Ḡ2(xi;φ)
exp

[
−αG(xi;φ)

Ḡ(xi;φ)

]
. The MLEs

of p, α andφ, say p̂, α̂ and φ̂, are the simultaneous solutions of the equationsUp̂ = 0,
Uα̂ = 0 andUφ̂ = 0. Since they are non linear, these equations can not be solved ana-
lytically. However, numerical alternatives exist by using softwares supporting the iterative
techniques like the Newton-Raphson algorithm. Using the well-known normal approxima-
tion of the MLEs forn large, confidence intervals and parametric tests can be constructed
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for the parameters. Finally, note that other estimation methods can be investigated, as the
least square method or the Bayesian method (see for instance [22]).

4.2. Simulation study. In this section, we study the performance of the maximum like-
lihood method for the MOOL-BIII distribution by conducting various simulations with
different sizes forn (n = 50, 100, 200, 300 and500). The software R is used. We simulate
2000 samples for the true parameters values for six different sets of values : Set I:p = 0.5,
α = 0.5, θ = 1.5, β = 2.5, Set II:p = 0.2, α = 2.5, θ = 0.5, β = 1.5, Set III: p = 0.6,
α = 3.5, θ = 1.5, β = 4, Set IV:p = 0.8, α = 2.5, θ = 0.5, β = 2, Set V:p = 0.5, α = 2,
θ = 2.5, β = 2 and Set VI:p = 0.6, α = 2, θ = 1, β = 2, in order to obtain the mean
estimates and the mean square errors (MSEs) of the parameters. The numerical results are
listed in Table 2. We observe that MSEs decrease as the sample size increases. The results
indicate that the maximum likelihood method performs quite well in estimating the model
parameters of the proposed distribution.

4.3. Applications to real data sets.This section provides four applications to show how
the MOOL-BIII distribution can be applied in practice. For the comparisons, we consider
the Generalized Gamma Burr III distribution (GG-BIII), the Kumaraswamy BIII distribu-
tion (Kw-BIII), the beta Burr III distribution (B-BIII) and the BIII distribution. The MLEs
are computed using Quasi-Newton Code for Bound Constrained Optimization and the log-
likelihood function evaluated. The computed goodness-of-fit measures are the Anderson-
Darling (A*), the Cramer-von Mises (W*), the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC) and the log-likelihood(ˆ̀). The lower the values of
these criteria, the better the fit. The value for the Kolmogorov Smirnov (KS) statistic and
its p-value are also provided. The plots of the fitted pdfs and cdfs of some distributions are
displayed for visual comparison. The required computations are carried out using the R
software. The fours considered data sets are presented below.

Data set 1The first data set consists of63 observations of the gauge lengths of10 mm
from [14]. The data set is given as follows: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361,
2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618,
2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030,
3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377,
3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024,
4.027, 4.225, 4.395, 5.020.

Data set 2The second data set is taken from [11]. It represents there lief times of20
patients receiving analgesic. The data set is given as follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8,
1.6, 2.2,1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6,2.0.

Data set 3The third data refers breaking strength (in Gpa) of carbon fibers
(https://www.biz.uiowa.edu/faculty/jledolter/StatisticalQualityControl/Data/ch12ex10.txt)
The data set is given as follows: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,
4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,
2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35,
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TABLE 2. Empirical means and the MSEs (in parenthesis) of the
MOOL-BIII distribution for six sets of selected parameters values in or-
der (p, α, θ, β); Set I: (0.5, 0.5, 1.5, 2.5), Set II: (0.2, 2.5, 0.5, 1.5), Set
III: (0.6, 3.5, 1.5, 4), Set IV: (0.8, 2.5, 0.5, 2), Set V:(0.5, 2, 2.5, 2) and
Set VI: (0.6, 2, 1, 2).

Set I Set II
n p̂ α̂ θ̂ β̂ p̂ α̂ θ̂ β̂
50 0.776 0.635 1.918 3.928 0.523 3.181 0.499 1.982

(2.114) (3.135) (1.050) (5.321) (0.991) (2.177) (0.098) (0.992)
100 0.643 0.559 1.881 3.192 0.419 2.915 0.485 1.772

(1.171) (2.041) (0.956) (4.012) (0.851) (1.169) (0.051) (0.812)
200 0.438 0.449 1.597 2.982 0.598 1.985 0.478 1.722

(1.007) (2.039) (0.817) (3.112) (0.627) (0.959) (0.049) (0.712)
300 0.405 0.495 1.602 2.121 0.322 2.623 0.474 1.461

(0.939) (1.094) (0.727) (2.921) (0.519) (0.808) (0.032) (0.582)
500 0.510 0.498 1.501 1.671 0.258 2.490 0.493 1.489

(0.186) (0.910) (0.493) (2.012) (0.121) (0.093) (0.020) (0.444)

Set III Set IV
n p̂ α̂ θ̂ β̂ p̂ α̂ θ̂ β̂
50 0.995 3.545 1.654 4.913 1.368 2.727 0.445 2.308

(0.137) (0.033) (0.115) (0.025) (0.105) (0.061) (0.032) (0.070)
100 0.670 3.518 1.649 4.701 1.037 2.541 0.504 2.084

(0.035) (0.054) (0.090) (0.013) (0.052) (0.021) (0.022) (0.028)
200 0.633 3.451 1.607 4.511 0.895 2.509 0.515 2.031

(0.017) (0.010) (0.036) (0.010) (0.027) (0.011) (0.009) (0.014)
300 0.604 3.504 1.539 4.169 0.908 2.524 0.492 2.050

(0.008) (0.008) (0.025) (0.006) (0.018) (0.009) (0.007) (0.009)
500 0.558 3.493 1.502 3.998 0.722 2.484 0.554 1.993

(0.006) (0.005) (0.014) (0.004) (0.004) (0.004) (0.002) (0.004)

Set V Set VI
n p̂ α̂ θ̂ β̂ p̂ α̂ θ̂ β̂
50 0.596 2.105 2.636 2.155 0.933 2.141 1.438 2.351

(0.038) (0.088) (0.151) (0.055) (0.195) (0.056) (0.109) (0.097)
100 0.679 2.101 2.370 2.131 0.656 2.129 1.032 2.146

(0.033) (0.048) (0.074) (0.028) (0.046) (0.030) (0.045) (0.027)
200 0.621 2.108 2.566 2.162 0.498 2.000 1.079 1.988

(0.033) (0.018) (0.050) (0.008) (0.009) (0.011) (0.022) (0.005)
300 0.505 2.195 2.582 2.121 0.554 2.169 1.051 2.082

(0.012) (0.014) (0.027) (0.005) (0.009) (0.007) (0.017) (0.007)
500 0.499 2.103 2.515 2.101 0.601 2.068 0.957 2.045

(0.003) (0.008) (0.014) (0.001) (0.003) (0.010) (0.009) (0.001)

2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68,
1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48,
1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.

Data set 4The fourth data represents the survival times of121 patients with breast can-
cer obtained from a large hospital in a period from1929 to 1938 (see [15]). The data set is
given as follows: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8,
12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9,
19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,
31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0,
41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0,
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51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0,
67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0,
111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

TABLE 3. MLEs and their standard errors (in parentheses) for Data set 1.

Distribution p α θ β σ
MOOL-BIII 0.6329 1.2801 3.5801 62.6197 -

(0.6104) (3.1734) (1.9651) (23.2331) -
GG-BIII 12.8369 1.4154 0.3953 13.3746 19.4312

(111.7384) (1.9364) (2.2296) (91.5497) (50.9298)
B-BIII - 1.4042 2.8480 22.2076 16.5927

- (1.8052) (11.0929) (110.8130) (48.2007)
Kw-BIII - 2.5824 2.6979 14.2263 6.0050

- (0.9680) (53.6599) (282.9576) (6.5035)
BIII - 293.4286 - 96.3766 -

- (373.9396) - (122.6920) -

TABLE 4. The ˆ̀, AIC, BIC, W*, A*, KS, p-value values for Data set 1.

Dist ˆ̀ AIC BIC W* A* KS p-value
MOOL-BIII 55.9894 119.7788 128.3513 0.0484 0.2682 0.0724 0.8954

GG-BIII 56.2993 122.5987 133.3143 0.0610 0.3250 0.0800 0.8148
B-BIII 56.3183 120.6367 129.2093 0.0604 0.3249 0.0802 0.8114

Kw-BIII 56.3886 120.7773 129.3498 0.0626 0.3354 0.0813 0.7991
BIII 133.7594 271.5179 275.8042 0.0587 0.3611 0.4864 0.0000

Tables 3, 5, 7 and 9 compare the MOOL-BIII model with the GG-BIII, B-BIII, Kw-BIII
and BIII models by using the goodness-of-fits measures presented above. We note that the
MOOL-BIII model gives the lowest values for the AIC, BIC, KS, A* and W* statistics and
maximum KS p-values among all fitted models. With these criteria, the MOOL-BIII model
could be considered as the best model. The histograms of the data and estimated pdfs and
cdfs for the fitted models are displayed in Figures 2, 3, 4 and 5. It is clear from Tables 3,
5, 7 and 9 and Figures 2, 3, 4 and 5 that the MOOL-BIII distribution provides a better fit to
the histogram and therefore could be chosen as the best model for the considered data sets.
So MOOL-BIII model is superior to the other competitive models.

5. CONCLUSION

We propose a new family of distributions, called the Marshall-Olkin odd Lindely-G fam-
ily (MOOL-G), constructed from the Marshall-Olkin transformation and the odd Lindley-G
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FIGURE 2. Plots of (a) estimated pdfs and (b) estimated cdfs of the
MOOL-BIII distribution for Data set 1.

TABLE 5. MLEs and their standard errors (in parentheses) for Data set 2.

Distribution p α θ β σ
MOOL-BIII 0.9602 0.9257 2.3687 10.3997 -

(0.0968) (2.6460) (1.4048) (4.2907) -
GG-BIII 27.5220 13.3554 0.7115 4.8176 0.5292

(0.3020) (3.5140) (0.2448) (2.4372) (0.4183)
B-BIII - 3.0410 0.1304 67.1304 1.8025

- (2.5845) (0.1481) (76.3337) (2.8647)
Kw-BIII - 4.6281 0.8628 8.9592 0.8815

- (2.3871) (2.6857) (1.3827) (0.8064)
BIII - 277.1693 - 146.3734 -

- (798.5144) - (421.1494) -

TABLE 6. The ˆ̀, AIC, BIC, W*, A*, KS, p-value values for Data set 2.

Dist ˆ̀ AIC BIC W* A* KS p-value
MOOL-BIII 15.2256 38.4512 42.5341 0.0248 0.1447 0.0871 0.9981

GG-BIII 15.3726 40.7452 45.7239 0.0321 0.1805 0.0981 0.9805
B-BIII 15.6360 39.2720 43.2549 0.0331 0.1908 0.1090 0.9714

Kw-BIII 15.4202 38.8413 42.8243 0.0267 0.1526 0.0959 0.9808
BIII 32.8962 69.7929 71.7844 0.1047 0.6208 0.4399 0.0008
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FIGURE 3. Plots of (a) estimated pdfs and (b) estimated cdfs of the
MOOL-BIII distribution for Data set 2.

TABLE 7. MLEs and their standard errors (in parentheses) for Data set 3.

Distribution p α θ β σ
MOOL-BIII 0.0001 0.3452 2.1076 1.7075 -

(1.5479) (0.7217) (0.5232) (1.9270) -
GG-BIII 8.1977 10.1111 0.1692 23.8495 0.9639

(0.0548) (0.0074) (0.0037) (3.4005) (0.1377)
B-BIII - 0.9614 19.1986 0.3903 101.0804

- (0.3316) (7.7909) (0.2656) (122.7663)
Kw-BIII - 0.5842 3.5937 3.6343 281.5802

- (0.1194) (3.9788) (1.9689) (64.2313)
BIII - 294.8660 - 112.9853 -

- (342.5489) - (130.9986) -

TABLE 8. The ˆ̀, AIC,BIC, W*, A*, KS, p-value values for Data set 3.

Dist ˆ̀ AIC BIC W* A* KS p-value
MOOL-BIII 141.3292 290.6585 301.0792 0.0650 0.3979 0.0611 0.8479

GG-BIII 159.0499 328.0998 341.1256 0.4902 2.7634 0.1406 0.0382
B-BIII 141.7565 291.5129 301.9336 0.0851 0.4728 0.0746 0.6328

Kw-BIII 142.1229 292.2458 302.6665 0.1087 0.5626 0.0831 0.4945
BIII 196.7476 397.4952 402.7055 0.1509 0.7727 0.3211 0.0000
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FIGURE 4. Plots of (a) estimated pdfs and (b) estimated cdfs of the
MOOL-BIII distribution for Data set 3.

TABLE 9. MLEs and their standard errors (in parentheses) for Data set 4.

Distribution p α θ β σ
MOOL-BIII 0.0001 0.0687 0.9087 1.1297 -

(0.6126) (0.0763) (0.0945) (1.2058) -
GG-BIII 10.8764 0.7522 18.3425 0.2765 12.1608

(0.0061) (0.0066) (0.0061) (0.0279) (2.4645)
B-BIII - 0.3596 27.4173 0.4455 152.2599

- (0.0723) (9.9050) (0.2204) (99.9625)
Kw-BIII - 0.2374 6.1533 2.8660 379.3748

- (0.0299) (44.2252) (20.6027) (320.0348)
BIII - 386.6204 - 9.0637 -

- (163.0798) - (3.6128) -

TABLE 10. The ˆ̀, AIC,BIC, W*, A*, KS, p-value values for Data set 4.

Dist ˆ̀ AIC BIC W* A* KS p-value
MOOL-BIII 579.1797 1166.3590 1177.5431 0.0556 0.3823 0.0706 0.5811

GG-BIII 583.0440 1176.0880 1190.0670 0.0941 0.6429 0.1104 0.1044
B-BIII 582.6887 1173.3770 1184.5610 0.0822 0.5968 0.0932 0.2439

Kw-BIII 582.7962 1173.5920 1184.7760 0.0946 0.6398 0.0937 0.2377
BIII 588.1276 1180.2550 1185.847 0.0720 0.4876 0.1334 0.0268
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FIGURE 5. Plots of (a) estimated pdfs and (b) estimated cdfs of the
MOOL-BIII distribution for Data set 4.

family of distributions. We investigate some statistical properties of the MOOL-G family
of distributions such as the crucial functions (pdf, hrf and quantile function), shapes of the
pdf and hrf, moments, generating functions, skewness and kurtosis. A focus is done on a
special model with four parameters using the Burr III distribution as baseline. The method
of maximum likelihood is applied to estimate the model parameters. Four real data sets
are used to show that some models corresponding to the MOOL-G family can give better
fit than similar models generated by well-known competitors. Naturally, for a given data
set, other baseline distributions can be examined with possible better results in terms of
goodness of fit. A possible extension of this work is to consider successful generalization
of the Marshall-Olkin transformation instead of (1. 1 ), as the one considered in [24], i.e.

M(y; υ, δ) =
1− (1− y)δ

1− (1− υ)(1− y)δ
,

with υ, δ > 0. The presence of these new parameters opens the door to new models of
interest. This generalization needs further investigations that we leave for a future work.

ACKNOWLEDGMENTS

We would like to thank the reviewers and the associate editor for their thorough com-
ments which have helped to improve the paper.

REFERENCES

[1] C. Alexander, G. M. Cordeiro, E. M. M. Ortega and J. M. Sarabia,Generalized beta-generated distributions,
Comput. Stat. Data Anal.56, No. 6 (2012) 1880-1897.

[2] M. Alizadeh, M. H. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair and G. G. Hamedani,The Kumaraswamy
Marshal-Olkin family of distributions, Journal of the Egyptian Mathematical Society23, No. 3 (2015) 546-
557.

[3] M. Alizadeh, G. M. Cordeiro, A. D. C. Nascimento, M. D. S. Lima and E. M. M. Ortega,Odd-Burr gener-
alized family of distributions with some applications, Journal of Statistical Computation and Simulation83,
No. 2 (2016) 326-339.



The Marshall-Olkin Odd Lindley-G Family of Distributions 125

[4] A. Alzaatreh, C. Lee and F. Famoye,A new method for generating families of distributions, Metron71, No.
1 (2013) 63-79.

[5] H. S. Bakouch, B. M. Al-Zahrini, A. A. Al Shomrai, V. A. A. Marchi and F. Louzada,An extended Lindley
distribution, Journal of Korean statistical society41, No. 1 (2012) 75-85.

[6] S. Cakmakyapan and G. Ozel,The Lindley family of distributions: properties and applications, Hacettepe
Journal of Mathematics and Statistics46, (2017) 1-27.

[7] C. Chesneau, H. S. Bakouch and T. Hussain,A new class of probability distributions via cosine and sine
functions with applications, Communications in Statistics: Simulation and Computation Accepted.

[8] N. Eugene, C. Lee and F. Famoye,Beta-normal distribution and its applications, Communications in Statis-
tics: Theory and Methods31, No. 4 (2002) 497-512.

[9] M. E. Ghitany, F. Alqallaf, D. A. Al-Mutairi and H. A. Husain,A two parameter weighted Lindley distri-
bution and its application to survival data, Mathematics and Computers in Simulation81, No. 6 (2011)
1190-1201.

[10] F. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos, R. Venancio and G. M. Cordeiro,The odd Lindley-
G family of distributions, Austrian Journal of Statistics46, No. 1 (2017) 57-79.

[11] A. J. Gross and V. A. Clark,Survival distributions: Reliability applications in the binomial sciences, John
Wiley and Sons, New York, 1975.

[12] W. Gui, H. Hang and L. Guo,A complementary Lindley Geometric distribution and its application in lifetime
analysis, Sankhya B79, No. 2 (2017) 1-20.

[13] F. Jamal, M. A. Nasir, M. H. Tahir and N. H. Montazeri,The odd Burr-III family of distributions, Journal of
Statistics Applications and Probability6, No. 1 (2017) 105-122.

[14] D. Kundu and M. Z. Raqab,Estimation of R =P (Y < X) for three-parameter Weibull distribution, Statis-
tics and Probability Letters79, No. 17 (2009) 1839-1846.

[15] E. T. Lee,Statistical Methods for Survival Data Analysis, John Wiley, New York, 1992.
[16] D. V. Lindley, Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society, Series B

20, No. 1 (1958) 102-107.
[17] F. Mahmoudi and H. Zakerzadeh,Generalized Poisson-Lindley distribution, Communication in Statistics:

Theory and methods39, No. 10 (2010) 1785-1798.
[18] A. W. Marshall and I. Olkin,A new method for adding a parameter to a family of distributions with appli-

cations to the exponential and Weibull families, Biometrika84, No. 3 (1997) 641-652.
[19] F. Merovci and I. Elbatal,Transmuted Lindley-Geometric distribution and its application, Journal of Statis-

tics Applications and Probability2, No. 1 (2014) 77-91.
[20] J. A. Rodrigues, A. P. C. Silva and G. G. Hamedani,The beta exponential Lindley distribution, Journal of

Statistical Theory and Applications14, No. 1 (2014) 60-75.
[21] R. Shanker and A. Mishra,A two parameter Lindley distribution, Statistics in Transition-new series of spring

14, No. 1 (2013) 45-56.
[22] T. N. Sindhu, N. Feroze, M. Aslam and A. Shafiq,Bayesian Inference of Mixture of two Rayleigh Distribu-

tions: A New Look, Punjab Univ. j. math48, No. 2 (2016) 49-64.
[23] L. Tomy, A retrospective study on Lindley distribution, Biometrics and Biostatistics International Journal7,

No. 3 (2018) 163-169.
[24] H. Yousof, A. Z. Afify, S. Nadarajah, G. G. Hamedani and G. Aryal,The Marshall-Olkin Generalized-G

Family of Distributions with Applications, Statistica,78, No. 3 (2018) 273-295.
[25] H. Yousof, M. Rasekhi, A. Z. Afify, I. Ghosh, M. Alizadeh and G. G. Hamedani,The beta Weibull-G family

of distribution: Theory, characterizations and applications, Pakistan Journal of Statistics32, No. 2 (2017)
95-116.


