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Abstract. Gauss-type nested implicit Runge–Kutta methods exhibit many
vital properties of implicit Runge–Kutta methods, such as stability, high-
order accuracy, and symmetry. Moreover, nested implicit Runge–Kutta
methods have a cheap practical implementation in comparison of implicit
Runge–Kutta methods because of their explicit nature of internal stages.
In this paper, we provide a complete mechanism for the construction,
formulation, and implementation of 4th- and 6th-order nested implicit
Runge–Kutta methods. The numerical testing is performed using 6th-
order nested implicit Runge–Kutta method that uses an embedded 4th-
order nested implicit Runge–Kutta method for the local error estimation
on a collection of test problems from stiff detest. We also compare the
nested implicit Runge–Kutta method with the MATLAB integrator ode15s
and assess the effectiveness of four variations on the local error estimation.
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Key Words: Nested implicit Runge–Kutta methods, Nonlinear stiff IVPs, Local error
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1. OVERVIEW

When dealing with initial value problems (IVPs) of the form

y′(t) = g(t, y(t)), y(t0) = y0, (1. 1)

where y0 ∈ Rm denote the initial positions, the operator ′ denotes differentiation with
respect to time, m is the dimension of the IVP, and g : R × Rm → Rm is a sufficiently
smooth function, one could use the following one-step numerical scheme:

Yi = yk + h
s∑
j=1

aijg(tk + cjh, Yj), i = 1, 2, ..., s, (1. 2 a)

yk+1 = yk + h
s∑
i=1

big(tk + cih, Yi), (1. 2 b)
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where h = tk+1 − tk is the step size and Yi are referred to as the stage values of an s-
stage Runge–Kutta method [4]. If aij = 0 for i ≤ j, i.e., A is a strictly lower triangular
matrix, the method (1. 2 ) becomes an explicit Runge–Kutta (ERK) method. However, if
aij 6= 0 for some i ≤ j in (1. 2 ), the method becomes an Implicit Runge–Kutta (IRK)
method. There are three important classes of IRK methods based on Gauss, Radau, and
Lobatto quadrature formulas. Here, we only focus on Gauss quadrature formulas, because
these form the basis of nested implicit Runge–Kutta (NIRK) methods which are at the core
of our experimentation in this paper. We refer to [4, 10] for in-depth analysis of methods
based on Radau and Lobatto quadrature formulas.

The Gauss methods are based on the Gaussian quadrature formulas in such a way that
the abscissae cj are zeros of the shifted Legendre polynomial of degree s [10]. Butcher [3]
and Kuntzmann [9] discovered that the maximum order of an s–stage Gauss Runge–Kutta
method is 2s.

ERK methods, because of their bounded stability domain, are not suitable for solving
stiff IVPs. However, IRK methods are a suitable candidate for solving stiff ODEs because
they have unbounded stability domains.

The stability of a numerical method is related to the ability of the method to solve stiff
ODEs efficiently. A stable numerical solution is the one which remains bounded for a given
differential equation having bounded exact solution. To study the stability of a numerical
method, Dahlquist in [7] propose to use the following test equation

y′(t) = λy(t), ∀ λ ∈ C−, (1. 3)

where C− denotes the negative complex half plane.
Many systems of ODEs modelling several physical phenomenons are stiff. These

phenomenons include: chemical kinetics, mathematical biology, atmospheric pollution,
and control systems. The intuitive meaning of stiff is quite clear yet its correct mathematical
definition is controversial [2]. The most practical opinion is: stiff equations are equations
where certain implicit methods perform better than explicit ones [10].

One good way to recognise a stiff problem is the magnitude of its eigenvalues. The larger
the eigenvalue is in the negative half plane, the stiff the problem is. Another characteristic
of stiff ODEs is that their solutions have a varying time scale.

Curtiss and Hirschfelder [6] discussed the term stiff for the first time while dealing with
the problems in chemical kinetics. According to them, a differential equation is stiff if the
implicit Euler method gives much better performance than the explicit Euler method. They
consider the equation

dy

dt
=
y − F (t)

a(t, y)
. (1. 4)

Explicit methods do not work well to solve these kinds of equations because the bounded
stability regions of these methods only allow choosing excessively small step sizes. In order
to analyse the stability of explicit and implicit Euler methods in relation to the behaviour
of exact solution of the test equation (1. 3 ) we consider

y′ = −100(y − cos t), where y(0) = 0. (1. 5)

Solution curves of this problem are shown in Figure 1. The exact solution lies close to
y ≈ cosx. The numerical solutions obtained by the explicit and implicit Euler methods
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approach the exact solution after a rapid “transient phase (a region in which the behaviour
of coupled equations is examined)". The Figure 1(a) plots the exact solution and the
numerical solutions obtained from the explicit Euler method. We have taken two different
step sizes h1 = 1.974/100 and h2 = 1.875/100. Both of these solutions are chosen such
that |R(z)| ≤ 1 where R(z) is the stability function of explicit Euler method. We note
that the numerical solution oscillates around the exact solution with different magnitude
of perturbations depending on the choice of a step size. The Figure 1(b) plots the exact
solution and the numerical solutions obtained from the implicit Euler method. Since
implicit Euler method is a stable numerical method, we observe in Figure 1(b) that the
numerical solution approximates the exact solution effectively for several choices of freely
chosen step sizes.
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FIGURE 1. Plots between t and y for Euler method applied to IVP
(1. 5 ), (a) with explicit Euler method, (b) with implicit Euler method.

In the next section, we provide a mechanism for the construction and implementation
of Gauss-type nested implicit Runge–Kutta (NIRK) methods. We also provide local error
estimation techniques used in the implementation of NIRK methods. Numerical testing
is done in Section 3 involving different classes of nonlinear stiff IVPs and comparison
of numerical methods applied to these problems. Finally, Section 4 provides conclusions
drawn from the numerical testing performed in Section 3.

2. NESTED IMPLICIT RUNGE–KUTTA METHODS

Kulikov and Shindin presented Nested Implicit Runge–Kutta (NIRK) formulas in [14,
13]. They exploit the idea of MIRK scheme and implemented it efficiently in NIRK scheme
of order four. They used a simplified Newton scheme and proved it as effective as modified
Newton scheme with exact Jacobian [12]. An s-stage Nested implicit Runge–Kutta method
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to solve IVP (1. 1 ) is presented as

Y 2
j = a2j1yk + a2j2yk+1 + h

(
d2j1g(tk, yk) + d2j2g(tk+1, yk+1)

)
, j = 1, 2, (2. 6 a)

Y ij = aij1yk + aij2yk+1 + h
(
dij1g(tk, yk) + dij2g(tk+1, yk+1)

)
+ h

i−1∑
m=1

dij,m+2g(T i−1m , Y i−1m ), i = 3, 4, . . . , s, j = 1, 2, . . . , i, (2. 6 b)

yk+1 = yk + h

s∑
i=1

big(T si , Y
s
i ), (2. 6 c)

where T ij = tk + hcij and Y ij are the i-th level stage values. For an N -dimensional
differential system, the step update formula (2. 6 c) can be expanded as a system of N
nonlinear equations as

yk+1 − yk − h
(
b1g(T s1 , Y

s
1 ) + b2g(T s2 , Y

s
2 ) + . . .+ bsg(T ss , Y

s
s )
)

= 0. (2. 7)

The formulas (2. 6 a) and (2. 6 b) represent two levels at which the internal stage values
are evaluated. For the first level stage values, if two numerical solutions yk and yk+1

and their derivatives y′k and y′k+1 at the grid points tk and tk+1 are available then a cubic
Hermite interpolation polynomial can be used in constructing the method of order four [14].
Whereas, for the second level stage values to obtain order six NIRK method, the solutions
y(tk + c21h) and y(tk + c22h) at two fixed points tk + c21h and tk + c22h are approximated
using cubic Hermite interpolation polynomial. Similarly, a quintic Hermite interpolation
polynomial is used to approximate the solutions y(tk + c31h), y(tk + c32h) and y(tk + c33h)
at three fixed points tk + c31h, tk + c32h and tk + c33h.

Now we look in to the construction of Gauss-type NIRK methods of order four and
order six. The order four NIRK methods are based on Gauss quadrature formulas. Let Y 2

1

and Y 2
2 be the exact solutions of IVP (1. 1 ) at two internal points tk + c21h and tk + c22h

within integration interval [tk, tk+1], respectively. These internal stage values are evaluated
using an initial guess of the value of y(tk+1). The NIRK methods of order four have the
form

Y 2
1 = a211yk + a212yk+1 + h

(
d211g(tk, yk) + d212g(tk+1, yk+1)

)
, (2. 8 a)

Y 2
2 = a221yk + a222yk+1 + h

(
d221g(tk, yk) + d222g(tk+1, yk+1)

)
, (2. 8 b)

yk+1 = yk + hh
(
b1g(T 2

1 , Y
2
1 ) + b2g(T 2

2 , Y
2
2 )
)
, (2. 8 c)

where T 2
1 = tk + c21h, T 2

2 = tk + c22h and bi, c2i represent the nodes and weights of Gauss
quadrature formulas, respectively. These are given as

b1 =
1

2
, b2 =

1

2
,

c21 =
1

2
−
√

3

6
, c22 =

1

2
+

√
3

6
.

(2. 9)

To ensure the NIRK method (2. 8 ) is of order four, we need to show that its local error is
O(h5). This condition can be achieved by the following coefficients as shown in [14] with
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θ as a free real parameter.

a211 = θ, a212 = 1− θ, a221 = 1− θ, a222 = θ,

d211 =
1

2
θ − 1

6
−
√

3

12
, d212 =

1

2
θ − 1

3
−
√

3

12
,

d221 =
1

3
+

√
3

12
− 1

2
θ, d222 =

1

6
+

√
3

12
− 1

2
θ.

(2. 10)

The primary role of θ is to change the coefficients in the coefficient matrix of the Butcher
tableau. The above coefficients (2. 10 ) are calculated by using Taylor expansion for local
error evaluation of NIRK methods (2. 8 ). The NIRK methods (2. 8 ) with their coefficients
(2. 10 ) can be represented as RK methods. The Butcher tableau for these methods is shown
in Table 1.

0 0 0 0 0

c21
1
2c

2
1 + 1

2θ −
5
12

1
2 −

1
2θ

1
2 −

1
2θ

1
2c

2
1 + 1

12θ −
7
12

1− c21 7
12 −

1
2c

2
1 − 1

12θ
1
2θ

1
2θ

5
12 −

1
2c

2
1 − 1

12θ

1 0 1
2

1
2 0

0 1
2

1
2 0

TABLE 1. Butcher tableau for Gauss–type NIRK methods (2. 8 ) with
their coefficients (2. 10 ).

The choice of the free parameter θ leads to different NIRK methods of order four.
However, different choices of the parameter θ leads to methods with different stage orders.
Thus if we take θ = 1/2 + 2

√
3/9, we get NIRK method of order four and stage order

three whereas for all other θ values we get stage order two [13].
For the construction of order six NIRK methods, 3-rd level stage values Y 3

1 , Y 3
2 and

Y 3
3 are evaluated in addition to 2-nd level stage values. These 3-rd level stage values are

calculated at three further internal points tk + c31h, tk + c32h and tk + c32h within [tk, tk+1],
respectively. Also the 2-nd level stage values are used for the evaluation of 3-rd level stage
values. The NIRK methods of order six have the form

Y 2
j = a2j1yk + a2j2yk+1 + h

(
d2j1g(tk, yk) + d2j2g(tk+1, yk+1)

)
, j = 1, 2, (2. 11 a)

Y 3
j = a3j1yk + a3j2yk+1 + h

(
d3j1g(tk, yk) + d3j2g(tk+1, yk+1)

)
+ h
(
d3j3g(T 2

1 , Y
2
1 ) + d3j3g(T 2

2 , Y
2
2 )
)
, j = 1, 2, 3, (2. 11 b)

yk+1 = yk + h
(
b1g(T 3

1 , Y
3
1 ) + b2g(T 3

2 , Y
3
2 ) + b3g(T 3

3 , Y
3
3 )
)
, (2. 11 c)

where T 2
j = tk + hc2j and T 3

j = tk + hc3j .
To evaluate the coefficients in the above formulas (2. 11 ), Kulikov and Shindin, in

[13, 11], used a RK scheme with the following Butcher tableau
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0 0 0 0 0 0 0 0

c2 a21 0 0 a24 a25 a26 a27

c3 a31 0 0 a34 a35 a36 a37

c4 a41 a42 a43 a44 a45 a46 a47

c5 a51 a52 a53 a54 a55 a56 a57

c6 a61 a62 a63 a64 a65 a66 a67

1 0 0 0 b4 b5 b6 0

0 0 0 b4 b5 b6 0

TABLE 2. Butcher tableau, which was used to evaluate the coefficients
of order 6 Gauss–type NIRK methods.

The following conditions are required to be satisfied by the coefficients of the Table 2
as stated in [13]:

(1) The coefficients c2 and c3 are distinct roots of 2nd degree Legendre polynomial

d2

dt2
(t2(1− t)2) = 0. (2. 12 a)

(2) The coefficients c4, c5 and c6 are distinct roots of 3rd degree Legendre polynomial

d3

dt3
(t3(1− t)3) = 0. (2. 12 b)

(3) The coefficients b4, b5 and b6 represent the weights of the order six Gauss formula.
It can be seen that the first condition embeds NIRK methods ((2. 8 ) and (2. 10 )) into a
new one and the other two conditions assume that the method has order six. Following
conditions are needed to be satisfied as given in [13]

aij = a2i2bj , i = 2, 3, j = 4, 5, 6,

aij = a3i2bj , i = 4, 5, 6, j = 4, 5, 6.

All other free coefficients in Table 2 are evaluated by assuming that stage order is three for
2-nd level stage values and stage order is five for 3-rd level stage values. This is obtained
by solving the following system. The coefficient matrices in these system, as suggested by
the conditions (2. 12 ), are non-singular. 1 1 1

0 1/2 1
0 1/3 1

 ai1
a2i2
ai7

 =

 ci
c2i /2
c3i /3

 , i = 2, 3, (2. 13 a)


1 1 1 1 1
0 c2 c3 1/2 1
0 c22 c23 1/3 1
0 c32 c33 1/4 1
0 c42 c43 1/5 1



ai1
ai2
ai3
a3i2
ai7

 =


ci
c2i /2
c3i /3
c4i /4
c5i /5

 , i = 4, 5, 6. (2. 13 b)
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Theorem 1. [13] The Gauss–type NIRK method with Butcher tableau given in Table 3 is
of classical order six and stage order three.

The coefficients of the NIRK methods of order six are

0 0 0 0 0 0 0 0

c2
c3
6 0 0 35

108 −
10c3
27

14
27 −

16c3
27

35
108 −

10c3
27

c3
6 −

1
6

c3
c2
6 0 0 35

108 −
10c2
27

14
27 −

16
27 c2

35
108 −

10c2
27

c2
6 −

1
6

c4
c6
10 −

3
200

9c3
50 −

9
100 + θ θ

v1
360 −

5θ
9

v1
225 −

8θ
9

v1
360 −

5θ
9

3
200 −

c4
10

c5
1
32

√
27

32 −
√

27
32

5
36

2
9

5
36 − 1

32

c6
c4
10 −

3
200 −θ 9c2

50 −
9

100 − θ
v2
360 + 5θ

9
v2
225 + 8θ

9
v2
360 + 5θ

9
3

200 −
c6
10

1 0 0 0 5
18

4
9

5
18 0

0 0 0 5
18

4
9

5
18 0

TABLE 3. Butcher tableau presenting coefficients of order six NIRK methods.

where

c2 =
1

2
−
√

3

6
, c3 =

1

2
+

√
3

6
,

c4 =
1

2
−
√

15

10
, c5 =

1

2
, c6 =

1

2
+

√
15

6
,

θ =
9c6
50
− 9c3

100
− 9

200
,

v1 = 120c4 − 18c3 − 1, v2 = 120c6 − 18c2 − 1.

(2. 14)

Implementation of Gauss-type NIRK Methods: NIRK methods are effective and ef-
ficient methods due to their lower computational cost. In order to implement NIRK
methods, we first approximate the exact solution yk+1 at tk+1 then use this approximation
to calculate the stage values ((2. 11 a) and (2. 11 b)). The step update formula (2. 11 c)
becomes a single nonlinear equation to be solved. Method (2. 11 ) can be represented in a
convenient form to perform the iterative scheme to solve this nonlinear problem. For given
values of θ1 and θ2, method (2. 11 ) is equivalent to NIRK method given in Table 3. The
coefficients of both levels of stage values used in [11] are

• For 2-nd level stage values, where θ1 =
1

2
+

2
√

3

9
,

a211 = θ1, a212 = 1− θ1, a221 = 1− θ1, a222 = θ1,

d211 =
θ1
2
− 1

6
−
√

3

12
, d212 =

θ1
2
− 1

3
−
√

3

12
,

d221 =
1

3
+

√
3

12
− θ1

2
, d222 =

1

6
+

√
3

12
− θ1

2
.

(2. 15)

• For 3-rd level stage values, where θ2 =
9
√

15

200
−
√

27

200
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a311 =
1

2
+

3
√

15

25
+

√
27

100
+ 2θ2, a312 =

1

2
− 3
√

15

25
−
√

27

100
− 2θ2, a321 =

1

2
,

a322 =
1

2
, a331 =

1

2
− 3
√

15

25
−
√

27

100
− 2θ2, a332 =

1

2
+

3
√

15

25
+

√
27

100
+ 2θ2,

d311 =
7

200
+

√
15

100
, d312 = θ2 +

√
27

100
, d313 = θ2, d314 = − 7

200
+

√
15

100
,

d321 =
1

32
, d322 =

√
27

32
, d323 = −

√
27

32
, d324 = − 1

32
,

d331 =
7

200
−
√

15

100
, d332 = −θ2, d333 = −θ2 −

√
27

100
, d334 = − 7

200
−
√

15

100
.

(2. 16)

Generally, for stiff problems, Newton’s iterative scheme is more efficient than the fixed
point iterative scheme. Kulikov presented a modified Newton scheme in [11] and is given
by

Y
2,(l)
j = a2j1ȳk + a2j2y

(l−1)
k+1 + h

(
d2j1g(tk, ȳk) + d2j2g(tk+1, y

(l−1)
k+1 )

)
, j = 1, 2,

(2. 17 a)

Y
3,(l)
j = a3j1ȳk + a3j2y

(l−1)
k+1 + h

(
d3j1g(tk, ȳk) + d3j2g(tk+1, y

(l−1)
k+1 )

)
+ h

2∑
m=1

d3j,m+2g(T 2
m, Y

2,(l−1)
m ), j = 1, 2, 3, (2. 17 b)

U(hJ)(y
(l)
k+1 − y

(l−1)
k+1 ) = −y(l−1)k+1 + ȳk + h

s∑
i=1

big(T si , Y
s,(l)
i ), l = 1, 2, . . . , N,

(2. 17 c)

where J def
= ∂tf(tk+1, y

(0)
k+1) represents the Jacobian of the function provided in IVP (1. 1 )

and ȳk = yMk , k = 0, 1, . . . , N − 1 is the numerical solution obtained by method (2. 6 )
using M iterations of (2. 17 ) per step.

A major constraint for iteration (2. 17 ) is its practical efficiency because the coefficient
matrix U(hJ) in (2. 17 c) is a matrix-valued cubic polynomial of the form

U(hJ)
def
= Im −

1

2
hJ +

1

10
(hJ)2 − 1

20
(hJ)3, (2. 18)

where Im is an m × m identity matrix. The evaluation of the coefficient matrix U as
in (2. 18 ) is impractical due to its large computational cost. One way to overcome this
is to use its linear part and ignore the higher degree terms. However, this approach
does not reduce the CPU time considerably and damages the stability of MIRK methods
including NIRK formulas [5, 12, 14]. Cash and Singhal, in [5], suggested to approximate
the coefficient matrix U by some power equal to the degree of the original matrix-valued
polynomial (2. 18 ). Kulikov approximated it for NIRK methods [11] as

Ũ(hJ)
def
=
(
Im −

1

6
hJ
)3
. (2. 19)
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The above polynomial has many advantages. Firstly, it is effectively utilized in iterative
scheme (2. 17 ). The matrix Im−hJ/6 is decomposed once per integration step. The three
linear systems are then solved with the decomposed matrix. So, this uses reasonably less
computational cost. Secondly, the polynomial (2. 19 ) is an approximation of order 2, that
is U(hJ) = Ũ(hJ) + O(h2J2). So, replacement of U(hJ) with Ũ(hJ) has no negative
influence on the convergence rate of the iteration.

Error Estimation Techniques and Automatic Step Size Control: The local error
estimation in a RK method leads to automatic adjustment of the step size and is controlled
by some prescribed tolerance (TOL). With an initial step size, an embedded RK pair
approximates two solutions y1 and ŷ1 of an IVP. Their difference y1 − ŷ1 computes the
local error (le) which is then compared with the given tolerance. If ‖le‖ is greater than
TOL, we take it as a rejected step and reduce the stepsize using the formula below and
repeat the step.

hnew = h
(TOL

‖le‖

)1/p
× 0.9, (2. 20)

where p is the order of the numerical method. If the step is accepted then the step size
is increased also by using same relation (2. 20 ). The choice of an initial step size is also
important. Though a bad choice is repaired by the step size control, yet it utilizes more
CPU time.

For a Gauss–type NIRK method, a pair of embedded RK formulas can be formed
by order four and order six methods [13]. Both of these methods are applied to obtain
two numerical solutions of the given IVP, and the difference of both numerical solutions
estimates the error. In this way, a family of order six Gauss-type methods with built-in
error estimation is achieved [11]. Kulikov and Shindin introduced an embedded stage error
estimation technique in [13, 12] and tested it successfully on order four NIRK methods.
They termed it as Embedded Stages Approach (ESA). It is based on the result attained in
[14], that the stage order of the NIRK methods is raised by one when a specific value of the
free parameter θ is used [11, 14].

For order four and order six Gauss-type NIRK methods, four different error estimation
techniques are examined numerically in [12] and [11], respectively. Here, we discuss these
techniques for the order six NIRK methods.

1) The embedded method error estimation (EMEE) scheme estimates the local error by
comparing the two numerical solutions obtained from embedded NIRK method of order
four given in Table 1 and order six NIRK methods given in Table 3 respectively and are as
follows

yk+1 = yk + h
(1

2
g(T 2

1 , Y
2
1 ) +

1

2
g(T 2

2 , Y
2
2 )
)
, (2. 21 a)

yk+1 = yk + h
( 5

18
g(T 3

1 , Y
3
1 ) +

4

9
g(T 3

2 , Y
3
2 ) +

5

18
g(T 3

3 , Y
3
3 )
)
, (2. 21 b)

so the local error can be found as

lek+1 = yk+1 − ŷk+1,

lek+1 = h
(1

2
g(T 2

1 , Y
2
1 ) +

1

2
g(T 2

2 , Y
2
2 )− 5

18
g(T 3

1 , Y
3
1 )− 4

9
f(T 3

2 , Y
3
2 )− 5

18
f(T 3

3 , Y
3
3 )
)
.

(2. 22)
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This error estimation approach is quite simple and cheap as all f(T ij , Y
i
j ) are already

evaluated within every step of method (2. 11 ). The stability function for embedded NIRK
method of order four is calculated as

RENIRK4(z) =
1 + 1/2z + 1/10z2 + 1/120z3 − 1/750z5

1− 1/2z + 1/10z2 − 1/120z3
, where z = hλ. (2. 23)

which is not bounded within complex plane and is not A-stable as well [11]. So
EMEE approach (2. 22 ) can put unnecessary restriction on the step sizes of the NIRK
method ((2. 11 ) and Table 3), when dealing with very stiff IVPs. It will result in extra
computational time that is not affordable for some large-scale problems.

2) The second scheme is called as modified embedded method error estimation
(MEMEE) scheme. It might be time consuming to implement directly the EMEE for some
large-scale differential equations. This issue can be resolved by applying Shampine’s idea
[10] to modify the EMEE technique. The Shampine’s idea is to modify the error estimation
technique for an embedded method, especially for stiff equations in which the embedded
error becomes unbounded. The resulting MEMEE technique is suitable for stiff ODEs. The
error estimation technique EMEE is modified and computed by solving a linear system as
follows:

Ũ1 l̃ek+1 = lek+1, (2. 24)

where lek+1 is same as calculated in (2. 22 ), Ũ1 = (Im−hJ/6)2. This MEMEE technique
is not practically expensive as it uses solutions of two linear systems with same coefficient
matrices Im − hJ/6. This matrix is already decomposed within the step of the numerical
method ((2. 11 ) and Table 3), so no extra work is required. We compute the new stability
function that follows from MEMEE technique using the formula

R̃ENIRK4(z) = RNIRK6(z) + Q̃−11 (RENIRK4(z)−RNIRK6(z)), (2. 25)

where RNIRK6(z) represents the stability function of order six NIRK method. Solving
formulas (2. 23 ) and (2. 25 ), we get the stability function as

RENIRK4(z) =
1 + 1/6z − 7/180z2 − 1/90z3 − 1/864z5

1− 5/6z + 53/180z2 − 1/18z3 + 1/180z4 − 1/4320z5
. (2. 26)

As the above stability function (2. 26 ) is bounded within the complex plane so is the error
estimate (2. 24 ). Thus MEMEE is suitable for stiff ODEs.

3) The embedded stage error estimation (ESEE) technique is successfully tested for
order 4 NIRK methods in [13, 12]. This idea is extended to order six NIRK methods. The
stage values for methods ((2. 11 ) and Table 3) approximate an exact solution of order 6
when the value of free parameter θ is used as (36c6 − 18c3 − 9)/200. For any other θ
these stage values approximate order five numerical solution. The difference of the two
solutions provides an order five approximation. The ESEE technique can be represented
by the following formula:

l̂ek+1 = rh
(1

2
g(T 2

1 , Y
2
1 ) +

1

2
g(T 2

2 , Y
2
2 )− 5

18
g(T 3

1 , Y
3
1 )− 4

9
g(T 3

2 , Y
3
2 )− 5

18
g(T 3

3 , Y
3
3 )
)
,

(2. 27)
where r = θ̂ − θ.
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4) Similar to EMEE, ESEE cannot be much effective for stiff problems for any r. So,
we again use Shampine’s idea and modify the ESEE technique as follows:

Ũ1 l̄ek+1 = l̂ek+1, (2. 28)

where Ũ1 and l̂ek+1 are the same as calculated in MEMEE and (2. 27 ), respectively. This
modified embedded stage error estimation (MESEE) technique is bounded for any step size
with 0 < |r| ≤ 1/6 and is cheaper as well [11].

3. NUMERICAL TESTING

In this section, we apply the order six Nested Implicit Runge–Kutta (NIRK) method on
a variety of nonlinear stiff IVPs. These IVPS are from the stiff DETEST problems [8] and
are given in the Appendix. Since the exact solutions of the test problems are not available,
we compared our numerical solutions with reference solutions. These reference solutions
were computed using highly accurate MATLAB integrator. The test problems are from the
following classes:

• Problem class D (nonlinear with real eigenvalues)- Six different systems modeling
practical applications constitute this class.

• Problem class E (nonlinear with complex eigenvalues)- This class has five systems,
four of which have eigenvalues close to real axis.

We apply two numerical methods. The first method is Gauss-type NIRK method of
order six with built-in error estimation. The second method is highly accurate MATLAB
integrator ode15s [15]. The pseudo-code we used for our driver is provided and explained
in [16].

The order six NIRK method is applied to the stiff DETEST problems. NIRK methods
are embedded methods with built-in error estimation. There are four techniques of this
error estimation, namely, EMEE, MEMEE, ESEE, and MESEE. These techniques were
studied in detail in Section 2.

We have used modified Newton’s method to solve stages iteratively. We allow a
maximum of three to four iterations for convergence. The iterative scheme uses a
coefficient matrix U as given in Section 2. We take two different values of the matrix
U as given in (2. 18 ) and (2. 19 ). The convergence of our iterative scheme is bounded
by a small positive number which is 10−2 times local error tolerance. We have checked it
with other values as well, but we did not find any significant difference. The local error
tolerance (TOL) is taken as 10−i, i = 2, 3, . . . , 10. This variation is used to perform
different experiments. We evaluate an exact Jacobian and check our results by providing it
in every step or every iteration. Although we have experimented with all the problems of
both classes, we have only included few important results here.

EXPERIMENT 1

In our first set of experiments, we check the accuracy of order six NIRK methods in
terms of end-point global error. Figures 2 – 3 show the graphs of the end-point global
errors (ERROR) computed at various tolerances (TOL) for the two classes of stiff DETEST
problems.
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FIGURE 2. Experiment 1d, tolerance vs end-point global error for NIRK
and ode15s, (a) = with Ũ and mitn = 3, (b) = with U and mitn = 3.
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FIGURE 3. Experiment 1e, tolerance vs end-point global error for NIRK
and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn = 3.

For the problem class D (nonlinear with real eigenvalues), NIRK method shows more
accuracy than ode15s at all tolerances only for problem D1. For problems D2 and D3,
ode15s scheme performs relatively better at larger tolerances. In case of problem D5 as
shown in Figure 2(b), ode15s is more accurate than EMEE and ESEE at higher tolerances,
but at lower ones, the former scheme is less accurate than all error estimation techniques.
Like previous problem classes, EMEE scheme performs at the best accuracy level than
other ones in many tests. However, unlike previous results, ESEE becomes more accurate
than MEMEE for this problem class as given in Figure 2(a). In case of problem D6, ode15s
is more accurate than MEMEE and MESEE techniques but less than the other two. Also
in this problem class, there is almost no effect whether U or Ũ is used as the coefficient
matrix in the iterative scheme.
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FIGURE 4. Experiment 2d, end-point global error vs function evaluation
for NIRK and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn
= 4.

For the problem class E (nonlinear with non-real eigenvalues), NIRK method performs
well for problems E3 and E4 as compared to the ode15s method. However, the latter
method exhibits quite more accuracy in solving problem E1 as shown in Figure 3(a). For
different error estimation techniques, EMEE is the most accurate and MESEE is the least
one. Moreover, MEMEE technique is better than ESEE in all problems of this class except
in E3, whereas MEMEE is more accurate only at a few lower tolerances. Figure 3(b) shows
this result. Like problem class D, here again, there is no effect for the choice of U or Ũ in
our iterative scheme.

EXPERIMENT 2

One way to measure the efficiency of the NIRK scheme is to count the number of
function evaluations (NFE) against the end-point global errors (ERROR), computed at
different tolerances (10−i, i = 2, 3, . . . , 10.). The results for the second set of experiments
are displayed in Figures 4 – 5. The initial values are same as in the case of the first set of
experiments.

For the problem class D, the problem D1 exhibits an unexpected result relative to
other problems of this set. The integrator od15s uses more function evaluations at larger
tolerances and lesser at the smaller ones in comparison with NIRK method as shown in
Figure 4(a). On the other hand, NIRK method indicates poor efficiency in case of problems
D4 and D6 where it uses 20 times more function evaluations than ode15s as shown in
Figure 4(b). Note it that, any variation in the choice of U or Ũ and choice of the maximum
allowed iterations do not affect this result. Similarly, for problem D2, ode15s is a lot more
efficient than NIRK scheme, though lesser as compared to problem D4. Finally, NIRK is
found to be very efficient than ode15s for problem D5. The four error estimate techniques
use nearly the same number of function evaluations except in problem D3, where EMEE
and ESEE use relatively lesser than other two.
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FIGURE 5. Experiment 2e, end-point global error vs function evaluation
for NIRK and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and
mitn = 3.

For the problem class E, ode15s is comparatively more efficient than NIRK. The lowest
difference in function evaluations between both schemes is about two times as in case
of problem E2 (Figure 5(b)), and the highest one is about 30 times which is in problem
E3. In problem E1, the behaviour of the ode15s scheme is different than other problems
due to the irregular behaviour of values of global errors. Also in this problem, the four
error estimation techniques show slightly different efficiency with one another as shown in
Figure 5(a).

EXPERIMENT 3

Finally, we conduct a set of experiments to compute the computational time (CPU-time)
and end-point global errors (ERROR) at nine different tolerances (10−i, i = 2, 3, . . . , 10.).
The results of this set of experiments give a reasonable estimate of the efficiency of NIRK
methods. Some of the results are shown in Figures 6 – 7.

For the problem class D, NIRK method uses the lesser computational time for problems
D1 and D5 and more computational time for problems D2 and D4 as compared to the
ode15s scheme. The results of problems D1 and D4 are shown in Figures 6(a) and 6(b),
respectively. In problem D4, the behaviour at the tolerance of 10−2 is similar as seen in
previous problem classes. However, error estimate techniques EMEE and ESEE performed
better than the other two. In case of problem D3, with Ũ as the coefficient matrix, ode15s
scheme takes lesser CPU time than NIRK method for MEMEE and MESEE techniques,
but the other two; EMEE and ESEE give better results than ode15s scheme. When U is
used, all the error estimation techniques exhibit nearly same results among themselves as
well as compared to ode15s scheme.

For the problem class E, NIRK method uses lesser CPU time than the ode15s scheme for
problem E2 only when the maximum allowed iterations are chosen as three. If we allow
four iterations, then both schemes took almost same time as shown in Figure 7(a). For
problem E1, at smaller tolerances, NIRK method performs better than the ode15s scheme.
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FIGURE 6. Experiment 3d, CPU time vs end-point global error for
NIRK and ode15s, (a) = with U and mitn = 3, (b) = with Ũ and mitn =
4.
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FIGURE 7. Experiment 3e, CPU time vs end-point global error for NIRK
and ode15s, (a) = with U and mitn = 4, (b) = with Ũ and mitn = 3.

Moreover, MEMEE and ESEE techniques use relatively lesser computational time than the
other two. Figure 7(b) shows the result of problem E3. The problems E4 and E5 exhibit
better performance of ode15s scheme as compared to NIRK method. It has been observed
that the choice of U or Ũ does not affect while the choice of Jacobian evaluation affects the
results in a similar way as in previous problem classes.

4. CONCLUSIONS

Gauss-type NIRK methods have recently been introduced by G. Yu. Kulikov and S. K.
Shindin [12, 13, 11]. These methods have not only cheap practical implementation but also
exhibit many essential properties of implicit Runge–Kutta (IRK) methods, such as stability,
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high-order accuracy, and symmetry. In this paper, we have provided an implementation of
4th- and 6th-order NIRK methods. The NIRK methods have built-in local error estimates,
and we have examined four different error estimation techniques given in Section 2.
The numerical testing is performed on a variety of nonlinear stiff problems from stiff
DETEST with both real and complex eigenvalues. As a part of numerical testing, we
performed experiments to compare the accuracy and efficiency of NIRK method with the
MATLAB integrator ode15s. Different sets of experiments were performed for nonlinear
stiff problems with real and with complex eigenvalues at different tolerances.

It has been observed that when nonlinear problems with real eigenvalues are tested,
the NIRK method exhibited good accuracy than ODE15s scheme. However, two error
estimation techniques of NIRK method are relatively less accurate in case of some
problems. Whereas, the function evaluations of NIRK method are considerably larger than
the ode15s scheme for most of the problems. The CPU times taken by both methods
showed that for some problems of this class, NIRK method is more efficient than ode15s
scheme and for the others, the results are opposite.

In case of nonlinear problems with complex eigenvalues, the ode15s scheme is more
accurate for one problem whereas for other problems NIRK method performed well. The
results for function evaluations are similar to the previous problem class. Moreover, NIRK
method showed poor efficiency than ode15s scheme. The former method used relatively
more computational time except for one problem.

Our work has several possible implications. Overall, we observed that the accuracy of
NIRK method is promising. The NIRK method is more efficient for most of the problems
in terms of CPU time. However, NIRK method showed poor results in terms of function
evaluations for most of the problems. We found among the four local error estimation
techniques we tested that EMEE technique performed better as compared to the other
techniques. Further work can be done by investigating the possibility of implementing
such numerical methods for non-linear problems of fractional order [1].

5. APPENDIX

TEST PROBLEMS (STIFF DETEST)

The problems tested in this work were from the well known stiff DETEST problems
[8]. The differential equations of all the tested problems, their intervals of integration,
initial conditions, step sizes, and the eigenvalues of the Jacobian for each problem are
listed below.

PROBLEM CLASS D: Nonlinear With Real Eigenvalues

D1: y′1 = 0.2(y2 − y1, y1(0) = 0,

y′2 = 10y1 − (60− 0.125y3)y2 + 0.125y3, y2(0) = 0,

y′3 = 1, y3(0) = 0,

tend = 400, hinitial = 1.7× 10−2,

(Eigenvalues: 0,−0.17→ −0.012,−60→ −11)
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D2: y′1 = −0.04y1 + 0.01y2y3, y1(0) = 1,

y′2 = 400y1 − 100y2y3 − 3000y22 , y2(0) = 0,

y′3 = 30y22 , y3(0) = 0,

tend = 40, hinitial = 10−5,

(Eigenvalues: 0, 0→ −3100,−0.040→ −0.40→ −0.030)

D3: y′1 = y3 − 100y1y2, y1(0) = 1,

y′2 = y3 + 2y4 − 100y1y2 − 2× 104y22 , y2(0) = 1,

y′3 = −y3 + 100y1y2, y3(0) = 0,

y′4 = −y4 + 104y22 , y4(0) = 0,

tend = 20, hinitial = 2.5× 10−5,

(Eigenvalues: 0,−100→ −1.4,−4.0× 104 → −290)

D4: y′1 = −0.013y1 − 1000y1y3, y1(0) = 1,

y′2 = −2500y2y3, y2(0) = 1,

y′3 = −0.013y1 + 1000y1y3 − 2500y2y3, y3(0) = 0,

tend = 50, hinitial = 2.9× 10−4,

(Eigenvalues:
0,−9.3× 10−3 → −4.0× 10−3 → −6.3× 10−3,−3.5× 103 → −3.8× 103)

D5: y′1 = 0.01− [1 + (y1 + 1000)(y1 + 1)](0.01 + y1 + y2), y1(0) = 0,

y′2 = 0.01− (1 + y22)(0.01 + y1 + y2), y2(0) = 0,

tend = 100, hinitial = 10−4,

(Eigenvalues: −.01→ −.0002→ −.002,−1000→ −400))

D6: y′1 = −y1 + 108y3(1− y1), y1(0) = 1,

y′2 = −10y2 + 3× 107y3(1− y2), y2(0) = 0,

y′3 = −y′1 − y′2, y3(0) = 0,

tend = 1, hinitial = 3.3× 10−8,

(Eigenvalues: 0,−1.0→ −8.6,−3.0× l07 → −4.0× 107)
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PROBLEM CLASS E: Nonlinear With Complex Eigenvalues

E1: y′1 =y2, y1(0) = 0,

y′2 =y3, y2(0) = 0,

y′3 =y4, y3(0) = 0,

y′4 =(y21)− sin y1 − 108)y1 + (
y2y3
y21 + 1

− 4× 106)y2+

(1− 6× 104)y3 + (10exp(−y24)− 4× 102)y4 + 1, y4(0) = 0,

tend = 1, hinitial = 6.8× 10−3,

(Eigenvalues: −130± 69i,−64± 22i)

E2: y′1 = y2, y1(0) = 2,

y′2 = 5(1− y21)y2 − y1, y2(0) = 0,

tend = 1, hinitial = 10−3,

(Eigenvalues: −0.067 and −15→ 5.7 and −1.5→ 3.6 and
1.4→ 2.4± 2.8i→ −0.052± 8.8i→ −2.0± 9.5i→ −5.9± 4.5i→ −2.0 and

−12→ 0.050 and −15→ 1.1 and −3.4)

E3: y′1 = −(55 + y3)y1 + 65y2, y1(0) = 1,

y′2 = 0.0785(y1 − y2), y2(0) = 1,

y′3 = 0.1y1, y3(0) = 0,

tend = 500, hinitial = 0.02,

(Eigenvalues: 0.0062± 0.01i→ 0.0014± 0.014i→ −0.015 and
−4.0× 10−4,−55→ −81)

E4: y′ = −QT


−10 −10 0 0
10 −10 0 0
0 0 1000 0
0 0 0 0.01

Qy+G(y), y(0) =


0
−2
−1
−1

 ,
where

Q =
1

2


−1 1 1 1
1 −1 1 1

1 1 −1 1
1 1 1 −1

Qy +G(y), G(y) = QT


(S2

1 − S2
1)/2

S1S2

S2
3

S2
4

 , Qy =


S1

S2

S3

S4


tend = 1000, hinitial = 10−3,

(Eigenvalues: −2.0→ −1.0× 10−2, 8.0± 10i→ 7.1± 7.9i→ 9.0± 0.030i→
12± 13i→ 0.19± 29i→ −17± 18i→ −10± 10i,−103)
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E5: y′1 =− 7.89× 10−10y1 − 1.1× 107y1y3, y1(0) = 1.76× 10−3,

y′2 =7.89× 10−10y1 − 1.13× 109y2y3, y2(0) = 0,

y′3 =− 7.89× 10−10y1 − 1.1× 107y1y3

+ 1.13× 103y4 − 1.13× 109y2y3, y3(0) = 0,

y′4 =1.1× 107y1y3 − 1.13× 103y4, y4(0) = 0,

tend = 1000, hinitial = 5× 10−5,

(Eigenvalues:
0,−7.5× 10−10 ± 9.2× 10−4i→ 2.9× 10−4 ± 8.7× 10−4i→ −9.4× 10−5 and

−0.019,−2.0× 104)
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