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Abstract. In this article, we employed Homotopy Perturbation Method
(HPM) and Optimal Homotopy Asymptotic Method (OHAM) to investi-
gate the semi analytical solution of thirteenth order boundary value prob-
lems. These analytical outcomes have been achieved in phrase of conver-
gent series with simply computable constituents. Comparing the outcomes
with exact solution, Variational Iterative Method (VIM) and Differential
Transformative Method (DTM), excellent agreement has been found. It
is observed that HPM and OHAM provide better solution than VIM and
DTM which demonstrates the effectiveness, potentiality and validity of
the proposed methods in reality and the acquired results are of top-level
precision.
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1. INTRODUCTION

The thirteenth-order boundary value problem is under consideration

d13 ˇ̀

dx13
= f(t, ˇ̀(t)), a ≤ t ≤ b

ˇ̀(i) = Ai, ˇ̀(j) = Bj ,

i = 0, 1, 2, 3, 4, 5, 6. j = 0, 1, 2, 3, 4, 5. (1. 1)

From last few decades, boundary value phenomena have great significance due to its wide-
spread application in the field of engineering and physical sciences. Different types of
boundary value flow problems occur in literature such as Marangoni boundary layer flow,
natural convected boundary layer flow, asymmetric boundary layer flow, MHD boundary
layer flow, atmospheric boundary layer flow through wind turbines and wind farms and
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power-law fluid based Falkner Skan boundary layer flow. Many researchers focus their
observation to solve such types of problems by utilizing analytical, approximate and exact
methods. To solve operator equations, approximate analytical techniques have been exten-
sively used in last few years among these methodologies. To facilitate hard and long cal-
culation some competent refinement has been made by Adomian Decomposition Method
(ADM). The modified ADM illustrated promising mechanism for solution of linear and
nonlinear based structure, Wazwaz and Al-Sayed [36] demonstrated ADM methodology
for analytical and approximate solution of Riccati equations, ADM performs an excellent
agreement while solving these types of equations [6] where ADM has been used to locate
the series solution of multipoint boundary value problems. Aslam [2] used an iterative
procedure which is based on decomposition process to find out the analytical result of fifth-
order boundary value problem. Application of higher order boundary value problems are
growing attention in many fields of physical sciences.

For solving different linear and nonlinear initial and boundary value problems, HPM
[12, 13, 14], Perturbation Iterative Method (PIM) [15], ADM and Laplace transformation
[3] have been extensively used in literature. Numerous mathematicians preferred to apply
VIM [1], HPM, OHAM [29] and DTM [20] for solution of manipulative estimated system
of linear and nonlinear differential equations [7, 32], rational conclusion for KdV, K(2,2),
Burgers and cubic based Boussinesq equations [36]. To overcome shortcoming of pertur-
bation methods, VIM and HPM both applying for simulation of heat transfer equations by
porous media [10], though VIM need assessment study of Lagrange multiplier [36] if the
solution exists it performs high accuracy and near to exact results. The convergence rate
of VIM has been studied in [31] which illustrated that VIM is easy to interpret and based
on few approximate terms for high precision. DTM [4] has been applied for analysis of
revolving non-prismatic rays. Analysis of this method performs efficiently and reliably for
lower and higher order boundary value problems.

To find out the solution of different physical problems, a lot of concentration has been
devoted to solve different higher order boundary values problems by using approximate
methods. In this regard, Sirajul Haq and Idress [11] reported the eighth order initial and
boundary value problems using OHAM. They claimed that OHAM is useful for problems
with large domains. Mohyud and Ahmet [8] solved the ninth and tenth order boundary
value problems by taking different examples to verify the reliability of the HPM scheme.
Further, Wazwaz [35] demonstrated that Modified Decomposition Method (MDM) simu-
lated the ninth, tenth and twelfth order boundary value problems. Iftikhar and Rehman [21]
represented the solution of thirteenth order boundary value problems by DTM. it has also
been observed that HPM [16, 17, 18, 34] is working well for all other linear and non-linear
boundary value problems. Moreover, some other numerical methods [5, 22, 23, 24, 25, 30,
33] have been used for the solution of different physical and boundary value problems.

From the literature survey, it is examined that no one yet attempts the thirteenth or-
der boundary value problems by OHAM and HPM. Inspired by the above admirable and
widely used semi analytical methods, we anticipated two methods, OHAM and HPM to
solve thirteenth order boundary value problems, which yield encouraging solutions. The
main purpose of applying both methods is to locate highly accurate analytical results for
existing thirteenth order boundary value problems. OHAM and HPM are efficient and eas-
ier to interpret. The difference between these methods is of mathematical form of auxiliary
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function. OHAM is uses auxiliary constants, while HPM does not. However, both methods
show excellent performance over the solution of proposed boundary value problems; ob-
serving the minimum numerical error with exact solution. In this paper, OHAM and HPM
are used in order to investigate the thirteenth order boundary value problems. For instance,
the papers of Esmaeilpour and Ganji [9], Mabood et al. [26, 27], Herisanu and Marinca
[19] have established the efficiency and generalizability of OHAM.

2. BASIC IDEA OF HPM

The mathematical structure of HPM is given by considering the nonlinear differential
equation with boundary value conditions

C(ˇ̀) = f(n);n ∈ Ω, K

(
ˇ̀,
∂ ˇ̀

∂s

)
, n ∈ I (2. 2)

where C(ˇ̀) represents differential operator, K is a boundary operator, f(n) is an analytical
function, I stands for the boundary of the domain Ω. Suppose Equation (2.2) may be
rephrased as:

H(ˇ̀) +N(ˇ̀) = f(n). (2. 3)

Applying a homotopy
α(n, h) : Ω× [0, 1] −→M, (2. 4)

which satisfies

K(α, h) = (1− h)[(H(v)−H(w0)] + h[C(α)− f(n)] = 0, (2. 5)

where h ∈[0,1] is an inserting parameter, consider as a small parameter, and the primary
estimation of equation (2.2) is w0. By applying Homotopy technique on equation (2.5), we
can get the series solution of equation (2.5), as follows:

v = v0 + hv1 + h2v2 + h3v3 + ..., (2. 6)

if h −→1 equation (2.6) will converges to the approximate solution of equation (2.5), i.e.
ˇ̀(x) = lim

h−→1
v = v0 + v1 + v2 + v3 + ... (2. 7)

3. FUNDAMENTAL THEME OF OHAM

The essential ideology of OHAM follow as:
(a) The subsequent differential equation with boundary constraint is under consideration:

L(z(x)) + g(x) +N(z(x)) = 0 ,K

(
z,
dz

dx

)
, (3. 8)

where L and N denotes the linear and non-linear operators correspondingly, independent
variable shows by x, z(x) is unspecified function, g(x) is defined function and K is a
boundary operator.
(b) An equation suggested as bend equation is created

(1−r)[L(φ̌(x, r))+g(x)] = S(r)[L(φ̌(x, r))+g(x)+N(φ̌(x, r))]K

(
φ̌(x, r),

∂φ̌(x, r)

∂x

)
= 0,

(3. 9)
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where r ∈ [0, 1]is an inserting variable, the convergence of the general solution is depen-
dent on S(r), which is stand for an auxiliary function.
(c) The Taylor series about r is an expanded approximate solution for φ̌(x, r).

φ̌(x, r, Li) = z0(x) + z1(x, L1)r1 + z2(x, L2)r2.... (3. 10)

The rate of convergence of the series (3.10) has been observed by previous researchers
which is dependent upon the auxiliary constants Li.... If it is converges then we obtain

z ˜(x, L1, L2, ..., Lm) = z0(x) +

∞∑
i=1

zi(x, L1, L2, ..., Lm). (3. 11)

(d) Substituting (3.10) into (3.8) we have mention residual:

R(x, L1, L2, . . . , Lm) = L(z̄(x, L1, L2, . . . , Lm)) +N(z̄(x, L1, L2, . . . , Lm)). (3. 12)

IfR(x, L1, L2, ..., Lm)=0, then the exact solution will be z̄. Generally, this case will not be
for non-linear problems. For considering L1, L2... the method of least square can be used.
(e) Finally put these constants in (3.11) and can get the approximate solution.

4. EXAMPLE 1

4.1. HPM Solution. Consider the thirteenth order linear boundary value problem

ˇ̀(13)(x) = − sin(x) + cos(x) , x ∈ [0, 1], (4. 13)

with boundary constraints:
ˇ̀(0) = 1, ˇ̀(1)(0) = 1, ˇ̀(2)(0) = 1, ˇ̀(3)(0) = −1, ˇ̀(4)(0) = 1, ˇ̀(5)(0) = 1, ˇ̀(6)(0) = −1
ˇ̀(1) = sin(1)+cos(1), ˇ̀(1)(1) = − sin(1)+cos(1), ˇ̀(2)(1) = − sin(1)−cos(1), ˇ̀(3)(1) =
sin(1) − cos(1), ˇ̀(4)(1) = sin(1) + cos(1), ˇ̀(5)(1) = − sin(1) + cos(1). where ˇ̀(x) =
sin(x) + cos(x) shows the exact out come of the problem. By applying the HPM scheme
on (4.13) we attained

• Zeroth order problem
ˇ̀(13)
0 (x) = 0, (4. 14)

with boundary constraints:
ˇ̀
0(0) = 1, ˇ̀(1)

0 (0) = 1, ˇ̀(2)
0 (0) = 1, ˇ̀(3)

0 (0) = −1, ˇ̀(4)
0 (0) = 1, ˇ̀(5)

0 (0) = 1, ˇ̀(6)
0 (0) = −1,

ˇ̀
0(1) = sin(1)+cos(1), ˇ̀(1)

0 (1) = − sin(1)+cos(1), ˇ̀(2)
0 (1) = − sin(1)−cos(1), ˇ̀(3)

0 (1) =

sin(1)− cos(1), ˇ̀(4)
0 (1) = sin(1) + cos(1), ˇ̀(5)

0 (1) = cos(1)− sin(1),
it’s solution is

ˇ̀
0(x) = 1 + 1x− 0.5x2 − . . .+ 2.774138104741695× 10−9x12. (4. 15)

• First order problem
ˇ̀(13)
1 (x) = [cos(x)− sin(x)], (4. 16)

with boundary constraints:
ˇ̀
1(0) = 0, ˇ̀(1)

1 (0) = 0, ˇ̀(2)
1 (0) = 0, ˇ̀(3)

1 (0) = 0, ˇ̀(4)
1 (0) = 0, ˇ̀(5)

1 (0) = 0, ˇ̀(6)
1 (0) = 0,
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ˇ̀
1(1) = 0, ˇ̀(1)

1 (1) = 0, ˇ̀(2)
1 (1) = 0, ˇ̀(3)

1 (1) = 0, ˇ̀(4)
1 (1) = 0, ˇ̀(5)

1 (1) = 0.
It’s solution is

ˇ̀
1(x) =

1

720

(
−720 + 720x+ 360x2 + 120x3 + ...+ 450456x12 sin(1) + 720 sin(x)

)
.

(4. 17)
Using (4.15) and (4.17) we get the solution

ˇ̀(x) = ˇ̀
0(x) + ˇ̀

1(x) (4. 18)

4.2. OHAM Solution. Consider the thirteenth order linear boundary value problem

ˇ̀(13)(x) = − sin(x) + cos(x), x ∈ [0, 1] (4. 19)

with boundary constraints:
ˇ̀(0) = 1, ˇ̀(1)(0) = 1, ˇ̀(2)(0) = 1, ˇ̀(3)(0) = −1, ˇ̀(4)(0) = 1, ˇ̀(5)(0) = 1, ˇ̀(6)(0) = −1,
ˇ̀(1) = sin(1)+cos(1), ˇ̀(1)(1) = − sin(1)+cos(1), ˇ̀(2)(1) = − sin(1)−cos(1), ˇ̀(3)(1) =
sin(1)− cos(1)+, ˇ̀(4)(1) = sin(1) + cos(1), ˇ̀(5)(1) = − sin(1) + cos(1).
where ˇ̀(x) = sin(x) + cos(x) presented the exact solution of the problem designed
By applying the OHAM to (4.19) we acquire

• Zeroth order problem

ˇ̀(13)
0 (x) = 0, (4. 20)

with boundary constraints:
ˇ̀
0(0) = 1, ˇ̀(1)

0 (0) = 1, ˇ̀(2)
0 (0) = 1, ˇ̀(3)

0 (0) = −1, ˇ̀(4)
0 (0) = 1, ˇ̀(5)

0 (0) = 1, ˇ̀(6)
0 (0) = −1,

ˇ̀
0(1) = sin(1)+cos(1), ˇ̀(1)

0 (1) = − sin(1)+cos(1), ˇ̀(2)
0 (1) = − sin(1)−cos(1), ˇ̀(3)

0 (1) =

sin(1)− cos(1), ˇ̀(4)
0 (1) = sin(1) + cos(1), ˇ̀(5)

0 (1) = − sin(1) + cos(1).
It’s solution is

ˇ̀
0(x) = 1+1x−0.5x2−0.16666666666666666x3+. . .+2.774138104741695×10−9x12.

(4. 21)

• First order problem

ˇ̀(13)
1 (x, L1) = (1 + L1)ˇ̀(13)

0 (x) + L1[− sin(x) + cos(x)], (4. 22)

with boundary constraints:
ˇ̀
1(0) = 0, ˇ̀(1)

1 (0) = 0, ˇ̀(2)
1 (0) = 0, ˇ̀(3)

1 (0) = 0, ˇ̀(4)
1 (0) = 0, ˇ̀(5)

1 (0) = 0, ˇ̀(6)
1 (0) = 0,

ˇ̀
1(1) = 0, ˇ̀(1)

1 (1) = 0, ˇ̀(2)
1 (1) = 0, ˇ̀(3)

1 (1) = 0, ˇ̀(4)
1 (1) = 0, ˇ̀(5)

1 (1) = 0.
It’s solution is

ˇ̀
1(x) =

1

720

(
720L1 + 720xL1 − 360x2L1 + . . .− 450456x12 sin(1)L1 − 720 sin(x)L1

)
.

(4. 23)

• Second order problem

ˇ̀(13)
2 (x, L1, L2) = (1 + L1)ˇ̀(13)

1 (x)− L2[cos(x)− sin(x)] + L2
ˇ̀(13)
0 (x), (4. 24)

with boundary constraints:
ˇ̀
2(0) = 0, ˇ̀(1)

2 (0) = 0, ˇ̀(2)
2 (0) = 0, ˇ̀(3)

2 (0) = 0, ˇ̀(4)
2 (0) = 0, ˇ̀(5)

2 (0) = 0, ˇ̀(6)
2 (0) = 0,
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FIGURE 1. Comparison of exact solution with HPM

TABLE 1. Comparison of absolute error of HPM and OHAM with VIM
[1] and DTM [20].

x Exact solution Exact-HPM Exact-OHAM Exact-VIM Exact-DTM
0 1 0 0 0 0

0.1 1.094 2.2204×10−16 0 3.885×10−15 3.885×10−15

0.2 1.178 0 0 1.462×10−13 1.462×10−13

0.3 1.250 2.2204×10−16 2.2204×10−16 8.805×10−13 8.805×10−13

0.4 1.310 8.8817×10−16 8.8817×10−16 2.358×10−12 2.358×10−12

0.5 1.357 2.2204×10−16 4.4408×10−16 3.801×10−12 3.801×10−12

0.6 1.389 6.8833×10−15 2.0650×10−14 5.147×10−11 5.147×10−11

0.7 1.409 3.8857×10−14 1.9317×10−14 1.562×10−11 1.562×10−11

0.8 1.414 3.1397×10−13 2.8377×10−13 8.994×10−11 8.994×10−11

0.9 1.404 5.8619×10−13 1.2145×10−13 4.700×10−10 4.700×10−10

1 1.381 1.6187×10−13 8.0602×10−14 2.063×10−9 2.063×10−9

ˇ̀
2(1) = 0, ˇ̀(1)

2 (1) = 0, ˇ̀(2)
2 (1) = 0, ˇ̀(3)

2 (1) = 0, ˇ̀(4)
2 (1) = 0, ˇ̀(5)

2 (1) = 0.
It’s solution is too long, here we take few terms

ˇ̀
2(x) =

1

720

(
720L1 + 720xL1 − 360x2L1 − . . .− 450456x12 sin(1)L2 − 720 sin(x)L2

)
,

(4. 25)
using Eq’s (4.21), (4.23) and (4.25) the second order approximate solution by OHAM for
r = 1

˜̀̌(x, L1, L2) = ˇ̀
0(x) + ˇ̀

1(x, L1) + ˇ̀
2(x, L1, L2), (4. 26)

we use the least square procedure to acquire the unknown convergent constants in ˜̀̌. Switch-
ing the values of L1 and L2 in (4.26) we attain the second order approximation utilizing
OHAM.
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5. EXAMPLE 2

5.1. HPM Solution. The thirteenth order non-linear boundary value problem esteemed
as:

ˇ̀(13)(x) = e−x ˇ̀2(x) x ∈ [0, 1], (5. 27)
ˇ̀(0) = 1, ˇ̀(1)(0) = 1, ˇ̀(2)(0) = 1, ˇ̀(3)(0) = 1, ˇ̀(4)(0) = 1, ˇ̀(5)(0) = 1, ˇ̀(6)(0) = 1,
ˇ̀(1) = e, ˇ̀(1)(1) = e, ˇ̀(2)(1) = e, ˇ̀(3)(1) = e, ˇ̀(4)(1) = e, ˇ̀(5)(1) = e,
where ˇ̀(x) = ex shows the exact solution of problem.
By applying HPM to (5.27) we conclude
Zeroth order problem

ˇ̀(13)
0 (x) = 0, (5. 28)

with boundary constraints:
ˇ̀
0(0) = 1, ˇ̀(1)

0 (0) = 1, ˇ̀(2)
0 (0) = 1, ˇ̀(3)

0 (0) = 1, ˇ̀(4)
0 (0) = 1, ˇ̀(5)

0 (0) = 1, ˇ̀(6)
0 (0) = 1,

ˇ̀
0(1) = e, ˇ̀(1)

0 (1) = e, ˇ̀(2)
0 (1) = e, ˇ̀(3)

0 (1) = e, ˇ̀(4)
0 (1) = e, ˇ̀(5)

0 (1) = e.
It’s solution is

ˇ̀
0(x) =

1

720
(720 + 720x+ 360x2 + 120x3 + 30x4 + 6x5 + ...+ 566827x12). (5. 29)

Using (5.29) we get the solution,
ˇ̀(x) = ˇ̀

0(x). (5. 30)

5.2. OHAM Solution. The nonlinear thirteenth order boundary value problem is follow
as:

ˇ̀(13)(x) = e−x ˇ̀2(x), x ∈ [0, 1] (5. 31)

with boundary constraints
ˇ̀(0) = 1, ˇ̀(1)(0) = 1, ˇ̀(2)(0) = 1, ˇ̀(3)(0) = 1, ˇ̀(4)(0) = 1, ˇ̀(5)(0) = 1, ˇ̀(6)(0) = 1,
ˇ̀(1) = e, ˇ̀(1)(1) = e, ˇ̀(2)(1) = e, ˇ̀(3)(1) = e, `(4)(1) = e, ˇ̀(5)(1) = e,
where ˇ̀(x) = ex presented the exact solution of problem.
By applying OHAM to (5.31) we obtain

• Zeroth order problem

ˇ̀(13)
0 (x) = 0, (5. 32)

with boundary constraints:
ˇ̀
0(0) = 1, ˇ̀(1)

0 (0) = 1, ˇ̀(2)
0 (0) = 1, ˇ̀(3)

0 (0) = 1, ˇ̀(4)
0 (0) = 1, ˇ̀(5)

0 (0) = 1, ˇ̀(6)
0 (0) = 1,

ˇ̀
0(1) = e, ˇ̀(1)

0 (1) = e, ˇ̀(2)
0 (1) = e, ˇ̀(3)

0 (1) = e, ˇ̀(4)
0 (1) = e, ˇ̀(5)

0 (1) = e.
It’s solution is

ˇ̀
0(x) =

1

720
(720 + 720x+ 360x2 + 120x3 + . . .− 208524ex12). (5. 33)

• First order problem
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FIGURE 2. Comparison of exact solution with HPM

ˇ̀(13)
1 (x) = (1 + L1)u

(13)
0 (x) + e−xL1u

2
0(x), (5. 34)

with boundary constraints:
ˇ̀
1(0) = 0, ˇ̀(1)

1 (0) = 0, ˇ̀(2)
1 (0) = 0, ˇ̀(3)

1 (0) = 0, ˇ̀(4)
1 (0) = 0, ˇ̀(5)

1 (0) = 0, ˇ̀(6)
1 (0) = 0,

ˇ̀
1(1) = 0, ˇ̀(1)

1 (1) = 0, ˇ̀(2)
1 (1) = 0, ˇ̀(3)

1 (1) = 0, ˇ̀(4)
1 (1) = 0, ˇ̀(5)

1 (1) = 0.
It’s solution is too long so we take few terms

ˇ̀
1(x, L1) =

1

518400
e(−1−x)(18342737582847850405760eL1 . . .+43482258576e3x24L1

(5. 35)
using (5.33) and (5.35), for r = 1 OHAM conclude the first order approximate solution,

˜̀̌(x, L1) = ˇ̀
0(x) + ˇ̀

1(x, L1), (5. 36)

we use the least square scheme to achieve the unknown convergent constants in ˜̀̌. Inserting
the values of L1 in (5.36), OHAM conclude the first order approximation.

6. RESULTS AND DISCUSSION

In order to achieve clear depiction of accuracy and proficiency of proposed methods,
tabular and graphical analysis is performed. Table 1 illustrates the comparison of absolute
error of HPM and OHAM with VIM and DTM for linear thirteenth order boundary value
problem by keeping different values of x. The exact solutions of proposed examples have
already been existed. The error difference between exact and approximate solutions via
HPM, OHAM, VIM and DTM are demonstrated in Table 1 and Table 2 for the values of
x = 0.0, 0.1, 0.2, ..., 1.0. In Table 1, the performance of proposed methods reveals that
HPM and OHAM much better than VIM and DTM for proposed problem as the error
difference between exact and approximate solution of HPM and OHAM is very smaller
comparative to VIM and DTM. Table 2 exhibits a comparison of absolute error of HPM
and OHAM with VIM and DTM for non-linear thirteenth order boundary value problem.
The results indicate that the error difference of approximate and exact solutions of HPM



Comparative Analysis of Nonlinear Thirteenth Order Boundary Value Problems Utilizing OHAM and HPM 61

TABLE 2. Comparison of absolute error of HPM and OHAM with VIM
[1] and DTM [20].

x Exact solution Exact- HPM Exact- OHAM Exact-VIM Exact- DTM
0 1 0 0 0 0

0.1 1.105 0 0 4.174×10−14 4.171×10−14

0.2 1.221 8.8817×10−16 8.8817×10−16 2.641×10−12 2.641×10−12

0.3 1.349 6.6613×10−15 6.6613×10−15 2.993×10−11 2.993×10−11

0.4 1.491 1.9984×10−14 1.9984×10−14 1.671×10−10 1.671×10−10

0.5 1.648 2.7089×10−14 2.7089×10−14 6.309×10−10 6.309×10−10

0.6 1.822 1.1102×10−15 1.1102×10−15 1.847×10−9 1.847×10−9

0.7 2.013 1.1279×10−13 1.1279×10−13 4.478×10−9 4.478×10−9

0.8 2,225 3.4639×10−13 3.4639×10−13 9.215×10−9 9.215×10−9

0.9 2.459 7.9092×10−13 7.9092×10−13 1.589×10−8 1.589×10−8

1 2.718 8.8284×10−13 8.8284×10−13 2.090×10−8 2.090×10−8

and OHAM smaller than VIM and DTM for all values of x. The comparison of these
four methods with each other establishes that OHAM and HPM are superior to VIM and
DTM due to approximate solution. A comparison of exact solution with HPM solution is
also presented in Figure 1 and 2. These figures show low difference between exact and
HPM solutions for both boundary value problems. The solution curves are very smooth
and exhibit excellent agreement with exact solution, which conform the validity of HPM.

7. CONCLUSION

In this work, we studied approximate analytical solution of linear and nonlinear thir-
teenth order boundary value problems via HPM and OHAM. The obtained results propose
that the HPM and OHAM could be a valuable and efficient technique in solving linear and
nonlinear differential equations. The techniques have advantages over other existing ana-
lytical approximation techniques. Interestingly a highly accurate results are obtained with
only one or two p-terms of the series using HPM or OHAM. The low error and convergence
of both methods are remarkable.
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