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Abstract. This investigation intends to provide a new application of Tay-
lor expansion approach for solving first kind Fredholm integral equations.
The approach is based on employing theνth-degree Taylor polynomial of
unknown function at an arbitrary point and integration method such that
the first kind Fredholm integral equation is converted into a linear equa-
tions system with respect to unknowns and its derivatives up to orderν.
Solving this system will result in a desired solution. A considerable ad-
vantage of the suggested approach is that for such cases when the true so-
lution is a polynomial function of degree at mostν, the derivedνth-degree
approximation is equal to true solution. An error analysis is represented
and to verify the effectively and the accuracy of the proposed approach six
examples are investigated.
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1. INTRODUCTION

In this paper, we try to find the approximate solution of the linear first kind Fredholm
integral equations.

∫ b

a

K(s, u)ψ(u)du = f(s), a ≤ s ≤ b, (1. 1)

1



2 Mohsen Didgar, Alireza Vahidi and Jafar Biazar

whereK(s, u) and f(s) are given known functions andψ(s) is the unknown function
to be determined. In general, Eq. (1. 1 ) is ill-posed; whenK(s, u) is considered as a
smooth function, then a negligible change inf(s) may cause a large change inψ(s) and
any numerical method must take into account of this [4, 5, 6, 9, 12, 13, 14, 15, 20, 22, 21,
33, 34, 36, 37, 38, 39, 40, 41].

Such equations usually occur in the signal processing theory [46] and appear in many
physical models including spectroscopy, cosmic radiation, stereology, radiography, elec-
tromagnetic fields, image processing and so on [46].

To solve first kind Fredholm integral equations, several numerical methods have been
proposed, in the literature, such as expansion method [7, 27, 35], regularization method
[30], Galerkin method [1, 2, 7, 13, 28, 47], wavelets [3, 8, 28, 29, 32, 42], and collocation
method [25, 29, 31].

This research aims to propose an approximate approach in order to solve first kind Fred-
holm integral equation implementing a new application of Taylor expansion which has been
proposed by Li [23] (see also [10, 11, 16, 17, 18, 24, 43, 44, 45]) and considering the fact
that it has not been used before, for solving first kind Fredholm integral equation. Using
νth-degree Taylor polynomial of unknown function and employing integration method, the
first kind Fredholm integral equation could be converted into a linear equations system with
respect to unknown function and its derivatives. An intended approximate solution is deter-
mined by solving the obtained system according to a standard method. The obtained results
are compared with those of reported by applying different approaches. In the present paper,
the main advantage of the presented approach is that aνth-degree approximation matches
the exact solution if the exact solution is a polynomial function of degree at mostν.

The rest of this paper is organized as follows. In Section 2, an approach for solving
Fredholm integral equation of the first kind is described. In Section 3, the convergence
analysis for approximate solution is discussed. In Section 4, several numerical examples
are solved to demonstrate the effectiveness of the approach. In Section 5, some tentative
conclusions will be drawn.

2. DESCRIPTION OF THE METHOD

To estimate the solution of first kind Fredholm integral equation (1. 1 ), Eq. (1. 1 )
is converted into a linear equations system with respect to unknown and its derivatives.
Based on the method used in [10, 11, 16, 17, 18, 23, 24, 43, 44, 45], it is supposed that
the unknown functionψ(u) is ν + 1 times continuously differentiable. Therefore,ψ(u) is
expressed in terms of theνth-degree Taylor series at an arbitrary points as

ψ(u) = ψ(s) + ψ′(s)(u− s) + · · ·+ 1
ν!

ψ(ν)(x)(u− s)ν + Eν(u, s), (2. 2)

whereEν(u, s) indicates the Lagrange error bound

Eν(u, s) =
ψ(ν+1)(ξ)
(ν + 1)!

(u− s)ν+1, (2. 3)

for some pointξ betweens andu. Generally, the Lagrange error boundEν(u, s) becomes
sufficiently small asν gets great enough provided thatψ(ν+1)(s) is a uniformly bounded
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function. Note that the Lagrange error bound becomes zero for a polynomial function of de-
gree at mostν, thus the aboveνth degree Taylor expansion is equal to exact solution. With
due attention to aforementioned assumption, by omitting the last Lagrange error bound, the
truncated Taylor expansionψ(u) will be obtained as

ψ(u) ≈
ν∑

k=0

ψ(k)(s)
(u− s)k

k!
. (2. 4)

Inserting the approximate relation (2. 4 ), for unknown functionψ(u), into Eq. (1. 1 ) leads
to

ν∑

k=0

(−1)k

k!
ψ(k)(s)

∫ b

a

K(s, u)(s− u)kdu = f(s), (2. 5)

that can be simplified as

v00(s)ψ(s) + v01(s)ψ′(s) + . . . + v0ν(s)ψ(ν)(s) = f(s), (2. 6)

where

v0k(s) =
(−1)k

k!

∫ b

a

K(s, u)(s− u)kdu, k = 0, . . . , ν. (2. 7)

In fact, Eq. (1. 1 ) is converted into aνth-order linear ODE with respect toψ(s) and its
derivations up to orderν. In the following, to determineψ(s),. . . ,ψ(ν)(s), a linear equations
system has to be solved. To accomplish this goal, otherν independent linear equations with
respect toψ(s) and its derivatives up to orderν are required, which is derived by integrating
both sides of Eq. (1. 1 )ν times with respect tos from a to s. Therefore, we have

∫ b

a

∫ s

a

(s− t)i−1

(i− 1)!
K(t, u)ψ(u)dtdu = f(i)(s), i = 1, . . . , ν, (2. 8)

where

f(i)(s) =
∫ s

a

(s− u)i−1

(i− 1)!
f(u)du, i = 1, . . . , ν. (2. 9)

Now, again we apply approximate relation (2. 4 ) and after substituting (2. 4 ) forψ(u) into
Eq. (2. 8 ), we obtain

νX

k=0

(−1)k

k!
ψ(k)(s)

Z b

a

Z s

a

(s− t)i−1

(i− 1)!
(s− u)kK(t, u)dtdu = f(i)(s), i = 1, · · · , ν, (2. 10)

or equivalently

vi0(s)ψ(s) + vi1(s)ψ′(s) + . . . + viν(s)ψ(ν)(s) = f(i)(s), i = 1, . . . , ν, (2. 11)

where

vik(s) =
(−1)k

k!(i− 1)!

∫ b

a

∫ s

a

(s− t)i−1(s− u)kK(t, u)dtdu, k = 0, . . . , ν. (2. 12)

Thus, Eqs. (2. 6 ) and (2. 11 ) construct a linear equations system with respect to the un-
known functionψ(s) and its derivatives up to ordern. Now, we rewrite this system as
follows

V (s)Ψ(s) = F (s), (2. 13)
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where

V (s) =




v00(s) v01(s) · · · v0ν(s)
v10(s) v11(s) · · · v0ν(s)

...
...

. . .
...

vν0(s) vν1(s) · · · vνν(s)


 , (2. 14)

F (s) =




f(s)
f(1)(s)

...
f(v)(s)


 , Ψ(s) =




ψ(s)
ψ′(s)
ψ′′(s)

...
ψ(ν)(s)




. (2. 15)

Using a standard method to the resulting system of equations yields aνth-degree approxi-
mate solution of Eq. (1. 1 ) which is indicated asψν(s).

3. ERROR ANALYSIS

The current section is devoted to giving an error analysis for derivedνth-degree approx-
imate solution of the first kind Fredholm integral equation (1. 1 ) in a similar way that has
been discussed in [17]. It is assumed that the exact solutionψ(u) be an infinitely differen-
tiable function on the interval of interestI. As a matter of fact,ψ(u) can be expanded as
an uniformly convergent Taylor series inI:

ψ(u) =
∞∑

k=0

ψ(k)(s)
(u− s)k

k!
. (3. 16)

Using the above-mentioned method given in Section 2, Eq. (1. 1 ) can be converted into
the following equivalent linear equations system with respect to unknown functions
ψ(k)(s), k = 0, 1, · · ·

VΨ = F, (3. 17)

where
V = lim

ν−→∞
Vνν , Ψ = lim

ν−→∞
Ψν , F = lim

ν−→∞
Fν , (3. 18)

in whichVνν , Ψν , andFν , as shown in the previous section, are defined as

Vνν =
�
vij(s)

�
(ν+1)×(ν+1)

, Ψν =
h
ψ(i)(s)

i
(ν+1)×1

, Fν =
h
f(i)(s)

i
(ν+1)×1

(3. 19)

Hence, under the solvability conditions of system (3. 17 ) and lettingB = V−1 the unique
solution of system (3. 17 ) is represented as

Ψ = BF. (3. 20)

We rewrite the relation (3. 20 ) in an alternative matrix form as[
Ψν

Ψ∞

]
=

[
Bνν Bν∞
B∞ν B∞∞

] [
Fν

F∞

]
, (3. 21)

where

Ψ∞ =



Ψν+1

Ψν+2

...


 . (3. 22)



Application of Taylor Expansion for Fredholm Integral Equations of the First Kind 5

Accordingly, we can find out that the vectorΨν consists of the firstν + 1 elements of the
exact solution vectorΨ must satisfy the following relation

Ψν = BννFν + Bν∞F∞. (3. 23)

According to the proposed process in this paper, the unique solution of systemVΨ = F
can be denoted as

Ψ̃ν = V−1
νν Fν . (3. 24)

whereΨν is replaced bỹΨν as its approximate solution, for convenience.
Subtracting (3. 24 ) from (3. 23 ) leads to

Ψν − Ψ̃ν = DννFν + Bν∞F∞, (3. 25)

whereDνν = Bνν − V−1
νν .

Now, expanding the right-hand side of (3. 25 ), the first element of the vector at the
left-hand side of (3. 25 ) can be represented as

ψ(s)− ψ̃(s) =
ν∑

j=0

d0,j(s)f(j)(s) +
∞∑

j=ν+1

b0,j(s)f(j)(s), (3. 26)

wheredi,j(s) andbi,j(s) are the elements ofDνν andBν∞, respectively. Thus, according
to the Cauchy-Schwarz inequality we have

∣∣∣ψ(s)− ψ̃(s)
∣∣∣ ≤




ν∑

j=0

|d0,j(s)|2



1
2




ν∑

j=0

|f(j)(s)|2



1
2

+




∞∑

j=ν+1

|b0,j(s)|2



1
2




∞∑

j=ν+1

|f(j)(s)|2



1
2

. (3. 27)

It could be noted that, aslimν−→∞ Dνν = 0 andlimν−→∞ Bν∞ = 0, we have
limν−→∞ |ψ(s)− ψ̃(s)| = 0.

4. NUMERICAL EXAMPLES

In this section, we present approximate solutions of several first kind Fredholm integral
equations to illustrate the efficiency and the accuracy of the approach described in Section
2. Comparing this method with other selected methods, reveals the validity and applicabil-
ity of the proposed method. All computations are performed using Mathematica8.

Example 4.1. Consider the following Fredholm integral equation of the first kind [3, 8, 28,
31, 42] ∫ 1

0

sin(su)ψ(u)du =
sin(s)− s cos(s)

s2
, (4. 28)

with the exact solutionψ(s) = s. We apply the process discussed in Section 2, to obtain
the approximate solution of Eq. (4. 28 ). In the following, let’s consider the first-degree
Taylor expansion

ψ(u) ≈ ψ(s) + ψ′(s)(u− s). (4. 29)
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Inserting the approximate relation (4. 29 ), for unknown functionψ(u), into Eq. (4. 28 )
leads to

(s− s cos s)
s2

ψ(s)+
(−s2 + (−1 + s)s cos s + sin s)

s2
ψ′(s) =

sin(s)− s cos(s)
s2

. (4. 30)

In fact, Eq. (4. 30 ) is a first order linear ODE with respect toψ(s) andψ′(s). In the follow-
ing, we want to determine unknowns by solving a linear equations system. So, other one
linear equation with respect toψ(s) andψ′(s) is needed, which is obtained by integrating
both sides of Eq. (4. 28 ) one time with respect tos from a to s. Therefore, we have

∫ 1

0

∫ s

0

sin(tu)ψ(u)dtdu =
∫ s

0

sin(u)− u cos(u)
u2

du. (4. 31)

Now, we apply approximate relation (4. 29 ) again, and after substituting (4. 29 ) forψ(u)
into Eq. (4. 31 ), we obtain

EulerGamma− CosIntegral(s) + Log(s)
s

ψ(s)+

s2CosIntegral(s)− s(−1 + EulerGamma(s) + sLog(s))− sin(s)
s

ψ′(s) =

1− sin(s)
s

. (4. 32)

Thus, Eqs. (4. 30 ) and (4. 32 ) construct a linear equations system as
2
664

(s− s cos s)

s2

(−s2 + (−1 + s)s cos s + sin s)

s2
EulerGamma− CosIntegral(s) + Log s

s

s2CosIntegral(s)− s(−1 + EulerGamma(s) + sLog s)− sin s

s

3
775

2
64

ψ(s)

ψ′(s)

3
75 =

2
664

sin(s)− s cos(s)

s2

1− sin(s)

s

3
775 (4. 33)

By solving system (4. 33 ) the first-degree approximate solutionψ1(s) yields the exact
solution as it is expected. We note that after converting Eq (4. 28 ) into linear equations
system (4. 33 ), the Mathematica command ‘LinearSolve’ is used for the obtained system.
To make a comparison between the results obtained in different references, we list the
numerical results in Tables 1, 2 and 3.

TABLE 1. Errors(‖ eN ‖) for example 4.1 in [8, 28]

N Coifman wawelets in [28] Coifman wavelets in [8] Sinc wavelets in [28] Sinc wavelets in [8]
2 .1903e− 2 8.3e− 2 .3741e− 3 3.1e− 3
3 174.7e− 3 5.7e− 3 .5208e− 4 1.8e− 4
4 .5178e− 5 3.8e− 5 .4153e− 5 3.3e− 5
5 .4418e− 8 8.8e− 8 .0135e− 8 6.5e− 8
6 .7911e− 11 9.1e− 11 .8268e− 10 8.8e− 10
7 .9426e− 12 5.6e− 12 .6782e− 11 2.2e− 11
8 .2119e− 13 4.9e− 13 .4026e− 12 7.4e− 12
9 .3899e− 16 3.9e− 16 .9350e− 15 9.8e− 15
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TABLE 2. Absolute errors of Legendre multi-wavelets method [42], Le-
gendre wavelets method [32] and Chebyshev wavelet method [3]

x Legendre multi-wavelets method [42] Legendre wavelets method [32] Chebyshev wavelet method [3]
0 3.2306194e− 5 1.1830664e− 4 8.0915e− 6

0.1 8.4554541e− 6 3.5427559e− 5 8.0916e− 6
0.2 1.5395286e− 5 1.1933896e− 5 8.0917e− 6
0.3 9.5703736e− 6 2.3777726e− 5 8.0917e− 6
0.4 5.9440235e− 7 1.0392964e− 7 8.0918e− 6
0.5 1.9835266e− 6 1.1210253e− 5 1.7887e− 5
0.6 8.7416855e− 7 5.3623319e− 6 9.1574e− 6
0.7 2.3518955e− 7 1.4280816e− 6 8.5192e− 6
0.8 4.4564133e− 8 5.9249774e− 7 7.8810e− 6
0.9 1.5619527e− 8 6.9940627e− 7 7.2428e− 6

This example has recently been solved in [31] using sinc collocation method together
with a regularization technique which the obtained results in [31] are tabulated in Table 3
whereγ is known as the regularization parameter. The reader can refer to [31] for more
details.

TABLE 3. The maximum of the absolute errors in [31] using sinc collo-
cation method for regular parametersγ = 0.01, andγ = 0.001.

N γ = 0.01 γ = 0.001

2 2.5e− 2 3.4e− 3
3 5.4e− 3 6.2e− 4
4 1.4e− 3 4.9e− 4
5 2.8e− 4 4.7e− 5
6 3.2e− 5 8.7e− 6
7 4.3e− 6 1.1e− 6
8 8.5e− 7 4.2e− 7

Example 4.2. Consider the following Fredholm integral equation of the first kind [3]
∫ 1

0

esuψ(u)du =
es+1 − 1

s + 1
, (4. 34)

with the exact solutionψ(s) = es. Using the suggested method in this paper, we obtain
the approximate results by settingν = 1, . . . , 4 and our results are given in Table 4. This
example has been solved in [3] using Chebyshev wavelet method and Haar wavelet method
that was considered in [29] and we list the results in Table 5.

Example 4.3. Consider the following Fredholm integral equation of the first kind [7, 13,
31, 35] ∫ 1

0

(s2 + u2)
1
2 ψ(u)du =

(1 + s2)
3
2 − s3

3
, (4. 35)

with the exact solutionψ(s) = s. Using the proposed method, we can observe that the
first-degree approximate solutionψ1(s) yields the exact solution, since the exact solution
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TABLE 4. Absolute errors of Example 4.2.

x ν = 1 ν = 2 ν = 3 ν = 4

0.1 6.45167e− 2 1.40802e− 3 1.79020e− 4 1.23950e− 3
0.2 1.24959e− 2 4.60250e− 3 4.08930e− 4 2.19367e− 3
0.3 2.80324e− 2 6.14073e− 3 1.43025e− 4 6.24039e− 4
0.4 5.57884e− 2 4.42889e− 3 1.98471e− 4 1.40725e− 4
0.5 6.93572e− 2 8.23884e− 4 3.70581e− 4 2.25595e− 5
0.6 6.71742e− 2 3.16848e− 3 2.67273e− 4 2.82636e− 5
0.7 4.75096e− 2 5.87778e− 3 5.81542e− 5 1.58199e− 5
0.8 8.45132e− 3 5.45161e− 3 3.75997e− 4 7.14451e− 6
0.9 5.21148e− 2 1.63631e− 4 2.60992e− 4 2.14848e− 5
1.0 1.36526e− 1 1.32439e− 2 9.28844e− 4 5.21956e− 5

TABLE 5. Errors of Example 4.2 in [29, 3].

x Chebyshev wavelet [3] Haar wavelet [29]
k = 2, M = 3 k = 2, M = 4

0.1 0.93756e− 3 0.15083e− 4 0.78533e− 2
0.2 0.26591e− 4 0.17348e− 4 0.17394e− 2
0.3 0.10813e− 2 0.18632e− 4 0.56995e− 2
0.4 0.11006e− 2 0.15772e− 4 0.63561e− 2
0.5 0.12539e− 3 0.65854e− 5 0.23140e− 2
0.6 0.21186e− 2 0.13025e− 5 0.12947e− 1
0.7 0.22688e− 2 0.23260e− 5 0.93969e− 2
0.8 0.72829e− 3 0.15244e− 4 0.10479e− 1
0.9 0.38348e− 3 0.98384e− 5 0.38151e− 2
1.0 0.12761e− 2 0.10449e− 4 0.49872e− 2

is a polynomial of degree one. The maximum of the absolute errors between the exact
solution and approximate solution which has been given in [35] are tabulated in Table 6.

TABLE 6. The maximum of the absolute errors in [35] for Example 4.3.

N Error values
2 4.7e− 4
3 3.8e− 4
4 1.5e− 4
5 8.4e− 5
6 5.8e− 5
7 4.7e− 5
8 4.3e− 5
9 3.1e− 5
10 6.4e− 6

This example has recently been solved in [31] applying sinc collocation method together
with a regularization technique which the obtained results in [31] are tabulated in Table 7
whereγ is known as the regularization parameter. The reader can refer to [31] for more
details.
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TABLE 7. The maximum of the absolute errors in [31] using sinc col-
location method for regular parametersγ = 0.01, andγ = 0.001 for
Example 4.3.

N γ = 0.01 γ = 0.001

5 3.9e− 2 1.4e− 2
10 7.5e− 3 3.8e− 3
15 2.0e− 3 7.6e− 4
20 3.2e− 4 9.3e− 5
25 4.4e− 5 2.1e− 5
30 8.7e− 6 3.9e− 6
35 2.3e− 6 7.8e− 7

Example 4.4. Consider the following Fredholm integral equation of the first kind [25]
∫ 1

0

eu [sin(s− u + 1) + 1] ψ(u)du = 1 + cos(s)− cos(s + 1), (4. 36)

with the exact solutionψ(s) = e−s.
For this problem, a comparison between the exact solution and approximate solutionsψ1(s)
and ψ2(s) is made, at ten equidistant points in[0, 1], by settingν = 1, 2, in Table 8.
Furthermore, the results are shown in Figs 1 and 2, whenν = 1, 2, respectively. This
example was used in [25] and has been solved using Haar wavelet with scaling parameter
J = 4, 6. Results obtained in [25] are shown in Figs. 3, 4 and it can be observed that the
results obtained implementing the proposed approach are much better than those reported
in [25].

TABLE 8. Absolute errors of Example 4.4.

x ν = 1 ν = 2

0.1 3.08944e− 2 9.51278e− 4
0.2 5.62518e− 3 1.85257e− 3
0.3 1.15416e− 2 2.50492e− 3
0.4 2.13800e− 2 1.78556e− 3
0.5 2.45910e− 2 4.00050e− 4
0.6 2.18094e− 2 1.01317e− 3
0.7 1.36101e− 2 1.87644e− 3
0.8 5.13639e− 4 1.66706e− 3
0.9 1.70084e− 2 8.79272e− 5
1.0 3.85289e− 2 3.81648e− 3

Example 4.5. Consider the following Fredholm integral equation of the first kind [19]
∫ 1

0

e−suψ(u)du =
1− (s + 1)e−s

s2
, (4. 37)

with the exact solutionψ(s) = s. For this example, we can find thatψν(s) yields the exact
solution, only by settingν = 1. The reader can refer to [19] in order to compare the results
in depth.
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Exact solution

Approximate solution

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIGURE 1. Approximate results for Example 4.4 withν = 1.

Exact Solution

Approximate solution

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIGURE 2. Approximate results for Example 4.4 withν = 2.

Example 4.6. Consider the following Fredholm integral equation of the first kind [29]

∫ 1

0

(s + u)2√
1 + u2

ψ(u)du =

1
24

(
−3
√

2− 16(−2 +
√

2)s + 12s2(
√

2 arcsinh(1)) + 9 arcsinh(1)
)

, (4. 38)

with the exact solutionψ(s) = s2. The first and second degree approximate solutions
ψ1(s) andψ2(s) are obtained, by settingν = 1, 2. The obtained absolute errors between
the exact solution and approximate solutions are shown in Table 9. From Table 9, we can
find that second-degree approximate solution yields the exact solution as it is expected.
This example was used in [29] and has been solved using Haar wavelet with scaling para-
meterJ = 4, 5. Results obtained in [29] are shown in Figs. 5, 6.
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FIGURE 3. Numerical results for Example 4.4 with scaling parameterJ = 4 in [25]
(−Exact solution ∗Numerical solution).

FIGURE 4. Numerical results for Example 4.4 with scaling parameterJ = 6 in [25]
(−Exact solution ∗Numerical solution).

TABLE 9. Absolute errors of Example 4.4.

x ν = 1 ν = 2

0.1 1.52351e− 1 0
0.2 5.58730e− 2 0
0.3 1.20495e− 2 0
0.4 5.50158e− 2 0
0.5 7.48088e− 2 0
0.6 7.24209e− 2 0
0.7 4.84532e− 2 0
0.8 3.29391e− 3 0
0.9 6.27930e− 2 0
1.0 1.49621e− 1 0

5. CONCLUSION

In this research, a new application of Taylor expansion has been represented to solve
first kind Fredholm integral equations. We have described in detail that the technique is
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FIGURE 5. Numerical results at scaleJ = 4 for Example 4.6 in [29]
(−Exact solution ∗Numerical solution).

FIGURE 6. Numerical results at scaleJ = 5 for Example 4.6 in [29]
(−Exact solution ∗Numerical solution).

based on converting first kind Fredholm integral equation into a linear equations system
for unknown and its derivatives, by the use of Taylor expansion of unknown function at an
arbitrary point and integration method. Six examples were evaluated to demonstrate the
ease and the efficiency of the proposed method.
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