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Abstract. This work shows improvement with a modified form of the
existing partially-mapped crossover operator for the traveling salesman
problem. This novel crossover approach has been presented to get solu-
tions by order of a list, and “permutation crossover”operators, while pre-
serving the legality of offspring. Results are compared with many existing
schemes for permutation representation, like partially-mapped, order, and
cycle crossovers, etc. Our modified form of partially-mapped crossover
operator searches the existing bits outside the crossover sites, whereas the
existing partially-mapped crossover searches within the crossover sites.
This approach is easy to understand as well as to apply on benchmark
problems. Comparison of the proposed operator with traditional ones for
several benchmarks TSPLIB instances widely shows its advantages at the
same accuracy level. Also, it requires less time for tuning of genetic pa-
rameters and provides much narrower confidence intervals on the results,
compared to other operators.
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1. INTRODUCTION

The traveling salesman problem (TSP) is one of the most famous benchmark, significant,
and historic hard combinatorial optimization problems. The main objective of TSP is to
find the shortest Hamiltonian tour in a complete graph with ‘n’ nodes. It was documented
by Euler in 1759 (his interest was how to get rid of the knight’s tour problem [19]). It is
a fundamental problem in the fields of computer science, engineering, operations research,
discrete mathematics and graph theory. It has a formal mathematical definition as a direct
or undirected graph and the family of all Hamiltonian tours (cycles) [21]. In this problem,
a salesman visits all cities (nodes) exactly once (the constraint), then returns to the starting
point to complete a tour. On the basis of distance evaluation plan, we divide the TSP
into two different groups, called symmetric and asymmetric. The TSP is symmetric if
cij = cji,∀ i, j, where i and j represent the row and column of a distance (or cost) matrix
respectively, otherwise asymmetric i.e. cij 6= cji. The given ‘n’ cities, a distance matrix
C = [cij ]n×n is searched for a permutation λ : {0, ..., n − 1} −→ {0, ..., n − 1}, where
cij is the distance from city i to city j, which minimizes the traveled distance, f(λ,C).

f(λ,C) =
n−1∑
i=0

d(cλ(i), cλ(i+1)) + d(cλ(n), cλ(1)) (1. 1)

where λ(i) represents the location of city i in each tour, d(ci, cj) is the distance between
city i to city j and (xi, xj) is a specified position of each city in a tour in the plane, and the
Euclidean distances of the distance matrix C between the city i and j is expressed as:

cij =
√
(xi − xj)2 + (yi − yj)2 (1. 2)

TSP is easy to understand but very difficult to solve. For example, for ‘n’ cities, there are
n! possible ways to find the tour for asymmetric and n!

2 for symmetric TSP. If we have only
10 cities then 362,880 and 181,440 ways for asymmetric and symmetric TSP, respectively.
This is the reason to say TSP is a non-deterministic polynomial (NP-hard) problem [3].
These type of problems cannot be solved using traditional optimization approaches like
derivative-based methods. To achieve the optimal solution within reasonable time, heuristic
approaches are efficient at handling the NP-hard problems [20]. TSP has many applications
such as variety of routing and scheduling problems, computer wiring, movement of people,
X-ray crystallography [6] and automatic drilling of printed circuit boards and threading of
scan cells in testable Very-Large-Scale-Integrated (VLSI) circuits [31].

TSP is very carefully studied problem and received considerable attention over the last
five decades. A lot of algorithms have been presented to solve this problem by researchers.
These algorithms are generally divided in two classes; exact and approximate algorithms.
The branch-and bound (BB) [12] and cutting planes (CP) [23] are the two examples of
exact algorithms which are excessively time consuming especially in large scale problems.
Approximate algorithms are further classified into heuristic and meta-heuristic algorithms.
There are three classes of heuristic algorithm; tour construction, tour improvement and
composite methods. To add an unvisited city to the solution at each step and try to shorten
the initial solution are tour construction and tour improvement methods, respectively. Fi-
nally, the composite method is the combination of these two algorithms.
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During last three decades with the appearance of meta-heuristic algorithms, a new era
of study about optimization problems and their applications has been started. These search
algorithms have also been applied on TSP; 2-opt [20], particle swarm optimization (PSO)
[8, 34–36], simulated annealing (SA) [33], ant colony optimization (ACO) [11, 22], neural
network (NN) [5], tabu search (TS) [16], and genetic algorithms (GAs) [1,2,4,8,18,24,25,
29].

The rest of this article is presented as follows: in Section 2 we present the overview of
GAs and their related work in TSP. Crossover operators for TSP are presented in Section 3,
proposed crossover operator for path representation discussion in Section 4. Performance
evaluation of the proposed operator given in Section 5 and conclusions in Section 6.

2. GENETIC ALGORITHMS

Genetic algorithms (GAs) are derivative free stochastic approaches which are based on
biological evolutionary processes proposed by John Holland [17]. The random population
of individuals with different encodes such as binary, real and permutation is created first.
In nature, the most suitable individuals are likely to survive and mate. GAs iteratively gen-
erate new chromosomes with the help of crossover and mutation operators. The process is
repeated until or unless the required criteria such as convergence or fixed number of iter-
ations is met. The objective is the solution with high astounding fitness values which are
remarkable in the search process towards the optimal solution. The most attractive features
of GAs are that they have the ability to explore the search space with the help of entire
population of chromosomes [27]. A lot of work and applications have been highlighted
about GAs in [15]. The GAs have the following basic steps:

(1) initial population of chromosomes is generated,
(2) evaluate the fitness of each individual,
(3) apply selection operator for individuals,
(4) apply crossover and mutation operators on these selected individuals,
(5) evaluate the reproduced individuals.

The sketch of a typical genetic algorithm is depicted in Figure 1.

2.1. Genetic Algorithms for TSP. In literature, there are binary, path, adjacency, real
and matrix representations of the chromosomes to solve the TSP using the GAs. A de-
tailed study of these approaches is presented by Larranaga et al. [19]. Other than path,
all techniques have complex nature to complete a legal tour for next generation. A path
representation is desired because it is the most natural and elaborated way to represent a
tour. For example, a nine-city tour 7−→2−→6−→1−→4−→8−→3−→9−→5 can be rep-
resented simply as (7 2 6 1 4 8 3 9 5). The selection criteria, crossover and mutation are
three major operators which GAs have been implemented in the following way:

Selection Operator: Parents are selected for mating process through selection operator.
Several different approaches have been developed in literature, such as roulette wheel,
ranking and tournament etc. In this study, we used roulette wheel selection (RWS) opera-
tor. This operator gives individuals a probability Pi of being selected (2.3) that is directly
proportionate to their fitness.
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FIGURE 1. Layout of a Typical Genetic Algorithm

Pi =
1

N − 1
× (1− fi∑N

j=1 fj
) (2. 3)

Where fi is the value of fitness function for the individual i. Thus, individuals who have
lower values of fitness function may have a high chance of being selected among the indi-
viduals to cross reproduce. Figure 2 shows that how can we select individuals for mating
process.

Crossover Operator: Crossover method creates offspring with the help of those parents
which are selected through selection operator. It combines the features of parents to form
offspring, that may have new sequences compared to those of their parents and plays a vital

FIGURE 2. Roulette wheel selection (RWS) operator
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FIGURE 3. Exchange mutation (EM) operator

role in the GAs. A lot of crossover operators have been introduced in literature and all have
their own significant importance (Section 3 for details). In this study, we proposes a new
crossover operator which is explained in Section 4.

Mutation Operator: A mutation operator is used to enhance the diversity and provide a
chance to escape from local optima. In literature, several mutation operators have been
proposed such as exchange, insertion, inversion, swap and heuristic mutation etc. This
study adopts the well-known exchange mutation (EM) operator, which interchange the bits
at two randomly selected loci. In the EM, the two bits selected randomly along the string
are exchanged as shown in Figure 3.

There are a lot of variety of these operators for TSP in literature. A comprehensive
study about GAs approaches are successfully applied to the TSP [13]. A survey of GAs
approaches for TSP is presented by Potvin [29]. A new sequential constructive crossover
generates with a high quality solution for the TSP by Ahmed [1]. A new genetic algorithm
for asymmetric TSP is proposed by Nagata and Soler [25]. Three new variations for or-
der crossover are presented with improvements by Deep and Adane [10]. Piwonska [28]
associated a profit based genetic algorithm with TSP and obtaining good results to test on
networks of cities of Poland. Best performance is achieved by combining the crossover
operators when reported eight different crossover operators on vehicle routing problem
by Puljic and Manger [30]. Hussain et al. [18] presented a comparative study of various
crossovers with the modified form of cycle crossover operator for TSP.

3. CROSSOVER OPERATORS (PATH-BASED) FOR TSP

Since the TSP in combinatorial with the path representation and the classical crossover
operators such as one-point, two-point and uniform crossovers cannot be directly applied
to path-based GAs. To address the issue of the legality of an order, various crossover
operators for path-based GAs have been proposed. The most popular crossover operators
for path-based are:

3.1. Order Crossover Operator. The order crossover (OX) was proposed by Davis [9].
It builds offspring preserving the relative order of bits of one parent by choosing a sub-tour
of other parent. Consider, for example two parents tours (with randomly two cut points
marked by “|”):

P1 = (9 4 5 | 2 8 1 | 6 7 3)

and

P2 = (3 6 1 | 9 7 8 | 2 4 5)
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The offspring are produced in the following way. First, the bits are copied down between
the cuts with similar way into the offspring, which gives:

O1 = (× × × | 2 8 1 | × × ×)

and
O2 = (× × × | 9 7 8 | × × ×)

After this, starting from the second cut point of one parent, the bits from the other parent
are copied in the same order omitting existing bits. As the sequence of the bits in the second
parent from the second cut point is:

2− 4− 5− 3− 6− 1− 9− 7− 8

after removal of bits 2, 8 and 1, which already exist in the first offspring, the new sequence
is:

4− 5− 3− 6− 9− 7

To complete the first offspring, this new sequence is placed starting from the second cut
point:

O1 = (6 9 7 | 2 8 1 | 4 5 3)

Analogously, we complete second offspring as well:

O2 = (5 2 1 | 9 7 8 | 6 3 4)

3.2. Non-Wrapping Order Crossover Operator. The non-wrapping order crossover op-
erator (NWOX) was proposed by Cicirello [7]. It uses a modified version of the sliding
action of the original OX. This scheme is based on the principle of creating and filling
holes, while keeping the absolute order of bits of individuals. Consider, for a example of
the two parents tours (with randomly two cut points marked by “|”):

P1 = (9 4 5 | 2 8 1 | 6 7 )

and
P2 = (3 6 1 | 9 7 8 | 2 4 5)

The offspring are produced in the following way. First, all those bits are left as hole which
are presenting within the cut-points in other parent, which gives:

O1 = (× 4 5 | 2 × 1 | 6 × 3)

and
O2 = (3 6 × | 9 7 × | × 4 5)

After this, existing bits in cut-points are moved left or right to filled out-sides the unfilled
positions as:

O1 = (4 5 2 | × × × | 1 6 3)

and
O2 = (3 6 9 | × × × | 7 4 5)

Now, the bits are copied down between the cuts from the parents with similar way into the
offspring, which gives:

O1 = (4 5 2 | 9 7 8 | 1 6 3)
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and
O2 = (3 6 9 | 2 8 1 | 7 4 5)

3.3. Cycle Crossover Operator. The cycle crossover (CX) operator was first proposed by
Oliver et al. [26]. To create offspring using this technique each bit with its location comes
from one of the parents. For example, consider the tours of two parents:

P1 = (9 4 5 2 8 1 6 7 3)

and
P2 = (3 6 1 8 7 9 2 4 5)

Now its up to us that how we choose the first bit for the offspring to be either from the first
or from the second parent. In our example, the first bit of the offspring has to be a 9 or a 3.
Let us choose it to be 9,

O1 = (9 × × × × × × × ×)
Now offspring is bound to take every bit from one of its parents with the same position and
don’t have any choice, so the next bit to be considered must be 3, as the bit from the second
parent just below the selected bit 9. In first parent this bit is at 9th position, thus

O1 = (9 × × × × × × × 3)

This implies bit 5, which is the bit of second parent just below the selected bit at 3rd
position in first parent. Thus

O1 = (9 × 5 × × × × × 3)

The next it compelled us to put the 1 at 6th position, as

O1 = (9 × 5 × × 1 × × 3)

After this, a cycle is completed because the upcoming bit 9 already exists in this offspring,
thus filling the remaining blank positions with the bits of those positions which are in
second parent.

O1 = (9 6 5 8 7 1 2 4 3)

Similarly the second offspring is:

O2 = (3 4 1 2 8 9 6 7 5)

But there is a drawback that some times this technique produces same offspring, for exam-
ple the following two parents:

P1 = (9 4 5 2 8 1 6 7 3)

and
P2 = (3 6 1 9 7 8 2 4 5)

After applying CX technique, the resultant offspring are:

P1 = (9 4 5 2 8 1 6 7 3)

and
P2 = (3 6 1 9 7 8 2 4 5)

Which are the exactly same as their parents.
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3.4. Modified-Cycle Crossover Operator. The modified-cycle crossover (CX2) operator
was proposed by Hussain et al. [18]. Using this technique to create offspring in such a way
that first bit of second parent is the the first bit of first offspring and then search that bit in
first parent and choose the exact same location bit from second parent and again search it
in first parent and again choose exact same location bit from second parent and that bit is
the first bit of the second offspring. For example, consider the tours of two parents:

P1 = (9 4 5 2 8 1 6 7 3)

and
P2 = (3 6 1 9 7 8 2 4 5)

The first bit of second parent is the first bit of first offspring:

O1 = (3 × × × × × × × ×)

The selected bit is 3 and 3 is located at ninth position in first parent and the bit at this
position in second parent is 5. For again searching 5 is at third position in first parent and
1 is at same position in second parent, so 8 is selected for second offspring as:

O2 = (1 × × × × × × × ×)

The previous bit was 1 and it is locates at sixth position in first parent and at this position
bit is 8 in second parent, so

O1 = (3 8 × × × × × × ×)

And for two moves as below 8 is 7 and below 7 is 4, so

O2 = (1 4 × × × × × × ×)

Hence similarly;
O1 = (3 8 6 × × × × × ×)

and
O2 = (1 4 9 × × × × × ×)

Now stop because the bit 9 has comes in second offspring which was in 1st position of first
parent. One cycle is over and before starting other cycle, we match first offspring’s bits
with second parent or vice versa and leave out the existing bits with their position in both
parents as:

P1 = (• • 5 2 8 • 6 7 3)

and
P2 = (• • 1 9 7 • 2 4 5)

Now filled positions of parents and ‘×’ positions of offspring are considered 1st, 2nd and
3rd positions etc., so we can completes it as usual:

O1 = (3 8 6 | 1 4 9 | 7 2 5)

and
O2 = (1 4 9 | 7 2 5 | 6 3 8)

Hence this scheme is over in three cycles.
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3.5. Partially-Mapped Crossover Operator. The partially-mapped crossover (PMX) was
proposed by Goldberg and Lingle [14]. After choosing two random cut points on parents to
builds offspring, the portion between cut points are mapped with each other and the remain-
ing information is exchanged. Consider, for example the two parents tours with randomly
one cut point between 3rd and 4th bits and other cut point between 6th and 7th bits(the two
cut points marked with “|”):

P1 = (9 4 5 | 2 8 1 | 6 7 3)

and
P2 = (3 6 1 | 9 7 8 | 2 4 5)

The mapping sections are between the cut points. In this example, the mappings are 2←→
9, 8 ←→ 7 and 1 ←→ 8. Now two mapping sections are copied with each other to make
offspring as:

O1 = (× × × | 9 7 8 | × × ×)
and

O2 = (× × × | 2 8 1 | × × ×)
Then we can fill further bits (from the original parents), for those which have no conflict

as:
O1 = (× 4 5 | 9 7 8 | 6 × 3)

and
O2 = (3 6 × | 2 8 1 | × 4 5)

Hence, the first× in the first offspring is 9 which comes from first parent but 9 is already
in this offspring, so we check mapping 2 ←→ 9, so 2 will occupy first ×. Similarly, the
second × in first offspring is 7 which comes from first parent but 7 exists in this offspring,
check mapping as well 8 ←→ 7 and see again 8 exists in this offspring, again check
mapping 8←→ 1 so 1 will occupy second ×. Thus the offspring 1 is:

O1 = (2 4 5 | 9 7 8 | 6 1 3)

and Analogously, we complete second offspring as well:

O2 = (3 6 7 | 2 8 1 | 9 4 5)

4. PROPOSED CROSSOVER OPERATOR

We are proposing a new crossover operator which works similarly as PMX, so we sug-
gest it as PMX2. After choosing two random cut points on parents to builds offspring, the
portion between cut points, one parent’s string is mapped onto the other parent’s string and
the remaining information is exchanged. We differentiate PMX2 in the following steps.
Step 1: Choose two parents for mating.
Step 2: Apply two random cut points on these selected parents.
Step 3: Within cut points bits are exchanged into offspring.
Step 4: All those bits of first parent, which are not present in first offspring, placed at same

locations.
Step 5: Repeat Step 4 for second parent and offspring.
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Step 6: Now for left bits in offspring are mapping within the parents.

Consider, an example of the two parents tours with randomly one cut point between 3rd
and 4th bits and other cut point between 6th and 7th bits are (the two cut points marked
with “|”):

P1 = (9 4 5 | 2 8 1 | 6 7 3)

and
P2 = (3 6 1 | 9 7 8 | 2 4 5)

First two cut point sections are copied with each other to make offspring as:

O1 = (× × × | 9 7 8 | × × ×)

and
O2 = (× × × | 2 8 1 | × × ×)

Then we can fill further bits (from the original parents), for those which have no conflict
as:

O1 = (× 4 5 | 9 7 8 | 6 × 3)

and
O2 = (3 6 × | 2 8 1 | × 4 5)

Now the mapping of the “×”are outside the cut points from the original tracks as:

9←→ 3←→ 5←→ 1 and 7←→ 4←→ 6←→ 2

Thus the offspring 1 is:

O1 = (1 4 5 | 9 7 8 | 6 2 3)

and Analogously, we complete second offspring as well:

O2 = (3 6 9 | 2 8 1 | 7 4 5)

In original PMX, the existing bits are mapped within the cut points, but in this novel ap-
proach, the existing bits are mapped from outside the cut points. In this way, most of the
tracks coming from two approaches are the same. Hence, we suggest it as a modified form
of partially-mapped crossover (PMX2) operator.

To apply this crossover operator, we made a MATLAB code for GAs and have given
pseudo-code in Algorithm 1.

5. PERFORMANCE EVALUATION

This work conducted a series of experiments to analyze the inheritance and evaluate
the performance of PMX2. First, the parameter settings for GAs and benchmarks for this
study are given in Section 5.1. Second, MATLAB software (version R2017a) was used
to compare the simulation study among crossover operators with the help of an average,
standard deviation (S.D) and relative error (R.E) and a detailed discussion on results in
Section 5.2.
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Algorithm 1 The Pseudo-code of PMX2-Operator

N←− no. of cities
P1←− select random parent by selection method
P2←− select random parent by selection method
cut1←− select an random cut at same position of both parents
cut2←− select another random cut at same position of both parents
child1←− P2(cut1 to cut2)
child2←− P1(cut1 to cut2)
%For child1
i←− 1
while (i <= N) do

if(find(child1==p1(i)))
value←− P1(i)
while find(P2 == value!=0) do

location←− find(P2 == value)
value←− P2(location)

end while
child1(i)←− P2(location)

else
child1(i)←− P1(i)

end if
end while
%For child2
i←− 1
while (i <= N) do

if(find(child2==p2(i)))
value←− P1(i)
while (find(P1 == value!=0)) do

location←− find(P1 == value)
value←− P1(location)

end while
child2(i)←− P1(location)

else
child2(i)←− P2(i)

end if
end while

5.1. Parameter Settings and Test Problems. The genetic algorithms (GAs) are random
search methods and give different results which might be obtained at the end of every run.
Therefore, experiments were performed 30 times (30 independent runs) having different
random seeds for each instance to achieve an acceptable solution. The selection of pa-
rameter values for GA is tedious and reflects the algorithm’s performance. Table 1 lists
the setting for the GA employed in our simulation study. Two stopping criteria have been
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TABLE 1. Parametric configuration for GA

Parameter description Value
Representation Permutation
Population size (N) 150
Selection scheme Roulette-wheel
Crossover probability (Pc) 90%
Mutation method Exchange
Mutation probability (Pm) 10%
Maximum generation 5000
Number of trails 30
Replacement in GA Steady-state GA

used; the first is when the maximum number of generations has been reached, and the sec-
ond is whenever a tour shorter than the current optimum trip has not been found during 300
consecutive generations. All benchmark instances which are used in this study with the
known solutions are given in Table 2. These benchmark instances are taken from traveling
salesman problem library (TSPLIB) [32].

5.2. Simulation Results and Discussion. To compare the efficiency of various crossover
operators (e.g. OX, NWOX, CX, CX2, PMX and the proposed approach PMX2) with the
help of MATLAB software, we divided the benchmark instances into two groups as sym-
metric traveling salesman problems (TSPs) and asymmetric traveling salesman problems
(ATSPs). The results of proposed and traditional crossover operators are prepared in the
form of tabulated summary with an average and standard deviation (S.D) for TSPs and

TABLE 2. The benchmark problems

Problem name No. of cities Optimal tour length
burma14 14 3323
br17 17 39
gr21 21 2707
bayg29 29 1610
ftv33 34 1286
ftv38 39 1530
dantzig42 42 699
p43 43 5743
ft53 53 6905
eil76 76 538
eil101 101 629
ftv170 171 2755
brg180 180 1950
pr226 226 80369
rbg323 323 1326
rbg358 358 1163
rbg443 443 2720
att532 532 27686
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ATSPs. Moreover, how much the average solution diverges from the global one, has been
indicated by relative error (R.E) and calculated by:

Relative Error(%) =
Solution V alue−Optimal V alue

Optimal V alue
× 100 (5. 4)

The Table 3 shows the effect of six different crossover operators included to compare
proposed PMX2 with GAs examined in nine different TSPs solutions with the help of
average length, S.D and R.E. The benchmarks in Table 3 are arranged in the ascending
order of nodes and quality of the solution is investigated for the purpose of performance
evaluation of all six crossover operators. For the benchmarks burma14 and eil76, the OX
performs better than all used operators with respect to the average and a low R.E in all
30 runs. For least dispersion, it shared the equal performance with the proposed PMX2
for instance burma14 and a low S.D observed for problem eil76 by PMX operator. The
gr21, bayg29, dantzig42 and pr226 benchmarks in Table 3 give a less R.E by the proposed
PMX2 with a low mean value. A low S.D computed in all 30 independent runs from the
CX2 for gr21, bayg29 and pr226 instances and OX for dantzig42 instance. PMX operator
outstanding performs in all three aspect of results measurements for benchmark eil101.
The proposed operator PMX2 performs outstanding on the basis of quality of solution, as
a whole, for the benchmarks brg180 and att532. The last row of the Table 3 indicates the
average performance of average results, S.D and R.E for all nine benchmark instances. This
shows the best performance noted by the proposed operator PMX2 which is equal only in
one aspect i.e. S.D with OX operator. For visual comparison, the relative errors calculated
according to the average solution for all used instances in Table 3 are displayed in Figure
4.

We continue this study for various asymmetric traveling salesman problems (ATSPs)
instances, which are reported in Table 4. This elaborates the results according to average,
S.D and R.E for nine instances of size 17 to 443. The solution quality of the used operators
is insensitive to the number of runs for instance br17. For problem ftv33, the operator
CX2 performs better on the average and R.E results but PMX2 performs better in terms
of a low S.D. For problem ftv38, the CX operator gives better results on average and R.E,
but OX operator put a low S.D. The proposed operator PMX2 gives a better average and
least R.E for p43 and ftv170 instances but a low S.D measured by CX and CX2 operators,
respectively. For instances ft53 and rbg323, PMX operator performs better on the average
and R.E results but CX and CX2 operators are better if we consider S.D. For the last two
benchmark instances rbg358 and rbg443, OX operator performs well on the average and
R.E, but a small dispersion observed by PMX and CX2 operators respectively. The last
row of the Table 4 indicates the average performance on the average, S.D and R.E results
for all nine benchmark instances. This shows the best performance posed by the operator
PMX but a low average of S.D and R.E results indicated the best performance in all by
the proposed operator PMX2. In order to be better understanding, the R.E results were
presented with visual graphic in Figure 5 along with displayed results in Table 4.
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6. CONCLUSION

This article represents a comprehensive overview of the performance of GAs in NP-
hard problems like TSP and keenly observes how GAs create solution without having any
prior knowledge about the traveling routes. Unlike other meta-heuristic methods, GA uses
natural rules of selection, crossover and mutation to make the computation easier and fast.
These aspects make it more valuable, better performing and efficient algorithm over oth-
ers. The various crossover operators have been introduced for TSP by using GAs. We
proposed a new crossover operator for TSP. This proposed operator PMX2 upgrade the
path-represented PMX and enhanced the quality of offspring. PMX2 is easy to execute and
always generates a valid tour of offspring. Eighteen benchmark instances from the TSPLIB
have been used to assess its performance against other operators, for comparison and to in-
vestigate how they converge on the basis of average results. We observed their sensitivity
to get results in different runs with the help of an absolute measure of S.D. For more close
comparison, we measured R.E of the results. All simulation results show that PMX2 is
efficient, so proposed operator might be good candidate to get accurate convergent results.
Moreover, researchers might be more confident to apply it for comparisons.
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TABLE 3. Comparison results of crossover operators for TSPs

Crossover Operator

OX NWOX CX CX2 PMX PMX2

Instance Average S.D R.E Average S.D R.E Average S.D R.E Average S.D R.E Average S.D R.E Average S.D R.E

burma14 3331 8 0.24 3341 10 0.54 3342 12 0.57 3340 10 0.51 3334 11 0.33 3332 8 0.27

gr21 2822 72 4.25 2841 91 4.95 2829 49 4.51 2818 38 4.10 2854 57 5.43 2796 52 3.29

bayg29 1648 12 2.36 1652 22 2.61 1639 17 1.80 1657 31 2.92 1649 20 2.42 1637 18 1.68

dantzig42 752 20 7.58 759 37 8.58 761 35 8.87 722 17 3.29 722 23 3.29 718 22 2.72

eil76 558 18 3.72 597 28 10.97 587 17 9.11 582 21 8.18 562 15 4.46 561 21 4.28

eil101 652 17 3.65 661 19 5.09 647 16 2.86 669 22 6.36 642 9 2.07 645 12 2.54

brg180 2058 93 5.54 2109 118 8.15 2087 75 7.03 2071 82 6.21 2048 72 5.03 2043 49 4.77

pr226 82464 243 2.61 82811 394 3.04 82893 423 3.14 82667 229 2.86 82690 365 2.89 82311 328 2.42

att532 29854 517 7.83 31052 814 12.16 30812 671 11.29 29978 528 8.28 29712 469 7.32 29444 492 6.35

Average 13793 111 4.20 13980 170 6.23 13955 146 5.46 13837 109 4.75 13801 116 3.69 13721 111 3.15
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TABLE 4. Comparison results of crossover operators for ATSPs

Crossover Operator

OX NWOX CX CX2 PMX PMX2

Instance Average S.D R.E Average S.D R.E Average S.D R.E Average S.D R.E Average S.D R.E Average S.D R.E

br17 39 0 0.00 40 1 2.56 41 1 5.13 39 0 0.00 39 0 0.00 39 0 0.00

ftv33 1407 93 9.41 1472 118 14.46 1429 82 11.12 1391 102 8.16 1441 89 12.05 1417 66 10.19

ftv38 1687 68 10.26 1732 97 13.20 1618 84 5.75 1664 89 8.76 1678 75 9.67 1669 69 9.08

p43 5862 102 4.31 5919 98 5.32 5847 67 4.04 5891 91 4.82 5798 83 3.17 5761 72 2.51

ft53 7432 162 7.63 8137 197 17.84 7714 140 11.72 7704 208 11.57 7417 169 7.41 7492 202 8.50

ftv170 3138 215 13.90 3216 194 16.73 3076 209 11.65 3119 169 13.21 3093 210 12.27 3057 182 10.96

rbg323 1817 175 37.03 1894 201 42.84 1824 162 37.56 1799 154 35.67 1778 180 34.09 1814 161 36.80

rbg358 1412 140 21.41 1502 159 29.15 1469 191 26.31 1497 204 28.72 1423 118 22.36 1433 192 23.22

rbg443 3614 152 32.87 3869 214 42.24 3814 197 40.22 3792 108 39.41 3652 159 34.26 3641 121 33.86

Average 2934 123 15.20 3087 142 20.48 2981 126 17.06 2988 125 16.70 2924 120 15.03 2925 118 15.01

FIGURE 4. The relative error of average length for TSPs

FIGURE 5. The relative error of average length for ATSPs
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