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Abstract. In this analysis, we considered the effects of Joule heating
and partial slip boundary conditions on time dependent mixed convective
nanofluid flow over a stretching sheet along with heat source/sink. The
governing model is transformed into the system of nonlinear ODE’s by
using the well known transformations. In order to calculate the physical
quantities of the problem, we use the higher order convergence method,
called shotting method followed by Runge-Kutta Fehlberg method. The
importance of different physical parameters on velocity, temperature and
concentration profiles are calculated numerically. The parameters of en-
gineering interest i.e, skin fraction, Nusselt and Sherwood numbers are
also calculated. Finally, we concluded that the velocity profiles decrease
by increasing values of A and M . Moreover the variation of temperature,
velocity and concentration profiles are analyzed for the different physical
parameters.
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1. INTRODUCTION

The investigation of the boundary layer pseudo plastic fluids has been of a great inter-
est because it has many practical usage in industry such as emulsion coated sheets like 
photographic film, extrusion of polymer sheets, e tc. In order to examine the rheological 
assents of fluids, the Navier-Stokes equations are insufficient alone. Therefore, rheological 
models are implemented to reduced this problem. The description of non-Newtonian fluids
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does not exist in single constitutive relationship between stress and strain. Due to their in-
dustrial and physiological applications, the non-Newtonian fluids have gained tremendous
attraction. A plenty of applications in various built-up processing and biological fluids, an
interest in boundary layer non-Newtonian fluid is increased significantly. A Few examples
are drilling mud, plastic polymer, hot rolling, optical fibers, metal spinning, paper produc-
tion and cooling of metallic plates. The investigation of the flow due to extending surface
in a moving liquid is important in advanced industry. For example, the expulsion of met-
als and plastics, glass blowing, cooling or drying of papers, etc. The problems of linear
stretching sheet for many events of fluid have also been investigated by many researchers.
Sakiadis et al. [34] examined the boundary layer flow over a stretching surface. Various
authors have discussed the different feathers of the flow over a movable plats. Vleggaar
[36] studied the boundary layer on the stretching surface almost proportional to the dis-
tance from the orifice. Carn [14] studied Newtonian fluid flow layer over a stretching sheet
on the uniform stress.

The magnetohydrodynomics of an electrically conducting fluid is an important phenom-
ena used in metallurgical and modern metal-working. The electrical furnace metal can be
fused by using the magnetic field and In a nuclear reactor containment boat, the wall of
nuclear reactor is cooled down by applying magnetic field. MHD term was first proposed
by Swedish electrical engineer, Alfve [5] in 1942. MHD equations are the combination
of Maxwell’s equations of electromagnetism, continuity equation and Navier-Stokes equa-
tions. If the electrically conducting liquid placed in a static magnetic field, the fluid move-
ment pushes currents that create forces on the fluid. Equations that describe the MHD flow
are a mixture of continuity equation, Navier Stokes equations and Maxwell’s equations in
fluid dynamics. Zeb et al. [39] we studied the effect of thermal radiation on time de-
pendent fluid flow over a stretching sheet with variable thermal conductivity. Zeb et al.
[40] studied the effect of thermal radiation and slip boundary condition on time depen-
dent fluid flow over a stretching sheet along with variable thermal conductivity. Hussain et
al. [20]investigated the impact of thermal radiation on bioconversions model for magneto-
hydrodynamics squeezing flow of nanofluid with heat and mass transfer between parallel
surface.Time dependent MHD oscillating and rotating flow of Maxwell fluid in a cylinder
subject to shear stress on the boundary was analyzed by Zafar et al. [38]. Mukhopadhyay
et al. [25] investigated the effects of Joule heating on magnetohydrodynamics Newtonian
fluid flow over a stretching sheet by placing between suction and junction. Raju et al.
[30] analyzed the MHD free convective with pours medium by taking horizontal channel
assuming insolated and incompressible bottom wall with the effect of heating joule and
viscous dissipation. Ahmad et al. [4] examined quasi-linearization for unsteady MHD in
heat and mass transfer flow of nanofluid overastreachin sheet. Huichu [19] analyzed the un-
steady MHD boundary layer flow over a stretching sheet along with frictional and Ohmic
heating. Malik, et al. [23] investigated the magnetohydrodynamics stagnation point flow
over a stretching sheet by assuming the convective boundary condition. MHD time depen-
dent flow of a burger fluid past a circular cylinder along with porous medium was studied
Safadar et al. [32] . the chemically reacting of incompressible fluid over an vertical plates
was discussed by Awan et al. [9]. Sadiq et al. [33] discussed the exact solution of unsteady
flow of Oldroyed-B fluid placed in a circular cylinder. Awan [8] analysed the exact solution
for the time dependent flow of Maxwell fluid is placed in coaxial cylinder. Ali et al. [6]
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investigated the influence of Magnetohydrodynamic electrically conducting oscillating and
Rotating flows of Maxwell Fluids in a porous medium.

Another type of fluid is nanofluids which is measured by dispersing of small sized ma-
terials such as nanotubes, nanofibers, nanowires, droplets, nanosheet and nanorods. The
nano-fluids are nanoscale colloidal suspensions containing condensed nanomaterials. The
study of nanofluids has been a topic of intense research during the last one decade due
to their interesting thermophysical properties and anticipated applications in heat transfer.
The thermal conductivity of equal sample colloidally stable dispersed of nanofluids were
obtained by using different experimental methods reported by the International Nanofluid
Property Benchmark Exercise (INPBE). Nanotechnology has been commonly used in en-
gineering since materials with size of nanometers possess unique chemical and physical
properties. Tested nanofluids in the above study were based on aqueous and nonaqueous
base-fluids and many others. In the above analysis, the data has been taken from most of
the organization with in a relativity narrow based (±10% or below) about the sample mean
with little outliers. It is found that the thermal conductivity of nano-fluids enlarges with in-
crease in particle concentration and aspect ratio, as expected from classical theory, among
various experimental approaches; small systematic differences in the absolute values of the
nano-fluid thermal conductivity are obtained while such differences tend to disappear when
the data are normalized to measure thermal conductivity of the base-fluids. Further expla-
nation can be found in work by Jacopo et al. [11]. The evaluation of convective boundary
conditions on MHD boundary layer nanofluid over a stretching sheet was found by Ishak et
al. [10]. The steady flow of a third grade fluid in a porous half space was found by Karimi
et al. [21] via rational Bernstein collocation method.

The phenomena of velocity slip has been discussed under different cases by using non-
adherence of the fluid to solid boundary in [37]. Time dependent rotational flow of a second
grad fluid with caputo time fractional deriavtive was examined by Raza et al. [31]. The
viscous fluid is normally sticks to the boundary, for example, particulate fluid, rare field
gas and many more which are discussed in [35]. The consequences of the slip condition
plays a vital rule in the field of scientific, industrial and biological applications such as
the internal cavities and artificial polishing of heart valves [24]. The most important study
taken into the account is the slip boundary conditions over stretching sheets were carried
out by Anderson [7]. Ibrahim et al. [17] analyzed manatohydrodynamics boundary layer
flow and heat transfer of nanofluid by assuming permeable stretching sheet taking the effect
of slip boundary conditions. Poornima et al. [28] find out the effect of radiation on convec-
tion boundary layer flow due to a non linear stretching sheet. Rmaa Bhargava and Mania
Goyal [12] simulate the consequences of velocity slip on MHD nanofluid with heat gener-
ation over a stretching sheet. The event of entropy generation on magnetohydrodynamics
nanofluid flow over a stretching sheet under the considering velocity slip condition with
heat generation was found out by Govindaraju et al. in [16]. Malik et al. [22] explained
the manatohydrodynamics and mixed convection flow of Eyring-Powell nanofluid by as-
suming the stretching sheet. Ndeem et al. [26] proposed a numerical studied viscoelastic
nanofluid for two-dimensional stagnation point flow. They found influence of the embed-
ded parameters. They used viscoelastic nanofluid for the controlling heat transfer from the
sheet. Therefore, many ways were taken for improving the thermal conductivity of these
fluids through suspension nano/micro or large-sized material particles in the fluid. Duwairi
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[15] discussed the influence of Joule heating on the forced convection flow with thermal ra-
diation. Partha et al. [27] reported that the events of the radiation on mixed convection heat
transfer from an exponentially stretching surface under the consideration of viscous dissi-
pation. Abro et al. [2] analyzed MHD generalized burger fluid over a permeable plates.
Reddy [29] studied the viscous dissipation and thermal radiation on MHD flow due to a
stretching sheet. MHD second grade unsteady flow of heat transfer with porous medium
by using caputo-fabrizoi fractional derivative was found by Abro et al. [1]. Abelman et
al. [3]. analyzed the analytical solution of magnatohydrodynomics rotating and oscillating
flow of a Maxwell fluid electrically conducting in a porous medium. Bhuiyan et al. [13]
reported the Joule heating effects on MHD natural convection flows being with viscous
dissipation from a horizontal circular cylinder. Ishaq et al. [18] examined time dependent
MHD flow nanofluid film of an eyring Powell Fluid over a porous Stretching Sheet

From the above literature review, it is confirmed that no attempt has been made to the
effect of heat source/sink on time dependent mixed convective nanofluid and heat transfer
over a stretching sheet with Joule heating. We have successfully computed the solution of
the coupled ordinary differential equations via numerical scheme through shooting method
followed by Runge-Kutta Fehlberg method. The variation of different physical aspects are
presented through graphs. Also, we obtained the numerical results for local skin fraction,
heat transfer rate and Sherwood number by various different parameters (discussed in ta-
bles).

2. MATHEMATICAL MODEL

Let us consider an unsteady MHD incompressible mixed convective Nano-fluid flow
over a stretching sheet along with partial slip condition. The flow is produced by a stretch-
ing sheet. The flow is in the region y > 0 and subjected to a non-uniform magnetic field
of strength B = B0

√
1− γ1t̄ applied normally to the sheet, B0 is the initial strength of

the magnetic field; see in the Fig 1. The fluid and heat flows are initiated at time zero. The
sheet emerges out of a slit at origin x = 0, y = 0 and moves with non-uniform velocity
uw(x, t̄) = a1x

1−γ1 t̄ , where a1 and γ1 are positive constants with dimensions of t̄−1, and a1

is the initial stretching rate.

∂ū
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∂2y
− σβ2ū
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FIGURE 1. Geometry of the problem

subjected to the boundary conditions

ū = uw(x, t̄) + L1
∂ū

∂y
, v = 0, T̄ (x, t̄) = T̄w(x, t̄) + L2

∂T̄

∂y
, C(x, t̄) = Cw(x, t̄)L3

∂C

∂y

as y = 0, ū→ 0, T̄ → T̄∞ C → C∞ at y →∞. (2. 5)

Here, ū and v̄ the velocity components along the x̄ and ȳ - directions, respectively, µ
denotes viscosity, ρ represents the density, βT - the coefficient of volumetric thermal ex-
pansion, T̄ denotes the temperature, C represents the concentration, βC denotes coefficient
of volumetric concentration expansion, T̄w and Cw- the temperature and concentration
along the stretching sheet, T̄∞ and C∞- the ambient temperature and concentration, DT̄

- the thermophoresis coefficient, DB - the Brownian diffusion coefficient, k - the thermal
conductivity, and τ represents the ratio of effective heat capacity and heat capacity of the
fluid. Using the stream function ϕ(x, y) the continuity equation equation ( 2. 1 ) is satisfied
identically for the velocity component ū and v̄ specified as

ū =
∂ψ

∂y
, v̄ = −∂ψ

∂x
. (2. 6)

The similarity variables are defined as follows:

η =

√
a1

υ(1− γ1t̄)
y, (2. 7)

θ(η) =
T̄ − T̄∞
T̄w − T̄∞

, (2. 8)
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φ(η) =
C − C∞
Cw − C∞

, (2. 9)

=

√
a1υ

(1− γ1t̄)
xh(η). (2. 10)

By substituting the above similarity transformation equations ( 2. 1 )–( 2. 4 ) are reduced
at the form:

h′′′ + hh′′ − h′
2

−Mh′ −A(h′ +
1

2
ηh′′) + λ1θ + λ2φ = 0, (2. 11)

1

Pr
θ′′ + h′θ − hθ′ −A(θ +

1

2
ηθ′) + δθ +Nbφ

′θ′ +Nt(θ
′)2 + EcM2(h′)2 = 0,

(2. 12)

φ′′ + Leh′φ− Lehφ′ −ALe(φ+
1

2
ηφ′) +

Nb
Nt

(θ′′) = 0. (2. 13)

Subject to boundary conditions

h(0) = 0, h′(0) = 1 + k1h
′′(0), θ(0) = 1 + k2θ

′(0), φ(0) = 1 + k3φ
′(0),

h′(∞) = 0, θ(∞) = 0, φ(∞) = 0,

Where g′ is the dimensionless velocity, θ denotes the temperature, φ represents the con-
centration η denotes the similarity variables where A = γ1

a is the unsteady parameter,

M = σ(Bo)2

ρa is magnetic parameter, Pr =
µCp

k∞
is Prandtl number, Rey =

uw
√
y

ν Reynolds
number, Le = ν

Db
the Lewis number, Kr = ko

b the reaction rate parameter, Nb =
τDB

ν (C − C∞) the Brownian motion parameter, λ1 = Gr
Re3/2x

, the local thermal Grashof
number λ2 = Gm

Re3/2x
, -the local concentration Grashof number, R̄ex = ūwx̄

ν is the local

Reynolds number, k1 = L1

√
a1

1−γ1 t̄ represents the velocity slip factor, L1 represents the

initial value of velocity slip factor, k2 = L2

√
a1

1−γ1 t̄ denotes the thermal slip factor, L2

is the initial value of thermal slip factor, k3 = L3

√
a1

1−γ1 t̄ represents the mass slip fac-

tor, L3 is the initial value of mass slip factor, if Q is negative it will be a heat sink if Q
is positive then it will be heat source. The condition of the no-slip case is attained when
k1 = k2 = k3 = 0. The quantities Cf , Nux̄ and Shx̄ are define by

Cf =
τw
ρu2

w

(2. 14)

Nux =
xqw

k(T̄w − T̄∞)
, (2. 15)

Shx =
xqm

DB(Cw − C∞)
, (2. 16)

where τw is the skin friction or shear stress along the stretching surface, qw the heat flux
and jm the concentration flux from the surface and are given by

τx = µ
dū

dy y=0

qw = [−kdT̄
dy

]y=0 jm = [−DB
dC

dy
]y=0. (2. 17)
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where uw qm and qw, are the wall shear stress, mass fluxes and heat transfer respectively.
In dimensionless form, In dimensionless form, the reduced local Nusselt and Sherwood
numbers can be written as

Cf
√
Rex = h′′(0),

Nux√
Rex

= −θ′(0),
Shx√
Rex

= −φ′(0). (2. 18)

3. SHOOTING METHOD FOR THE PROPOSED MODEL

Eqs ( 2. 11 ) – ( 2. 13 ) are the system of nonlinear, 3rd order in h, 2nd order in θ and
2nd order in φ respectively. First of all these non-linear ODE’s are reduce into a system of
first order ODE’s and then solved by using shooting method. The equations ( 2. 11 ) – ( 2.
13 ) can be written as:

h′′′ = −hh′′ +Mh′ + h′
2

+A(h′ +
1

2
ηh′′)− λ1θ − λ2φ, (3. 19)

θ′′ = Pr[−h′θ + hθ′ +A(θ +
1

2
ηθ′)− δθ −Nbφ′θ′ −Nt(θ′)2 − EcM2(h′)2], (3. 20)

φ′′ = Le(−h′φ+ hφ′ +A(φ+
1

2
ηφ′))− Nb

Nt
θ′′. (3. 21)

To convert these higher order nonlinear ODE’s into system of first order ODE’s, let

h = u1, h
′ = u2, h

′ = u3, h
′′ = u3 and h′′′ = u′3, (3. 22)

θ = u4, θ
′ = u5 and θ′′ = u′5 (3. 23)

φ = u6, φ
′ = u7 and φ′′ = u′7 (3. 24)

The nonlinear coupled ODE’s are converted into a system o first order simultaneous alge-
braic form, which can be defined as form a

u′1 = u2, (3. 25)

u′2 = u3, (3. 26)

u′3 = −u1u3 + u2
2 +Mu2 +A(u2 +

1

2
ηu3)− λ1u4 − λ2u6, (3. 27)

u′4 = u5, (3. 28)

u′5 = −u2u4 + u1u5 +A(u4 +
1

2
ηu5)− δu4 −Nbu7u5 −Ntu2

5 − EcMu2
2 (3. 29)

u′6 = u7, (3. 30)

u′7 = −Leu2u6 + Leu1u7 +ALe(u6 +
1

2
ηu7)− Nb

Nt
[u′5]. (3. 31)

In the above equations, the prime denotes the derivative with respect to η. The boundary
conditions are

u1(0) = 0, u2(0) = 1 + k1u3(0), u4(0) = 1 + k2u5(0), u6(0) = 1 + k3u7(0)

u2(∞) = 0, u4(∞) = 0, u6(∞) = 0 (3. 32)

To determine the solution of system of seven ODE’s ( 3. 25 ) – ( 3. 31 ) by using shooting
method, seven initial assumptions are required, but in system ( 3. 32 ), two initial guesses
are given in h, one in θ and one in φ and the other three conditions are defined as η →∞.
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These three conditions generate result in three unknowns. The subsequent and foremost
step of this method is choosing the estimated values of η at ∞. The solution process
is initiated with certain initial guesses and finding out the solution of (BVP) including
governing model. The method of solution with a new values of η at η → ∞ and the
method is repeated until two consecutive values of g′′(0), θ′(0) and φ′(0) are different only
after the significant digits. Thus final values of η are considered as η →∞.

4. RESULTS AND DISCUSSION

The variation of different physical aspects are presented through graphs (as shown in
Figs 2–19). The influence of unsteady parameter is shown in Fig: 2 on the velocity and
temperature profiles. Fig 3 is for the variation of velocity and temperature profiles for val-
ues of M . A decrease in variation of velocity and temperature profiles increases by enlarge
values of M . Fig: 4 plotted for the distribution of concentration profile for the distinct val-
ues of M and A respectively. The decreases the concentration profile by increasing values
of M and A. Figure 5 plotted for the distribution of concentration and temperature profiles
for the distinct values of Pr. The temperature profile decreases and concentration profile
increases by increasing values of Pr. Figure 6 designated for the velocity and temperature
profiles for the different values of λ1. The increase in the velocity profile and decrease
in temperature profile by increasing the values of λ1. Figure 7 indicates the variation of
velocity and temperature profiles for the various values of λ2. The result has shown the
step down the velocity and temperature profiles by the step up values of λ2. Figure 8 shows
the distribution of the temperature profile for the various values of the Nt and Nb. The re-
sult has show that the temperature profile decreases by increasing values of thermophoresis
Nt and Brownian motion parameters Nb. The Figure 9 shows that the influence of Ecklet
number Ec on temperature and concentration profiles. The result shows that the temper-
ature profile increases and reduced the concentration profile by the step up values of Ec.
Figure 10 designated for the distribution of the concentration profile for values of Le on
the concentration profile. The result shows that a decrease in concentration profile as the
Le increases. This is due to the fact that there is a decrease in the nanoparticle volume
fraction boundary layer thickness with the increase in the Lewis number. Figure 11 shows
the variation of the concentration profile for the distinct values of Nb. It is noticed that
the concentration profile is reduced by incrementing value in Brownian motion Nb. The
effect of the thermophoresis parameter Nt on the concentration of the flow field is show in
Figure 12. We observe that the behavior of Nt indicates a cold surface while negative to
a hot surface. It is seen that the concentration decreases, as the thermophoresis parameter
increases. The variation of velocity slip parameter k1 on the velocity profile is shown in
Figure 13. The result shows that the velocity graph is reduced with the step up values of
velocity slip parameter k1. Figure 14 is plotted for the distinction of the temperature profile
for the different values thermal slip parameter k2. On observing this figure, the temperature
graph is reduced as the value of temperature slip parameter k2 increase. Figure 15 is plotted
for the influence of the solutal slip parameter k3 on the concentration profile. The result has
shown that the concentration profile is reduced by the step up value of solutal slip parame-
ter k3. Figure 16 represents the temperature profile with using different value for the heat
source parameter. If we increase the value of the heat source, then the temperature profile
increases. Heat source provides extra heat to the sheet which increases its temperature.
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FIGURE 2. The variation of h′ and θ for distinct values of A.

This increment is responsible for the increment of the thickness of the thermal boundary
layer. Figure 17 is plotted for the temperature profile with the use of different values for the
heat sink parameter. If we increase the values of the heat sink, then the temperature profile
decreases. This implies that it removes heat from the sheet which decreases thickness of the
boundary layer. Figure 18 represents the concentration profile by using different values for
the heat source parameter. If we step up the value of the heat source, then the concentration
profile decreases. Figure 19 is plotted for the concentration profile with the use of different
values for the heat sink parameter. If we increase the value of the heat sink then concentra-
tion profile increases. Table 1–2 is prepared for the influence of various parameters on skin
friction Cf , Nusselt numberNux and Sherwood numbers Sh. Table 1 shows that heat skin
friction increases with an increase in M , A, Pr, δ, Le and λ1. The skin friction steps up
by the incrementing values of Nb. Nux increases with an increase in M , δ, and Le. Nux
steps down by increasing values of Pr, A, Le and λ1. Sherwood number Shx increases
by the incrementing values of A, Pr, Nb, and λ1. Sherwood number Shx is reduced by
increasing values of M , δ and Le. The Table 2 shows that the skin friction steps up by
incrementing the values of λ2, Nt, k1 and k3. Skin friction increments by the incrementing
the values of k2. Nux increases with an increase in λ2, Nt k2 and Ec. Nux reduces by
increasing values of k1 and k3. Sherwood number Shx steps up with an increment in k1

and k3. Sherwood number Shx decreases by increasing values of λ2, Nt, k2 and Ec.

5. CONCLUSIONS AND FUTURE WORK

The present work is the analysis of an unsteady incompressible magnetohydrodynamics
boundary layer flow heat transfer and a nanofluid over a stretching sheet under the effect
of slip boundary conditions and heating joule in the existence of heat source or sink has
been considered. We use similarity transformation for transforming the nonlinear coupled
ordinary differential equations. We successfully computed the solution of coupled ordinary
differential equations via numerical scheme through shooting method followed by Runge-
Kutta Fehlberg method. The behaviour of various parameters on velocity, temperature and
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FIGURE 3. The variation of h′ and θ for distinct values of M .
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FIGURE 4. The variation of φ for distinct values of M and A.
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FIGURE 5. The variation of θ and φ for distinct values of Pr.
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FIGURE 6. The variation of h′ and θ for distinct values of λ1.
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FIGURE 7. The variation of h′ and θ for distinct values of λ2
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FIGURE 8. The variation of θ for distinct values of Nb and Nt on θ.

concentration profiles are shown graphically. The behaviour of the local skin friction coef-
ficient, local Nusselt number and local Sherwood number are shown numerically through
table. The major conclusions are listed bellow;
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FIGURE 9. The variation θ and φ for distinct values of Ec.
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FIGURE 10. The variation
of φ for distinct values of
Le.
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FIGURE 11. The variation
of φ for distinct values of
Nb.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ(
η)

η

 

Nt=0.0
Nt=0.3
Nt=0.6
Nt=0.9

Nt=0.9; Pr=0.74; Nb=0.2; A=0.3;
M=0.3;  Le=0.6; Ec=0.1; k2=0.3; 
k1=0.3; λ=0.1;δ=0.3;
λ1=0.2; k3=0.2.λ2=0.2; 

FIGURE 12. The variation
of φ for distinct values of
Nt.
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FIGURE 14. Influence of
k2 on θ.
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FIGURE 15. The variation
of φ for distinct values of
k3.
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FIGURE 16. The variation
of θ for distinct values of δ.
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FIGURE 17. The variation
of θ for distinct values of δ.
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FIGURE 18. The be-
haviour of δ on φ.
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A M Pr δ Le Nb λ1 −h′′(0) −θ′(0) −φ′(0)
0.8 1.0 0.72 0.5 0.5 0.5 0.5 0.12222 0.57535 0.1318
0.0 0.11130 0.48859 0.1543
0.2 0.11417 0.51136 0.1480
0.4 0.11695 0.53340 0.1422

0.0 0.10736 0.58869 0.1285
0.2 0.11053 0.58578 0.1292
0.4 0.11359 0.58300 0.1299

1.0 0.12099 0.53798 0.1417
1.3 0.11989 0.50762 0.1495
1.6 0.11900 0.48595 0.1548

-0.4 0.12480 0.68052 0.1023
-0.2 0.12427 0.65881 0.1084
0.0 0.12372 0.63620 0.1148
0.2 0.12314 0.61264 0.1214

0.0 0.12247 0.57527 0.1269
0.2 0.12232 0.57531 0.1299
0.4 0.12217 0.57537 0.1328

0.2 0.12000 0.61117 0.1638
0.4 0.12189 0.68796 0.1373
0.4 0.12241 0.66397 0.1282

0.0 0.13071 0.57135 0.1327
0.2 0.12730 0.57297 0.1324
0.4 0.12391 0.57456 0.1320

TABLE 1. Effect of A, M , Pr, δ, Le, Nb and λ1 on −h′′(0), −θ′(0) and −φ′(0)

• There is a decrease in velocity profile h′(0) with increasing values of A, λ2 and k1

• The velocity h′(0) profile increases by increasing values of the λ1.
• There is a increase in temperature profile θ(η) with the increasing value of M , λ2,
Nb, Nt.

• There is a decrease in temperature θ(η) profile with the increasing value of Pr,
λ1, Le and k2.

• By increasing heat sink δ temperature profile θ(η) decrease and alternatively con-
centration φ(η) profiles are increases.

• The gradient of the temperature increases with the increase in heat source param-
eter δ and alternatively concentration φ(η) profiles are decreases.
• The concentration profile φ(η) increment with the incrementing values in magnetic

parameter M , k1, Nt, Ec, λ1 and Pr.
• The concentration profile φ(η) reduced withe the step up values of Nb, Le, A, k3

and λ2.
• In future we will try to implement other numerical method for comparison of our

analysis.
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λ2 Nt k1 k2 k3 Ec −h′′(0) −θ′(0) −φ′(0)
0.8 1.0 0.72 0.5 0.5 0.5 0.12222 0.57535 0.1318
0.0 0.11801 0.57698 0.1315
0.2 0.12054 0.57600 0.1317
0.4 0.12306 0.57502 0.1319

0.0 0.11576 0.51269 0.7546
0.4 0.11650 0.48669 0.6464
0.8 0.11697 0.46321 0.5599

0.0 0.12235 0.58113 0.1302
0.1 0.12222 0.57535 0.1318
0.2 0.12209 0.59936 0.1335

0.0 0.17092 0.59901 0.1268
0.2 0.12222 0.57535 0.1318
0.3 0.10736 0.56731 0.1336

0.0 0.10336 0.57051 0.1578
0.2 0.10558 0.51713 0.1441
0.4 0.10736 0.56731 0.1336

0.0 0.10874 0.57244 0.2149
0.2 0.10637 0.60568 0.1620
0.4 0.10494 0.62642 0.1298

TABLE 2. Effect of λ2, Nt, k1, k2, k3, and Ec on −h′′(0), −θ′(0) and −φ′(0)
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