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Abstract: For any positive integer m, we assign a digraph G(m) for
which {0, 1, 2, 3, ..., m−1} is the set of vertices and there is an edge from
a vertex u to a vertex v if m divides u7 − v. We enumerate the self and
isolated loops and study the structures of this digraph for the numbers 2r

and 7r, for every positive integer r. Further, we characterize the existence
of cycles by employing Carmichael’s Theorem. Also, we discuss the sub-
digraphs of proposed digraph induced by the vertices coprime to m and
not coprime to m. Lastly, we characterize the regularity, semiregularity
and results regarding components of these subdigraphs.
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1. INTRODUCTION

In recent years, modular arithmetic has become a useful tool in studying structures of
discrete graphs based on congruence equations xk ≡ y (mod m). It has developed a strong
relationship between number theory and graph theory. In this work, we also employ this
device to define our digraph as follows.

Let m be a positive integer and r denote the set of all integers which leave remainder r
when divided by m. Thus, {0, 1, 2, 3, . . . , m− 1} is the set of complete residue classes
of all integers when divided by m. We define a digraph G(m) over these residue classes
of m and build a directed edge from a vertex u to a vertex v if m divides u7 − v. That
is, u7 ≡ v (mod m). The vertices u1, u2, ..., us will form a cycle of length s if

u7
1 ≡ u2 (mod m), u7

2 ≡ u3 (mod m), . . . , u7
s ≡ u1 (mod m).

A cycle of length one will be termed as a loop or a fixed point. A maximal connected sub-
graph of the corresponding undirected graph is called a component. The number of edges
incident with u as the terminal vertex is called indegree of u and is assigned by indeg(u)
and the number of edges with u as the initial vertex is called outdegree and is denoted by
outdeg(u). Since the residue of a number modulo m is unique, we note that the outdegree
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of each vertex is one.

A digraph is regular if the indegree and outdegree of every vertex are same. Thus, in our
case, a digraph is regular if the indegree of every vertex is one (since the outdegree of each
vertex is already one). Likewise, a digraph is semiregular if there exists an integer m > 0
such that each vertex has m or 0 indegree. Let G1(m) and G2(m) be subdigraphs of G(m)
induced by the vertices coprime to m and not coprime to m respectively. It is evident that
G1(m) and G2(m) define a partition of G(m). The digraph G(19) is depicted in Fig.1
given below.
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Figure 1. The digraph G(19)

In this paper, we extend the investigations of M. Rahmati [1] and J. Skowronek-Kaziow [2]
for higher powers and propose some interesting characterizations to study its structures. It
has been shown in [3], that each component of a power digraph modulo a prime number p
contains a cycle. The digraphs associated with the congruence a2 ≡ b (mod m) have been
considered and explored by T.D. Rogers [4], B. Wilson [5] and L. Somer and M.Kř́ıžek [6].
Also, explicit formulas for fixed points, cyclic subdigraphs and decomposition of compo-
nents for the quadratic congruences have been explored in [3, 4, 5] and [6]. The symmetric
structures (isomorphic components) and few previous results of these power digraphs have
been generalized in [7] and [8]. The power digraphs associated with x4 ≡ y (mod m)
and simple graphs associated with the exponential congruence ax ≡ y (mod m) have been
discussed in [9] and [10] respectively. Many useful algebraic techniques to study combi-
natorial number theory, generalized Farmat’s numbers, graph labeling and power digraphs
via number theory have been proposed earlier in [11, 13, 14, 15]. We organize our paper as
follows.
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In Section 1, we define our digraph and few important definitions. Also, we discuss some
previous work similar to our defined digraph. In Section 2, we give a generalized formula
to enumerate fixed points of the digraph G(m) for every positive integer m. In Section 3,
we discuss the conditions of regularity and semiregularity of the subdigraph G1(m). We
characterize that the subdigraph G1(m) is regular if and only if 7 - φ(m), where φ is the
Euler’s Phi function. In Section 4, we explore cyclic structures and components of G1(2r)
and G1(7r), for all positive integers r. In Theorem 4.1, we show that there exists a cycle
of length s in the digraph G(m) if and only if s = ord7

d for some divisor d > 0 of λ(m) (
for λ(m), see Definition 3.1 of [6] and we write s = ord7

d if s is the least positive integer
such that 7s ≡ 1(mod d)). Finally, we propose that the digraph G1(m) consists of six
isomorphic trees. While, G2(m) is a tree with root 0 and indeg(0) = 7k−d k

7 e.

2. FIXED POINTS

Recall that the vertex associated with the number ρ is said to be fixed in G(m) ( or
G(m) has a loop at ρ ) if ρ7 ≡ ρ (mod m). The fixed points of the digraph are actually
the solutions of the congruence x7 ≡ x (mod m). Instead of m, we use its canonical
representation as 2α3βpl1

1 pl2
2 . . . plt

t qr1
1 qr2

2 . . . qrs
s , where p′is and q′js are distinct odd primes

such that pi ≡ 1 (mod 6) and qj ≡ 5 (mod 6). We will find solutions of x7 ≡ x modulo
prime powers and then by using Chinese Remainder Theorem, we will count all solutions
modulo m. Likewise a cubic congruence discussed in [2], we employ the solutions of the
congruence, x7 ≡ y (mod m), and give the following simple and straightforward results.

Lemma 2.1. Let m be any positive integer.
(1) The numbers 0, ±1 are the fixed points of G(m).
(2) If m is square free then, 0 is an isolated fixed point of G(m) and conversely.
(3) For any vertices α and β in G(m), (α, β) is an edge in G(m) if and only if

(−α,−β) is an edge in G(m).
(4) A number r is an isolated fixed point only if −r is an isolated fixed point and

conversely.
(5) Let k ba any odd integer. A number r is at some k-cycle only if −r is at k-cycle

and conversely.

Proof. (1) Note that, x7 ≡ x (mod m), for x = 0,±1 is trivially hold.
(2) Suppose 0 is isolated and p2t = m for some integer t and p is prime. But then

(pt)7 = p2tp5t6 = mp5t6 ≡ 0 (mod m). This shows the vertex pt is adjacent to
0 as well, which is a contradiction against the fact that 0 was isolated. Thus m is
square free. Conversely, let m be square free and suppose α is any vertex such that
α7 ≡ 0 (mod m). Then, m | α7. Since m is square free, so m | α7 gives m | α.
Equivalently, α ≡ 0 (mod m). Thus, 0 is isolated.

(3) Since (−α)7 ≡ −α7 (mod m). Thus α7 ≡ β (mod m) if and only if (−α)7 ≡
−β (mod m).

(4) Using (3), m|α7 if and only if m| − α7. Equivalently, m - α7 if and only if
m - −α7.

(5) If a number r is at some k-cycle, then k is the least positive integer such that
(r7)k ≡ r (mod m). But then for the least positive integer k, we see that (−r7)k =
((−r)k)7 ≡ −r (mod m), as k is odd. This shows that −r is at k-cycle as well.
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In the following theorem, we enumerate fixed points of the digraph G(m).

Theorem 2.2. If L(m) denote the number of fixed point of G(m), where
m = 2α3βpl1

1 pl2
2 . . . plt

t qr1
1 qr2

2 . . . qrs
s , provided p′is and q′js are distinct odd primes with

pi ≡ 1 (mod 6) and qj ≡ 5 (mod 6). Then,

L(m) =





7 t × 3 s if α = 0, β = 0
2× 7 t × 3 s if α = 1, β = 0
2× 7 t × 3 s+1 if α = 1, β = 1
2× 7 t+1 × 3 s if α = 1, β > 1
7 t × 3 s+1 if α = 2, β = 0
7 t × 3 s+2 if α = 2, β = 1
7 t+1 × 3 s+1 if α = 2, β > 1
5× 7 t × 3 s if α ≥ 3, β = 0
5× 7 t × 3 s+1 if α ≥ 3, β = 1
5× 7 t+1 × 3 s if α ≥ 3, β > 1





Proof. By Corollary 2.42 [12, see page 104], it is clear that there are exactly 7 solutions
if mi = pli

i , with pi ≡ 1 (mod 6) and p′is are odd primes. Hence, by Chines Remainder
Theorem, there are exactly 7t solutions of the congruence x7 ≡ x (mod

∏t
i=1 pli

i ). Again
by Corollary 2.42 [12], there must be exactly 3 solutions if mi = q

rj

j , with qj ≡ 5 (mod 6)
and q′js are odd primes. Hence, by Chines Remainder Theorem, there are exactly 3s so-
lutions of the congruence x7 ≡ x (mod

∏s
i=1 q

rj

j ). Moreover, we see that the congruence
x7 ≡ x (mod 2α) has 2, 3 and 5 for α = 1, 2, 3 and has 5 solutions for α ≥ 3. Particularly,
these are 0, 1, 2m−1 − 1, 2m−1 + 1, and m − 1. Similarly, there are three solutions for
the congruence x7 ≡ x (mod 3β) for β = 1 and has 7 solutions for β ≥ 2. Particularly,
these are 0, 1, 3β−1 − 1, 3β−1 + 1, 3β − 3β−1 − 1, and 3β − 3β−1 + 1. Now take
m = 2α3βm1m2, where m1 =

∏t
i=1 pli

i and m2 =
∏s

i=1 q
rj

j . Finally, we discuss the
cases separately and apply Chines Remainder Theorem again to establish our claim. For
instance, if α = 1 = β, then there must be 2 × 3 × 7t × 3s = 2 × 7t × 3s+1 solutions in
this case. The rest of the cases can be dealt with a similar technique. ¤

3. REGULARITY AND SEMIREGULARITY

In this section, we give conditions to characterize our proposed graph about its regularity
and semiregularity. In the following result, we characterize the regularity of the digraph
G1(m).

Lemma 3.1. The digraph G1(m) is regular if and only if 7 - φ(m), where φ is the Euler’s
function.

Proof. Regularity of G1(m) yields that the indeg(u) = 1 for every vertex u in G1(m).
This means that x7 ≡ u (mod m) has a unique solution. Without any loss, assume u ≡
1 (mod m) and let α be the unique solution of the congruence x7 ≡ 1 (mod m). That is,
α7 ≡ 1 (mod m). Now, if 7 | φ(m) then φ(m) = 7t for some integer t. Note that, t = 1
is impossible as φ(m) is always even. Also by Euler’s Theorem, αφ(m) ≡ 1 (mod m) as
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(α, m) = 1 (by definition of G1(m)). Then, α7t ≡ 1 (mod m) or (αt)7 ≡ 1 (mod m).
This shows that αt, t > 1 is another solution of x7 ≡ 1 (mod m). This means that
indeg(1) = 2, a contradiction against the fact that G1(m) was regular. Therefore 7 - φ(m).
Conversely, let 7 - φ(m) and we suppose that G1(m) is not regular. Then there must be at
least one vertex β such that indeg(β) > 1. For the sake of convenience, take β = 1 with
indeg(β) = 2. This means that x7 ≡ 1 (mod m) has two solutions. Let these be β and
βt, t > 1. Then, β7 ≡ 1 (mod m) and β7t ≡ 1 (mod m). But, βφ(m) ≡ 1 (mod m).
Hence, we deduce that either φ(m) = 7 or φ(m) = 7t. As φ(m) is always even, so
φ(m) = 7t. That is, 7 | φ(m), a contradiction. This completes the proof. ¤
Lemma 3.2. Let m be a square free positive integer. The digraph G(m) is cyclic if and
only if 7 - φ(m).

Proof. Recall that a digraph is cyclic if all of its components are cycles. Also, every regular
digraph is cyclic. Hence, by Lemma 3.1, G1(m) is cyclic if and only if 7 - φ(m). For
G2(m), suppose 7 - φ(m) and let α be any vertex in G2(m). Let p be an odd prime such
that p | gcd(α, m). Then there exists integers r and s such that α = rp and m = ps with
gcd(r, s) = 1, where gcd stands for greatest common divisor. Now if β is the solution of
the congruence x7 ≡ α (mod m), then β7 ≡ α (mod m) yields that β7 = α + mt for
some integer t. But then β7 = rp + spt. Consequently, p | β such that p | gcd(α,m). This
means that β7 ≡ α ≡ 0 (mod p). Thus we conclude that a number β exists such that it
is a solution of x7 ≡ α (mod m). Next we show that this solution is unique modulo m.
Since 7 - φ(m), so gcd(7, φ(p)) = 1. Then the linear congruence 7y ≡ 1 (mod p− 1) has
a unique solution in y. Finally, we put β ≡ αy (mod p) to get β7 ≡ α7y ≡ a (mod p). By
Chines Reminder Theorem, we get that β is a unique solution of x7 ≡ α (mod m). Thus,
indegree of this arbitrary vertex is one. This certainly implies that every vertex is either a
loop (a cycle of length one) or is at some cycle. The converse is a direct consequence of
Lemma 1.2. ¤
For further results on regularity and semi-regularity, we define a function η as,

η(m) =
{

s + 1, if 7 2|m
s, if 7 2 - m

where s is the number distinct prime divisors of m of the type 7m + 1. In the following
theorem, we characterize the semiregularity of G1(m).

Theorem 3.3. The digraph G1(m) is semiregular if and only if 7|φ(m). Also the indegrees
in G1(m) are either 7 η(m) or zero.

Proof. By definition of G1(m), it is evident that αφ(m) ≡ 1 (mod m) for each vertex α
in G1(m). This means that the indegrees of the vertices of G1(m) are same. For sake of
convenience, we just count the indegrees of 1. Let p be an odd prime and r be any positive
integer. Then we see that, (7r−1 + 1)7 ≡ 1 (mod 7r). Likewise, we see that the numbers,
2× 7r−1 + 1, 3× 7r−1 + 1, 4× 7r−1 + 1, 5× 7r−1 + 1, 6× 7r−1 + 1, 7× 7r−1 + 1 also
satisfies the congruence, x7 ≡ 1 (mod 7r). While modulo pr, there are always 7 solutions
whenever p ≡ 1 (mod 7) and there is a trivial solution if p 6≡ 1 (mod 7) ( for detail see
[12], page 104). Using the canonical representation of m into odd primes and Chinese
Remainder Theorem, simultaneously, we must get that α7 ≡ 1 (mod m) either have 7 η(m)
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solutions or have no solution for each vertex α in G1(m). On the other hand, we let G1(m)
is semiregular and indeg α = 7 η(m) for α ∈ G1(m). This means that α7 ≡ 1 (mod m).
Using multiplicative order and Euler’s Theorem for α, we deduce that 7 | φ(m). ¤

4. ENUMERATION OF COMPONENTS

The vertices v1, v2, v3, . . . vt, compose a component G(p) if for each i, 1 ≤ i ≤ t,
there exists some j, 1 ≤ j ≤ t, such that v7

i ≡ v7
j (mod p), for all i 6= j. By [3], it

has been established that each component of such digraphs must have exactly one cycle.
While the enumeration of components is still under question. From the following results,
we discuss and enumerate the number of cycles of different lengths and components up
to isomorphism. The following theorem also validates a similar result given in [6] for
quadratic congruences.

Theorem 4.1. There exists a cycle of length s in G(m), m ≥ 3 if and only if s is the least
positive integer such that 7s ≡ 1 (mod d), where d | λ(m) and d > 0.

Proof. Suppose there exists a cycle of length s in G(m), for any integer m ≥ 3. Let v be
any vertex on this cycle. Then s is the least positive integer such that v7s ≡ v (mod m).
This means that s is the least positive integer for which v(v7s−1−1) ≡ 0 (mod m). Clearly,
gcd (v, v7s − 1). Thus if we let m1 = gcd(v,m) and m2 = m

m1
, then s would be the least

positive integer such that v ≡ 0 (mod m1) and v7s−1 ≡ 1 (mod m2). Applying Chines
Reminder Theorem, we must get some integral solution y such that y ≡ 1 (mod m1)
and y ≡ a (mod m2). Consequently, s is the least positive integer such that y7s−1 ≡
1 (mod m1) and y7s−1 ≡ 1 (mod m2). Both yields that, y7s−1 ≡ 1 (mod m). Let d =
ordm

y . Then, y ≡ 1 (mod m1) enforce that s is the least positive integer such that 7s ≡
1 (mod d). Also, if d = ordy

m, then (y, m) = 1, so by Carmichael’s Theorem, it is evident
that d | λ(m).
Conversely, assume that d > 0 is divisor of λ(m) and let v = gλ(m)/d. Then d = ordv

m.
Since d/7s − 1 but d - 7l − 1 whenever 0 ≤ l < s. We see that s is the least positive
integer for which v7s−1 ≡ 1 (mod m). Therefore, v.v7s−1 ≡ v7s ≡ v (mod m). ¤

It is interesting to note that the enumeration of components for every m is much strenuous.
As there are many different patterns in its enumerations. For instance, if we take m = 47k,
where k ∈ {1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 21}, then its digraph has 2k cycle of
length 22. In particular, take k = 1, then there are two cycles. One of such cycle has the ver-
tices 5, 10, 11, 13, 19, 20, 22, 23, 26, 29, 30, 31, 33, 35, 38, 39, 40, 41, 43, 44, 45,
because 57 ≡ 11 (mod 47), 117 ≡ 31 (mod 47), . . . , 397 ≡ 35 (mod 47), 357 ≡
5 (mod 47) form a cycle. Similarly, the vertices 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21,
24, 25, 27, 28, 32, 34, 36, 37, 42 form the other cycle as 27 ≡ 34 (mod 47), 347 ≡
8 (mod 47), . . . , 217 ≡ 37 (mod 47), 377 ≡ 2 (mod 47). These are depicted in Fig. 2
given below,



Power Digraphs Associated with the Congruence xn ≡ y (mod m) 99

33

38

40

15

51

11

5
3539

13

45

10

26

20

22

44

30

19 43 4
29

23

16 36

42

12

8

34

2

37

21
2725317

28

4

6

18

24

14

9

7
32

0

46

1

Figure 2. The digraph G(47)

For if k = 2, the digraph has four cycles of length 22. These are given below: cycles are
respectively

a: 47 ≡ 28 (mod 94), 287 ≡ 64 (mod 94), 647 ≡ 50 (mod 94), 507 ≡ 72 (mod 94),
727 ≡ 74 (mod 94), 747 ≡ 68 (mod 94), 687 ≡ 84 (mod 94), 847 ≡ 2 (mod 94),
27 ≡ 34 (mod 94), 347 ≡ 8 (mod 94), 87 ≡ 12 (mod 94), 127 ≡ 42 (mod 94),
427 ≡ 36 (mod 94), 367 ≡ 16 (mod 94), 167 ≡ 32 (mod 94), 327 ≡ 54 (mod 94),
547 ≡ 56, 567 ≡ 14 (mod 94), 147 ≡ 24 (mod 94), 147 ≡ 18 (mod 94), 187 ≡
6 (mod 94), 67 ≡ 4 (mod 94).

b: 57 ≡ 11 (mod 94), 117 ≡ 31 (mod 94), 317 ≡ 15 (mod 94), 157 ≡ 87 (mod 94),
877 ≡ 85 (mod 94), 857 ≡ 33 (mod 94), 337 ≡ 23 (mod 94), 237 ≡ 29 (mod 94),
297 ≡ 41 (mod 94), 417 ≡ 43 (mod 94), 437 ≡ 19 (mod 94), 197 ≡ 77 (mod 94),
777 ≡ 91 (mod 94), 917 ≡ 69 (mod 94), 697 ≡ 67, 677 ≡ 73 (mod 94), 737 ≡
57 (mod 94), 577 ≡ 45 (mod 94), 457 ≡ 13 (mod 94), 137 ≡ 39 (mod 94), 397 ≡
35 (mod 94), 357 ≡ 5 (mod 94).

c: 107 ≡ 92 (mod 94), 927 ≡ 60 (mod 94), 607 ≡ 86 (mod 94), 867 ≡ 82 (mod 94),
827 ≡ 52 (mod 94), 527 ≡ 58 (mod 94), 587 ≡ 78 (mod 94), 787 ≡ 62 (mod 94),
627 ≡ 40 (mod 94), 407 ≡ 38 (mod 94), 387 ≡ 80 (mod 94), 807 ≡ 70 (mod 94),
707 ≡ 76, 887 ≡ 90 (mod 94), 907 ≡ 66 (mod 94), 667 ≡ 30 (mod 94), 307 ≡
44 (mod 94), 447 ≡ 22 (mod 94), 227 ≡ 20 (mod 94), 207 ≡ 26 (mod 94), 267 ≡
10 (mod 94).

d: 37 ≡ 25 (mod 94), 257 ≡ 27 (mod 94), 277 ≡ 21 (mod 94), 217 ≡ 37 (mod 94),
377 ≡ 49 (mod 94), 497 ≡ 81 (mod 94), 817 ≡ 55 (mod 94), 557 ≡ 59 (mod 94),
597 ≡ 89 (mod 94), 897 ≡ 83 (mod 94), 837 ≡ 63 (mod 94), 637 ≡ 79 (mod 94),
797 ≡ 7 (mod 94), 77 ≡ 9 (mod 94), 97 ≡ 61 (mod 94), 617 ≡ 71 (mod 94), 717
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≡ 65 (mod 94), 657 ≡ 53, 537 ≡ 51 (mod 94), 517 ≡ 75 (mod 94), 757 ≡
17 (mod 94) 177 ≡ 3 (mod 94).

The above discussion reveals the following remarks,

Remark 4.2. G(m) has 3k fixed point only if m = 47k, where k ∈ {1, 2, 3, 6, 7, 14, 21}.

G(m) has exactly 5k components only if m = 47k, where k ∈ {1, 2, 3, 6, 7, 14, 21}.

G(m) has exactly five components only if m = 8, 23, 47, 71, 83, 179.

G(m) has exactly 10 components only if m = 13, 17, 22, 46, 94, 113, 142, 166.

In view of some particular examples given in the above remark, rather to enumerate com-
ponents for every integer m, we find integers for which there are a fixed number of compo-
nents. In the following theorem, we find all integers for which there are seven components.

Theorem 4.3. The number of components of G(m) is 7 if and only if m = 9 or m = 7k

or m is prime of the form m = 6× 7k + 1 for some positive integer k.

Proof. If m = 9, then it can easily be seen that there are loops at the vertices 1, 2, 4, 5, 7,
and 8, while the vertices 0, 3 and 6 are connected. Thus, there are exactly 7 components.
If m = 7k or m is prime of the form m = 6 × 7k + 1 then by Theorem 2.1, we have
exactly 7 fixed points, and these are either isolated or must be the roots of their respective
components. Finally, if m is any number for which we have more than 7 components then
by [3] (see lemma 9, page 228), there must be a cycle of length s > 1. But then by Theorem
4.1, s is the least positive integer such that 7s ≡ 1 (mod d), where d | λ(m) and d > 0.
That is, d | 7s − 1. But d | λ(m) = 6 × 7k as well. This clearly enforces that d = 6. But
then 7k ≡ 1 (mod 6) for each value of k. In particular, if 1 ≤ r < s, then 7r ≡ 1 (mod 6)
as well. This has certainly provided a contradiction against the minimality of s. Thus, this
case is not all possible. Consequently, G(m) has 7 components. ¤
Theorem 4.4. For any integer t > 0, there always exist cycles of length 2t in the digraph
G1(2k), k > 0 while G2(2k) form a tree with root at 0 and have 2k−8 branch point.
Moreover,

indeg(0) = (2k−d k
7 e).

Proof. It is well known that there must be an equal number of residues of m = 2k which
are prime to m and those which are not prime to m. Thus the digraphs G1(m) and G2(m)
contains equal number of vertices namely 2k−1. It can easily be seen that, 1, 2k, 2k−1 ∓ 1
are the only fixed points of G1(2k). By Theorem 4.1, there would be a cycle of length s if
and only if s = ord7

d, for some divisor d of λ(m) = 2k−2. Now if there exists such a cycle,
then s being order of 7 modulo a divisor of 2k−1 must be of the form 2t, for some integer
t > 0. As far the other case is concerned, we note that all, even residues of 2k, k < 8
mapped onto 0 and if k > 7, then again all, even residues of 2k will be connected by a
tree with 2k−8 branch points. For instance, if k = 8, then 27 6≡ 0 (mod 28). Note that
there are two branch points, namely, 0 and 27 = 128. Thus, (2k−d k

7 e) numbers, namely
2d

k
7 e, 2.2d

k
7 e, 3.2d

k
7 e, . . . , 2k−d k

7 e.2d
k
7 e are mapped onto 0 while remaining are mapped

on to 128. Consequently, indeg(0) = (2k−d k
7 e). ¤
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Figure 3. The digraph G(25)

Theorem 4.5. Let k be a natural number and m = 7k. Then the digraph G1(m) consists of
six isomorphic trees. Moreover, G2(m) is a tree with the root in 0 and indeg(0) = 7k−d k

7 e.

Proof. Note that the digraph G(m) has exactly 7 components with 7 fixed points [see,
Theorem 2.1]. Note that 7k−d k

7 e elements, namely, 7d
k
7 e, 2.7k−d k

7 e, 3.7k−d k
7 e, . . . ,

7k−d k
7 e.7d

k
7 e are adjacent to 0 in G2(m). Also, 7|φ(m) = 6.7k−1, by Theorem 4.1, we

obtain that the digraph G1(m) is semiregular and every vertex, either has degree 0 or 7.
It is clear that this digraph has a tree with root 0. Now consider the set of non-zero fixed
points as {1,m− 1, a, m− a, b, m− b}. Define T1, Tm−1, Ta, Tm−a, Tb and Tm−b trees
containing the fixed points 1, m − 1, a, m − a, b and m − b, respectively. It can easily
deduce that T1

∼= Tm−1, Ta
∼= Tm−a and Tb

∼= Tm−b. Now if we multiply each vertex
of the tree T1 by number a, we have tree Ta. Similarly, if we multiply each vertex of the
tree T1 by number b, we have a tree Tb. This is possible since (b,m) = 1 and (a,m) = 1.
Consequently, we yield that, T1

∼= Tb and T1
∼= Ta. ¤

Fig. 3 and Fig. 4 reflects Theorem 4.3 and Theorem 4.4 respectively.
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Figure 4. The digraph G(72)
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