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Abstract. In this paper, we deal with the motion of the variable infini-
tesimal body having a variable mass in CR3BP, when the primaries are
assumed to be finite straight segments. We also assume that the primaries
are placed in a straight line and move in circular orbits. These orbits are
assumed to be around the common center of mass of the primaries and
which we take as origin of the coordinates system. The third body is mov-
ing under the gravitational forces of the primaries but it does not influence
their behavior. We first determine the equations of motion of the infinitesi-
mal body and then the Jacobi-Integral constant. We study numerically the
equilibrium points, regions of motion, zero-velocity surfaces with projec-
tion, surfaces with variation of Jacobi constant, Poincaré surface of sec-
tions and basins of attraction by using Mathematica software. Finally, we
examine the stability of the equilibrium points.

AMS (MOS) Subject Classification Codes: 70F15; 85A20; 70F05
Key Words: R3BP; Finite straight segment; Variable mass; Zero-velocity curves; Poincaré

surface of sections; Basins of Attraction.

1. INTRODUCTION

The n-body problem, during the few last decades, attracted many celestial mechanics 
researchers. In particular, the 3-body and 4−body problems have taken a large part of these 
researches. They have been studied for different configurations. Some of them have been 
focused on the shape of the primaries and others on different perturbations introduced on 
a part or on whole system. Among these perturbations, we can cite the resonance effect, 
variation of mass on primaries and/or on the infinitesimal b ody, c oriolis a nd centrifugal 
forces or Poynting-Robertson effects. System subjected to drag or solar radiation as well 
as albedo effects have also been intensively studied.
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In the present study, by the expression ”CR3BP”, we mean a system of three bodies,
two will be called ”the primaries”, and the third, will be called ”the infinitesimal body”. In
this configuration, we often suppose that the primaries affect the behavior of the third body,
assumed to have no effect on the motion or on the behavior of the primaries.

To recall the history of the n-body problem, let us cite some remarkable works that in-
spired the present investigation. [15] investigated many periodical orbits and bifurcations
around a massive straight segment. [16] studied the non-linear stability of the four equi-
librium points in the gravitational field of a finite straight segment. [8] proved that any
truncation of the expansion of the potential does not admit meromorphic integrals other
than the Hamiltonian itself. [9] performed a simple model to determine chaotic motions
around asteroids which are considered as a rotating finite straight segment. [10] studied
the stability and locations of the Lagrangian equilibrium points in the CR3BP, under the
assumption that both the primaries are finite straight segments.

Many other researchers studied the CR3BP with variable masses. We can cite [11], [14],
[17], [12], [18], [19], [20], [21], [13], [22], [1]. On the other hand, many other researchers
studied the basins of attraction in the restricted problem as [2], [3], [4], [5], [6], [7], [23],
[24], [25], etc...

As a contribution to these questions, we investigate the behavior of the infinitesimal
body in CR3BP, where we suppose that its mass varies and where the primaries are assumed
to be straight segments. We start our paper by deriving the equations of motion from
Newton’s law and the momentum equation, and then we determine the time variation of
Jacobi constant. In the next section, we perform all the aspects of the numerical analysis
related to our question: equilibrium points, regions of motion, zero-velocity surfaces with
projection, surfaces with variation of Jacobi constant, Poincaré surface of sections and
Newton-Raphson basins of attraction. After the above study, we examine the stability of
the equilibrium points. Finally, we interpret the principal results of our problem.

Our principal motivation is that, this problem has many applications in the control of
space stations that can be assimilated to straight segments and can serve for a model of
precise further investigations.

2. STATEMENT OF THE PROBLEM AND EQUATIONS OF MOTION

Let m1 and m2 be the masses (m1 > m2) of two bodies supposed to be finite seg-
ments denoted by AB and CD with lengths 2L1 and 2L2 respectively. The finite segments
AB and CD are placed on the x-axis and are moving around their common center of
mass taken as the origin O. The line orthogonal to the x-axis, passing through O is sup-
posed to be the y-axis. The distances of the third infinitesimal-variable-mass body; mass of
which is denoted by m(t); from A,B,C, and D are S1, S2, R1 and R2 respectively. The
infinitesimal-variable-mass body denoted by m(t) is moving under the influence of these
two primaries but does not have any influence on them. We will be concerned by the syn-
odic coordinate system; which coincides initially with the inertial coordinate system, and
revolving with angular velocity ω. Let the coordinates of m1, m2 and m(t) in the rotating
frame be (x1, 0), (x2, 0) and (x, y) respectively (Fig. 1). The total gravitational potential
V of these straight segments evaluated at the point P is V = V1 + V2,
Where V1, V2 are respectively the potential of the segment AB and the potential of the
segment CD, explicitly given by (see [10])
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V1 = −Gm1m(t)

2L1
log{S1+S2+2L1

S1+S2−2L1
}

V2 = −Gm2m(t)
2L2

log{R1+R2+2L2

R1+R2−2L2
}

Assume that the sum of masses of the primaries is unity, i.e. m1 +m2 = 1, the distances
between the center of mass and the primaries are unity, i.e. EF = R = 1. The unit of time
is chosen such that the gravitational constant G becomes unity. Taking m2

(m1+m2) = µ, then
m2 = µ, and m1 = 1 − µ. Therefore, the dimensionless coordinates of the points E and
F will be (µ, 0) and (µ− 1, 0) respectively.
Following the procedure given by [1], we can write the equations of motion of the infinitesimal-
variable-mass in the rotating coordinate system when the variation of mass is non-isotropic
with zero momentum as

ṁ(t)
m(t) (ẋ− ω y) + (ẍ− 2ω ẏ) = ∂Ω

∂x

ṁ(t)
m(t) (ẏ + ω x) + (ÿ + 2ω ẋ) = ∂Ω

∂y .

(2. 1)

where
Ω = ω2

2 (x2 + y2) + (1−µ)
2l1

log{S1+S2+2l1
S1+S2−2l1

}+ µ
2l2

log{R1+R2+2l2
R1+R2−2l2

},

S2
1 = (x− (µ+ l1))2 + y2, S2

2 = (x− (µ− l1))2 + y2,

R2
1 = (x− (µ− 1 + l2))2 + y2, R2

2 = (x− (µ− 1− l2))2 + y2,

l1 = L1

R , l2 = L2

R , and ω2 = (1 + l21 + l22). [10]
Due to variation of mass of infinitesimal body, we use Jeans’ law dm

dt = −λ1m
n, where λ1

is a variation constant and the value of exponent n is in between 0.4 ≤ n ≤ 4.4 for stars
and it is unity for rockets. Notice, therefore, that the mass of the rocket varies exponentially
as m = m0e

−λ1t.
Now, we use space-time transformation taking into account the transformations given in

[17] by:
x = ε−1/2ξ, y = ε−1/2η, dt = dτ, Si = ε−1/2si, Ri = ε−1/2ri, (i = 1, 2). where
ε = m

m0
.

And hence,
ẋ = ε−1/2(ξ′+ λ1

2 ξ), ẏ = ε−1/2(η′+ λ1

2 η), ẍ = ε−1/2(ξ′′+λ1ξ
′+

λ2
1

4 ξ), ÿ = ε−1/2(η′′+

λ1η
′+

λ2
1

4 η).where, dot (.) and prime (′) represent the derivative w.r. to t and τ respectively.
Using these transformation, equations of motion (2.1) become

ξ′′ − 2ωη′ = ∂ψ
∂ξ

η′′ + 2ωξ′ = ∂ψ
∂η .

(2. 2)

where
= (ω

2

2 +
λ2
1

8 )(ξ2 + η2) + (1−µ)ε3/2

2l1
log{ s1+s2+2l1ε

1/2

s1+s2−2l1ε1/2
}+ µε3/2

2l2
log{ r1+r2+2l2ε

1/2

r1+r2−2l2ε1/2
}.
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s2
1 = (ξ − ε1/2(µ+ l1))2 + η2, s2

2 = (ξ − ε1/2(µ− l1))2 + η2,

r2
1 = (ξ − ε1/2(µ− 1 + l2))2 + η2, r2

2 = (ξ − ε1/2(µ− 1− l2))2 + η2,
The Jacobi-Integral can also be written as

ξ′ 2 + η′ 2 = 2ψ − C − 2

∫ τ

τ0

∂ψ

∂τ
dτ. (2. 3)

where, C is the Jacobi-integral constant.

3. NUMERICAL SECTION

In this section, we are concerned by the numerical study of the equilibrium points, re-
gions of motion, zero-velocity surfaces with projection, surfaces of motion of infinitesimal
body with the variation of Jacobi-constant, Poincaré surfaces of section and basins of at-
traction that we draw for µ = 0.03 and ε = 0.1.

3.1. Equilibrium points. The equilibrium points are the solutions of the right hand sides
of the system (2.2). When we replace all the derivatives by zero in the left hand side of the
system (2.2), we get ∂ψ∂ξ = 0, ∂ψ∂η = 0. Using Mathematica software, we plot the locations
of the equilibrium points for different values of the variation constant λ1 (= 0.2(green), 0.6
(red), 1 (blue)). We find that the system has at most five equilibrium points (L1, L2, L3,
L4, L5). Among these equilibrium points, three are collinear and two are non-linear. From
the figures obtained, we observe that, when we increase the values of variation constant λ1,
the equilibrium points are moving towards the origin (Fig.2a). This phenomenon can be
observed clearly from figures (2b, 2c) which are the zoomed part of Fig.(2a).

3.2. Regions of motion. Following the procedure given by [1], we study the dynamical
behavior of the infinitesimal body by drawing its regions of motion in accordance with
the values of Jacobi-constant. We plot its regions of motion and find that it can not move
in the shaded regions. As the values of the Jacobi-constant decrease, the shaded regions
decrease. In the figures 3a, 3b, 3c, 3d, light blue color represents the forbidden regions
and infinitesimal body can move only in the white regions. In the Fig. 3(a), at the Jacobi-
constant CL1

= 0.1979159, the infinitesimal body can move in the circular region near L1

and this point represents a limiting point. It can also move in circular white region near
L2. In the Fig. 3(b), at the Jacobi-constant CL2

= 0.1655264, the infinitesimal body can
move in the circular region near L2 and L2 is the limiting point for this motion. In the Fig.
3(c), at the Jacobi-constant CL3 = 0.1289780, L3 is the limiting point and the infinitesimal
body can move in the white regions except the shaded regions near L4 and L5. In the Fig.
3(d), at the Jacobi-constant CL4,5

= 0.1190430, there is no limiting point, the infinitesimal
body can move freely any-where in the white region except the shaded regions near L4 and
L5 look like two icebergs.

3.3. Zero-velocity surfaces with projections. In this subsection, we draw the projections
of the zero-velocity surfaces in the (ξ, η)−plane for the CR3BP, when the primaries are
finite-straight segments and the infinitesimal body have a variable mass in accordance with
Jean’s law. The motion is possible inside the shaded regions. We observe that the forbidden
region decreases when the value of Jacobian constant decreases (Fig. 4a, 4b, 4c, 4d).
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3.4. Surfaces with variation of Jacobi-constant. In this part, we study the surfaces of
motion of the infinitesimal body with the variation of the Jacobi-constant C. We notice
that the motion is possible only in the shaded region which appeared as a bowl. The cir-
cumference of the bowl increases when the value of the Jacobi-constant C increases (Fig.
5).

3.5. Poincaré surfaces of section. The Poincaré surfaces of section are drawn for the
different values of the variation constant (λ1 = 0.2 (Green), 0.6 (Red), 1 (Blue)) in two
different phase spaces (ξ− ξ′) Fig 6(a) and (η− η′) Fig6(b). From the Figure 6(a), we ob-
serve that, when we increase the value of λ1, the surfaces are shrinking for ξ ∈ [0.05, 0.17]
and expanding outside this interval. From the Figure 6(b), we observe that for η′ ≥ 0.1 and
λ1 ∈ [0.6, 1], the surfaces are close to each other.

3.6. Basins of Attraction. Here, we draw the Newton-Raphson basins of attraction for
the CR3BP, where the primaries are taken as finite-straight segments and the infinitesimal
body has variable mass according to the Jean’s law. It is accurate and fast computational
tool to evaluate the basins of convergence. The algorithm of our problem is given by:

ξn+1 = ξn −
(

ψξψηη−ψηψξη
ψξξψηη−ψξηψηξ

)
(ξn,ηn)

,

ηn+1 = ηn −
(

ψηψξξ−ψξψηξ
ψξξψηη−ψξηψηξ

)
(ξn,ηn)

.
(3. 4)

Where ξn, ηn are respectively the values of ξ and η coordinates of the nth step of the
Newton-Raphson iterative process. If the initial point converges rapidly to one of the at-
tractor then this point (ξ, η) will be the basin of attraction of the root. The process that we
propose stops when the successive approximations converge to an equilibrium point that
represent an attractor. We use color code to classify the different equilibrium points on the
(ξ, η)−plane. In the first case, for λ1 = 0.2 (Fig.7(a)), L1, L2 and L3 represent blue
color regions, L4 represents green color region while L5 represents yellow color region.
The basins of attraction corresponding to all the equilibrium points extend to infinity. In
the second case for λ1 = 0.6 (Fig.8(a)), L1, L2 and L3 represent blue color regions, L4

represents light green color region whileL5 represents light yellow color region. The basins
of attraction corresponding to all the equilibrium points extend to infinity. In the third case;
for λ1 = 1 (Fig.9(a)), L1, L2 and L3 represent light blue color regions, L4 represents red
color region while L5 represents green color region. The basins of attraction corresponding
to all the equilibrium points extend to infinity. We then get a complete view of the basins
structure created by the attractors. It can also be observed in detail in the zoomed part of
the figures like Fig.7(b), F ig.8(b), F ig.9(b). We also observe that by increasing the effect
of the variation constant λ1, the basins of attraction shrink. The black points and red points
denote the location of the equilibrium points and the primaries respectively.

4. STABILITY OF EQUILIBRIUM POINTS

In this part of the paper, we examine the stability of the equilibrium points in the re-
stricted three-body problem when the primaries are finite-straight-segments and the infini-
tesimal body has variable mass. If we set ξ = ξ0 + α, η = η0 + β, in system (2), we get
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the variational equations of system as
α′′ − 2 ωβ′ = α ψ0

ξξ + β ψ0
ξη

β′′ + 2 ωα′ = α ψ0
ηξ + β ψ0

ηη

(4. 5)

Where α and β are small displacements from the equilibrium point (ξ0, η0) of the infin-
itesimal body. The superscript zero denotes the value at the equilibrium point.

We can rewrite the system (4.5), in the linear form, as

α′ = α1

β′ = β1

α′1 = 2 ωβ1 + α ψ0
ξξ + β ψ0

ξη

β′1 = −2 ωα1 + α ψ0
ηξ + β ψ0

ηη

(4. 6)

At λ1 = 0, the system (4.6) becomes a system with constant mass. For λ1 > 0,, the
ordinary method cannot be used to determine the linear stability due to the variation with
respect to the time of the distances between the primaries and equilibrium point. Therefore,
Meshcherskii space-time inverse transformations will be used.

For the following values, x1 = ε−1/2α, y1 = ε−1/2β, x2 = ε−1/2α1, y2 = ε−1/2β1.
The matrix form of the system (4.6) is as follows:

dx1

dτ

dy1
dτ

dx2

dτ

dy2
dτ


= A×


x1

y1

x2

y2

 (4. 7)

where

A =


λ1

2 0 1 0

0 λ1

2 0 1

(ψξξ)0 (ψξη)0
λ1

2 2ω

(ψηξ)0 (ψηη)0 −2ω λ1

2


The characteristic polynomial of the matrix A is

λ4 − 2λ1λ
3 + λ2(

3λ2
1

2 + 4ω2 − ψξξ − ψηη)− λλ1(
λ2
1

2 + 4ω2 − ψξξ − ψηη)

+ 1
16 (λ4

1 − 4ψξξλ
2
1 − 4ψηηλ

2
1 + 16ω2λ2

1 + 16ψξξψηη − 16ψξηψηξ)

(4. 8)
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So the roots of corresponding characteristic equation are given in the table (1), performed
for different values of the variation parameter λ1. We can observe from the table, that we
have at least one positive real parts of the roots (dark black in the table) corresponding to
each equilibrium points. From the figure (10), we can also see that there is no bounded
region. We can conclude that every equilibrium points are unstable.

5. CONCLUSION

We have determined the equations of motion which are different from the classical cases
by λ1 and ε . In our case the Jacobi integral is different by an integral term. In the numerical
section, we found the five equilibrium points which are moving towards the origin when
the values of the variation parameter λ1 increases. We also notice that, when we decrease
the Jacobi constant, the forbidden region decreases. Assigning the value 0.2 to λ1, we
have drawn the zero-velocity surfaces with projections and the surfaces of motion of the
infinitesimal body as a function of the Jacobi constant in [0, 0.3]. After studying the above
parameters, we have been concerned by the Poincaré surfaces of sections, which have been
done in two different phase spaces; (ξ, ξ′) and (η, η′). We notice that there is an important
variation in these surfaces in accordance with the variation of λ1. Among the questions
that have been studied in our paper, the basins of attraction occupied a important part
of our investigations. As it has presented we have assigned different colors to attracting
unbounded regions. the observation that can be made is that, when we increase the the
values of λ1, the basins of attraction shrink. For the part devoted to stability, we have
determined for each equilibrium point, all the characteristic roots. Since we found that
among these roots, one at least is a positive real or has positive real part, we conclude that
all the equilibrium points are unstable.
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FIGURE 1. Configuration of the problem in CR3BP with the finite
straight segment primaries.

(a) (b)

(c)

FIGURE 2. (a): Locations of equilibrium points at λ1 = 0.2 (Green), 0.6
(Red), 1 (Blue). (b, c): The zoomed part of (a) near L2 and L4.
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(a) (b)

(c) (d)

FIGURE 3. Regions of motion at λ1 = 0.2 and various values of
Jacobi-constant (CL1

= 0.19791599(a),CL2
= 0.16552647(b),CL3

=
0.12897801(c), CL4,5 = 0.11904303(d)).
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(a) (b)

(c) (d)

FIGURE 4. Zero-velocity surfaces with projections at (CL1
=

0.1979159(a),CL2
= 0.1655264(b),CL3

= 0.1289780(c), CL4,5
=

0.1190430(d)).

FIGURE 5. The surfaces of motion of the infinitesimal body with the
variation of the Jacobi-constant C.
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(a) (b)

FIGURE 6. Poincaré surfaces of section at different values of variation
constant λ1(at 0.2 (Green), 0.6 (Red), 1(Blue))

(a) (b)

FIGURE 7. (a): Basins of attraction at λ1 = 0.2, (b): Zoomed part of
figure a near the primaries.

(a) (b)

FIGURE 8. (a): Basins of attraction at λ1 = 0.6, (b): Zoomed part of
figure a near the primaries.



Behavior of an Infinitesimal-Variable-Mass Body in CR3BP 119

(a) (b)

FIGURE 9. (a): Basins of attraction at λ1 = 1, (b): Zoomed part of
figure a near the primaries.

FIGURE 10. Instability regions of the equilibrium points when the pri-
maries are finite-straight-segments and variable-infinitesimal-body
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TABLE 1. Values of the Characteristic Roots corresponding to the equi-
librium points

Variation constant λ1 Equilibrium points Characteristic Roots

0.2

(0.2617257, 0)

−1.0209887

1.2209887
0.1000000 − 1.3047240 i

0.1000000 + 1.3047240 i

(−0.3236154, 0)

−1.9197919

2.1197919
0.1000000 − 1.7771877 i

0.1000000 + 1.7771877 i

(−0.0796611, 0)

−1.6326886

1.8326886
0.1000000 − 1.6156634 i
0.1000000 + 1.6156634 i

(−0.0632369, 0.1452963)

−0.5703019− 0.9666205 i

−0.5703019 + 0.9666205 i

0.7703019 − 0.9666205 i
0.7703019 + 0.9666205 i

(−0.0632369,−0.1452963)

−0.5703019− 0.9666205 i

−0.5703019 + 0.9666205 i

0.7703019 − 0.9666205 i
0.7703019 + 0.9666205 i

0.6

(0.2567257, 0)

−0.9452335

1.5452335
0.3000000 − 1.3004893 i
0.3000000 + 1.3004893 i

(−0.3183615, 0)

−1.9590414

2.5590414
0.2999999 − 1.8807850 i
0.2999999 + 1.8807850 i

(−0.0796611, 0)

−1.4391371
2.0391371

0.2999999 − 1.5725000 i
0.2999999 + 1.5725000 i

(−0.0633698, 0.1372963)

−0.4478124− 0.9617791 i
−0.4478124 + 0.9617791 i

1.0478124 − 0.9617791 i

1.0478124 + 0.9617791 i

(−0.0633698,−0.1372963)

−0.4478124− 0.9617791 i
−0.4478124 + 0.9617791 i

1.0478124 − 0.9617791 i

1.0478124 + 0.9617791 i

1

(0.2472577, 0)

−1.2042423
1.8042423

0.3000000 − 1.4401587 i

0.3000000 + 1.4401587 i

(−0.3136154, 0)

−2.1884543
2.7884543

0.2999999 − 2.0221655 i
0.2999999 + 2.0221655 i

(−0.0756611, 0)

−1.4453772
2.0453772

0.3000000 − 1.5760816 i

0.3000000 + 1.5760816 i

(−0.0633984, 0.1225296)

−0.4736241− 0.9403442 i
−0.4736241 + 0.9403442 i

1.0736241 − 0.9403442 i
1.0736241 + 0.9403442 i

(−0.0636984,−0.1231529)

−0.4736241− 0.9403442 i

−0.4736241 + 0.9403442 i
1.0736241 − 0.9403442 i

1.0736241 + 0.9403442 i


