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Abstract: In this paper, we have developod an Algorithm of Difference
Operator for finding the root of nonlinear equations. In fact, finding the
root of nonlinear equations is a classical problem in numerical analysis,
which arises in many branches of applied science and engineering. The
proposed technique is derived from difference operator and Taylor series,
and it is converging cubically. The aim of this paper to find the approxi-
mation root of the nonlinear equations with less iteration, good accuracy
and without the evaluation of second derivatives. The new algorithm is
comparable with the methods of variant of Newton Raphson Method and
Halley Method. Few numerical examples are also presented in this pa-
per in order to analyze the efficiency of the developed method with the
assessment of existing cubic methods.
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1. INTRODUCTION

In recent years many researchers have developed several iterative methods for solving
nonlinear equations. Actually, nonlinear equations are imperative problem in engineering
and applied science [1-3]. For this purpose, numerous numerical methods had been offered
and investigate under certain circumstances. Therefore, one of most effective technique is
newton raphson technique, such as

xn+1 = xn −
f(xn)

f ′(xn)
(1. 1)

Where n = 0, 1, 2, ...
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This method is fast converging numerical technique but not reliable because it is keeping
pitfall [4-5]. However, it is most useful and vigorous numerical techniques. Several modi-
fications had been done in Newton Raphson Method by using taylor series and difference
operator for finding a single root of a nonlinear equations in literatures [6-11]. Further-
more, increasing computational competence and rate of convergence a Variant of Newton
Raphson Method had been proposed by using Quadrature rule [12], such as

xn+1 = xn −
f(xn)

f ′(xn) + f ′(yn)
(1. 2)

where yn = xn − f(xn)
f ′(xn)

Likewise, Homeier [14] derived the following cubically convergent numerical method.

xn+1 = xn −
f(xn)

2f ′(xn)
− f(xn)

2f ′(yn)
(1. 3)

where yn = xn − f(xn)
f ′(xn)

Correspondingly, in this paper, we have been suggested an Algorithm of Difference
Operator, which is free from second derivative. The efficiency of proposed numerical tech-
nique is experienced on few nonlinear problems with variant of Newton Raphson Method
and Halley Method [12, 15]. C++ programming is used to defend the proposed method.
For the duration of study, it has been detected that the Algorithm of Difference Operator is
decent achievement with the assessment of existing cubic methods.

2. PROPOSED METHOD

In this segment, we have developed an Algorithm for solving nonlinear equations with
the help of taylor series and difference operator, such as

Let Taylor series,

f(x1) = f(x) + hf ′(x) +
h2

2
f ′′(x) (2. 4)

Where f(x1) = 0, then (2.4) become

f(x) + hf ′(x) +
h2

2
f ′′(x) = 0 (2. 5)

By using difference operator, such as

f ′′(xn) =
f ′(x) + f ′(r)

h
(2. 6)

Substitute (2.6) in (2.5), we get

f(x) + hf ′(x) +
h2

2
(
f ′(x) + f ′(r)

h
) = 0 (2. 7)
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by solving (2.7), we get

2f(x) + h(3f ′(x)− f ′(r)) = 0 (2. 8)

As we know that h = x∗ − x, where ‘h‘ is a step size, then (2.8) become

2f(x) + (x∗ − x)(3f ′(x)− f ′(r)) = 0 (2. 9)

or

x∗ = x− 2f(x)

3f ′(x)− f ′(r)
(2. 10)

Finally, we get

xn+1 = yn −
2f(yn)

3f ′(yn)− f ′(xn)
(2. 11)

where yn = xn − f(xn)
f ′(xn)

Henceforth, (2.11) is an Algorithm of Difference Operator for finding the root of non-
linear equations.

3. ANALYSIS OF CONVERGENCE

This section have presented the analysis of convergence by giving mathematical proof
for the order of convergence of the proposed method, which is defined in (2.11).

Theorem 3.1: Let f : D ⊆ R→ R be a suciently dierentiable function and a ∈ D be a
simple zero of an open interval D. If x0 is suffciently close to a, then the proposed numer-
ical iterative method has 2nd-order convergence and satisfies the following error equation:

en+1 = −c2e3n + o4(h) (3. 12)

Proof
Let a be a approximate root of function, for expanding f(xn) and f ′(xn) by using Taylor
series about a and taking only cubic order term about to a, such as

f(xn) = f ′(a)(en + ce2n + c2e3n) (3. 13)

Or
f ′(xn) = f ′(a)(1 + 2cen + 3c2e2n + 4c3e3n) (3. 14)

Note c = f ′(a)
2f ′(a)
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From (3.13) and (3.14), we have

f(xn)

f ′(xn)
= en − ce2n + (c2 − c)e3n (3. 15)

From (3.15), we get

yn = ce2n + (c2 − c)e3n (3. 16)

for the need of f(yn) and f ′(yn), so we will be expand f(yn) and f ′(yn) in Taylors Series
about ‘a‘ and using (3.16), we have

f(yn) = f ′(a)(ce2n + (c2 − c)e3n) (3. 17)

Or

f ′(yn) = f ′(a)(1 + 2c2e2n + 4(c2 − c3)e3n) (3. 18)

By using (3.14), (3.16), (3.17) and (3.18) in (2.11), we get

en+1 = ce2n+(c2−c)e3n−
2f ′(a)(ce2n + (c2 − c)e3n)

f ′(a)(3 + 6c2e2n + 12(c2 − c3)e3n)− 1− 2cen − 3c2e2n − 4c3e3n)
(3. 19)

en+1 = ce2n + (c2 − c)e3n −
ce2n + (c2 − c)e3n)

1− cen − 2ce2n + 4c2e3n
(3. 20)

en+1 = ce2n + (c2 − c)e3n − (ce2n + (c2 − c)e3n))[1− cen − 2ce2n + 4c2e3n]
−1 (3. 21)

en+1 = ce2n + (c2 − c)e3n − (ce2n + (c2 − c)e3n))[1 + cen + 2ce2n − 4c2e3n] (3. 22)

en+1 = ce2n + (c2 − c)e3n − (ce2n + (c2 − c)e3n) + c2e3n) (3. 23)

Finally, we get

en+1 = −c2e3n + o4(h) (3. 24)

Hence, this has been proven that the Algorithm of Difference Operator is cubically conver-
gence iterated method.
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4. NUMERICAL RESULTS

This session the proposed iterative method is applied on few examples and compared
with variant of Newton Raphson Method

xn+1 = xn −
f(xn)

f ′(xn) + f ′(yn)
(4. 25)

where yn = xn − f(xn)
f ′(xn)

and Halley Method

xn+1 = xn −
2f(xn)f

′(xn)

f ′2(xn)− f(xn)f ′′(xn)
(4. 26)

From numerical results in Table-1, it has been detected that the proposed third-order al-
gorithm is reducing the number of iteration which is less than the number of iterations
of the existing cubic methods and as well as accuracy perception. We calculate the nu-
merical results by using the well-known MATLAB/C++ programming with absolute error
|xn+1 − xn| < ε where ε < 1010, which is obtained in Table-1, such as

5. CONCLUSION

The problem of locating root of nonlinear equations occurs frequently in scientific work.
In this paper, we have introduced cubic algorithm of difference operator for estimating non-
linear equations. The developed algorithm is free from second derivatives, and it is derived
from Taylor series and difference operator. The competence of the proposed algorithm has
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tested on few nonlinear examples and the results accomplished are summarized in Table-1.
Henceforth, analysis of efficiency shows that the developed method is well execution and
superlative performance with the existing variant of Newton Raphson Method and Halley
Method for solving nonlinear equations.
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