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Abstract. In this manuscript, Fractional-order derivatives are discussed
for a comprehensive glucose insulin regulatory model. Observer is de-
signed for approximating the structure of a blood glucose-insulin with glu-
cose rate disorder to show the complete dynamics of the glucose-insulin
system where the fractional-order at α ∈ (0, 1]. The developed method
provides the estimation algorithm for a glucose-insulin system with un-
known time-varying glucose rate disturbance. Lyapunov function is used
to check the stability analysis and input/output stability which play an im-
portant role in feedback control design for automatic control system. Nu-
merical simulations are carried out to demonstrate our proposed results
and show the nonlinear fractional-order glucose-insulin systems are at
least stable in the existence of exogenous glucose infusion or meal distur-
bance. The concept of controllability and observability for the linearized
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control system of human glucose insulin system is used so that we can
have a feedback control for artificial pancreas.

AMS (MOS) Subject Classification Codes: 37C75,; 93B05; 93B07; 65L07
Key Words: Artificial pancreas; Caputo’s derivative; fractional-order glucose insulin model;
Lyapunov fractional; Laplace Adomian Decomposition Method.

1. INTRODUCTION

Diabetes Mellitus with interruptions of protein, Carbohydrate and fat metabolism aris-
ing from disabilities in insulin action, insulin secretion or both in a metabolic malady of
multiple aetiologies featured by chronic hyperglycaemia. Diabetic’s patients can be cat-
egorized in major two types, type 1 and type 2 diabetes. Insulin dependent diabetes, are
caused by the absence of insulin secretion due to destruction of the β−cells of pancreas in
type 1 diabetes. Insulin independent diabetes are caused by reduced action of insulin on the
glucose or usually called insulin resistance in Type 2 diabetes [1,40]. From the big number
of diabetics, type 1 diabetes only assigns for about 5 to 10% of all number of diabetes [40].
However, their occurrence continues to grow worldwide and it has a horrible short-term
and long-term consequences. Treatment of type 1 diabetes requires a lot of concern to var-
ious aspects such as insulin administration, blood glucose monitoring and diabetes-related
complications [20]. The goal of type 1 diabetes treatment is to regulate the blood glucose
concentration within a normal range. This is to avoid the risks of hyperglycaemia (high
blood glucose concentration) and hypoglycaemia (low blood glucose concentration). In
normal healthy person, the natural internal control of blood glucose concentration is ac-
complished by a feedback control mechanism. In Type 1 diabetics, this mechanism must
be employed by an external artificial control mechanism that controls the injection of the
insulin with respect to the present blood glucose concentration which is must be very accu-
rate and relatively high performance [8,33]. In Pakistan 6.9 million peoples suffers in cases
of diabetes in 2014 and overall occurrence of diabetes as 11.47% (6.39-16.5%) according
to World Health Organization (WHO) [30,6].

People of type 1 diabetes takes help to control their glucose level by wearing a contin-
uous glucose monitor (CGM) [25]. However, it is also suggested that we can checked the
correctness of the CGM amounts with a finger stick test [34]. The glucose sensor has a tiny
needle that before sending information to the monitoring device and blood glucose level
measures every time by CGM, it measure the glucose levels in tissue fluid [25]. It will give
an alarm to the wearer, if the glucose levels are anomalous. If the glucose levels become
very high then the CGM can also be amalgamated with an insulin pump that will vaccinate
insulin [35]. Artificial pancreas is a innovation to preserve the typical blood glucose level
in diabetes with a substitute endocrine work to pancreas. The task is lacking to oversee
physically the blood glucose level with alone that is why the current treatment of affront
substitution (Artificial Pancreas) is appreciated for its life sparing capability. This treatment
can offer assistance in the hyperglycaemia state by catapulting more affront by the affront
pump but in case of hypoglycaemia state this treatment will not work. Hypoglycaemia
leads to neuroglycopenia and impacts can run from gentle dysphoria to more serious issues
such as seizures, obviousness, harmful for brain cells and death.



Fractional Order Derivative Glucose Insulin Model to Control the type 1 Diabetes Mellitus 99

Often, the behavior of a system is studied and described mathematically. This descrip-
tion is called a model and it should reproduce the outputs of a system based on the inputs
as accurately as possible. However, quite often models are not capable of capturing the
whole behavior of a system, either because it is too complex, or disturbances are too im-
portant. A system is called static if its outputs at a given time are influenced by the inputs
at that time, only. In a dynamical system, however, the outputs are determined by current
and past inputs. A controller is used to adjust a systems inputs, in order to obtain desired
outputs. This system is called controlled system. A controller itself can be considered as
a system, whose output is the controlled systems input. If the controllers inputs depend
directly on the controlled systems outputs, then the controller is called a closed-loop con-
troller, otherwise it is called an open-loop controller. The output value that a closed-loop
control algorithm is intended to reach is called a set point [3].

In the recent year researcher takes interest and attention in fractional calculus in dif-
ferent aspects under consideration for research of the said subject [36,31,32]. In the last
decade derivatives and integrals of fractional orders had notable development as revealed
by several monographs dedicated to it [9,10], the plethora of research papers published in
scientific journals [22] studied differential-difference equation of fractional order, [2] ana-
lyzed the Ebola epidemic model of fractional order, Carvalho and Pinto presented a delay
mathematical model of fractional order to determine the co-infection of malaria and the
human immunodeficiency virus [5], examined the local fractional diffusion and relaxation
equations [37], a new fractional derivative and its application to explanation of polar bear
hairs [11] , Wang and Liu [41,42] showed the applications of He’s fractional derivative for
non-linear fractional heat transfer equation, Hu et al. [12] studied fractal space-time and
fractional calculus [23,24]. The fractional complex transform is used to con vert the fractal
space-time to its continuous partner, and all known analytical methods can be directly ap
plied to the resultant equations. This paper is an explanation of fractional calculus in a frac-
tal frame [13,14]. The suggested fractal derivative is easy to be used for any discontinuous
problems, and equations with fractal derivative can be easily solved used classical calculus
[15,39]. This paper is an elementary introduction to fractal-Cantorian space time and frac-
tional calculus. Particular attention is paid throughout the paper to giving an intuitive grasp
for fractional derivatives, fractal derivatives and q-derivative. In other words, a (determin-
istic) fractal can be thought as an object, each part of which is a scaled copy of the whole,
that differs from a regular geometrical shapes in its non integer scaling coefficient [4]. We
showed that a relation between fractional calculus and fractal geometry exists, which is
intimately related to the physical origins of the power-law long memory and hereditary
properties observed in many natural phenomena, and that are the characteristic feature of
fractional operators [16-18].

In this paper we find the equilibrium points of the model and check its stability analysis
of the models by using Lyapunov equation. If the equilibrium point lies in the feasible
region then by using the Jacobian, convert the nonlinear system of equation into linearized
system and discussed the controllability and observability of the linearized system to design
the close loop for automatic artificial pancreas. We proposed the fractional order glucose
insulin model for healthy and type 1 diabetes and numerical simulations are carried out to
support the analytical results.
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2. MATHEMATICAL MODEL

Diabetes dynamics is a mathematical model in which two other models of glucose/insulin
use to explain interaction. These are valid to predict blood glucose because these are inher-
ent requirement of frequently updated information. In this model we take glucose level G,
glucose uptake X , insulin level I . This model also include the basal values Gb and Ib [36].
The model is

Ġ(t) = −m1G+m2I +m1Gb (2. 1)

Ẋ(t) = −m2X +m3I −m3Ib +m6Ib (2. 2)

İ(t) = −m3I +m4G+m4m5 −m6I +m6Ib (2. 3)

Here
G(0) = p1 = 100, X(0) = p2 = 0, I(t) = p3 = Ib (2. 4)

are used as initial condition, where G(t) is plasma glucose concentration, X(t) is plasma
insulin variable for remote compartment, I(t) is plasma insulin concentration, Gb is the
basal preinjection value of plasma glucose, Ib is basal preinjection value of plasma insulin,
m1 is the insulin independent rate uptake in liver, muscle and adipose tissue, m2 is the
rate of decrease in tissue glucose uptake ability, m3 is the insulin independent increase in
glucose uptake ability in Ib, m4 is the rate of pancreatic cells which are released after the
glucose injection and glucose concentration above system, m5 is the threshold value of
glucose, m6 is the decay rate for insulin in plasma [36].

2.1. Stability Analysis and equilibria. Model after substituting parameters, we get

Ġ(t) = −0.0317000G+ 0.0123I + 2.536 (2. 5)

Ẋ(t) = −0.0123X + 0.00000492I − 0.00000492 + 1.8613 (2. 6)

İ(t) = −0.26590492I + 0.0039G+ 2.1695 (2. 7)

Substituting the left hand side of the system equal to zero and we get the values of G, X
and I . Hence the equilibrium points is (83.6417, 151.3288, 9.3817)
Proposition 1: The linear ẋ(t) = Ax, where A continuous and bounded for t ≥ t0 , is
uniformly asymptotically stable if and only if given a positive definite real matrix A, there
exists a symmetric positive definite real matrix P , which satisfies

Ṗ +ATP + PA = −Q, t ≥ t0
The linear time invariant system ẋ(t) = Ax the corresponding equation to be used as
ATP + PA+Q = 0 this is called Lyapunov equation [24,18,29]. Here

A =

 −0.0317 0.0123 0
0 −0.0123 1.1876

0.0039 −0.2659 0


and substitute Q = I3×3 in ATP + PA+Q = 0, calculate P as

P =

 16.0010 0.5880 −2.2467
0.5880 219.0273 1.8475
−2.2467 1.8475 49.0567


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the Lyapunov equation has symmetric positive-definite solution P , then the eigen values
of A are (−0.0315,−0.0062 + 0.5619i,−0.0062− 0.5619i) has negative real parts, so the
system ẋ(t) = Ax is asymptotically and uniformly stable.

3. FRACTIONAL ORDER MODEL

In this section, we give some fundamental results and definitions from fractional calcu-
lus. For detailed over view of the topic readers are referred to [38,21].

Definition 3.1 The definitions of Laplace transform of Caputo’s derivative and Mittag-
Leffler function in two arguments is written as

L {Dαf(t), s} = sαF (s)− Σn−1i=0 s
α−i−1f (i)(0), (n− 1 < α ≤ n); n ∈ N.

The fractional order extension of this model have been first studied in [12] and show the
realistic biphasic decline behavior of infection of diseases but at a slower rate. The new
diabetes mellitus model described in the form of fractional differential equations (FDEs)
given as

Dα1G(t) = −m1G+m2I +m1Gb (3. 8)

Dα2X(t) = −m2X +m3I −m3Ib +m6Ib (3. 9)

Dα3I(t) = −m3I +m4G+m4m5 −m6I +m6Ib (3. 10)
with initial conditions G(0) = p1 = 100, p2 = X(0) = 0, I(0) = p3 = Ib

4. THE LAPLACE-ADOMIAN DECOMPOSITION METHOD

Consider the fractional-order epidemic model (3.8−3.10) subject to the initial condition
(4). For α1 = α2 = α3 = 1 the fractional order model converts to the classical diabase
model. Applying the Laplace transform on equation (3.8− 3.10), we get

L {Dα1
t G(t)} = −m1L {G(t)}+m2L {I(t)}+ L {m1Gb} (4. 11)

L {Dα2
t X(t)} = −m2L {X(t)}+m3L {I(t)} −L {(m3Ib −m6Ib)} (4. 12)

L {Dα3
t I(t)} = −(m3 +m6)L {I(t)}+m4L {G(t)}+ L {(m6Ib

+m4m5)} (4. 13)

By applying the rule of Laplace transform, we get

Sα1L {G} − Sα1−1G(0) = −m1L {G(t)}+m2L {I(t)}+ L {m1Gb} (4. 14)

Sα2L {X} − Sα1−1X(0) = −m2L {X(t)}+m3L {I(t)} −L {m3Ib −m6Ib}(4. 15)

Sα3L {I} − Sα1−1I(0) = −(m3 +m6)L {I(t)}+m4L {G(t)}+

L {m6Ib +m4m5} (4. 16)

Sα1L {G} = Sα1−1G(0)−m1L {G(t)}+m2L {I(t)}+ L {m1Gb} (4. 17)

Sα2L {X} = Sα1−1X(0)−m2L {X(t)}+m3L {I(t)} −L {m3Ib −m6Ib}(4. 18)
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Sα3L {I} = Sα1−1I(0)− (m3 +m6)L {I(t)}+m4L {G(t)}+

L {m6Ib +m4m5} (4. 19)

by using the initial conditions (2.4), we get

L {G} =
p1
S

+
m1Gb
Sα1+1

+
m2

Sα1
L {I(t)} − m1

Sα1
L {G(t)} (4. 20)

L {X} =
p2
S
− m3Ib −m6Ib

Sα2+1
− m2

Sα2
L {X(t)}+

m3

Sα2
L {I(t)} (4. 21)

L {I} =
p3
S

+
m6Ib +m4m5

Sα3+1
− m3 +m6

Sα3
L {I(t)}+

m4

Sα3
L {G(t)} (4. 22)

4.1. Case I for Normal Person. First of all we study the glucose, plasma concentration
and insulin for non-diabetic person for the period of 10 hours. The model show that when
we give glucose to normal man then the level of glucose concentration is very high but after
time passing it become stable [36]. The model after substituting the parameters values for
case I.

L {G} =
p1
S

+
2.536

Sα1+1
+

0.0123

Sα1
L {I(t)} − 0.0317

Sα1
L {G(t)} (4. 23)

L {X} =
p2
S

+
1.861

Sα2+1
− 0.0123

Sα2
L {X(t)}+

4.92× 10−6

Sα2
L {I(t)} (4. 24)

L {I} =
p3
S

+
2.1696

Sα3+1
− 0.2659

Sα3
L {I(t)}+

0.0039

Sα3
L {G(t)} (4. 25)

with initial conditions G(0) = p1 = 100, p2 = X(0) = 0, I(0) = p3 = 7 It should be
assumed that method gives the solution as an infinite series

G =

∞∑
k=0

Gk, X =

∞∑
k=0

Xk, I =

∞∑
k=0

Ik (4. 26)

Substitute equations (4.26) in (4.23− 4.25), we have the followings results

L {G0} =
p1
S

+
2.536

Sα1+1
, L {X0} =

p2
S

+
1.861

Sα2+1
, L {I0} =

p3
S

+
2.1696

Sα3+1
(4. 27)

Similarly we have

L {G1} =
0.0123

Sα1
L {I0} −

0.0317

Sα1
L {G0}, ..., L {Gk+1} =

0.0123

Sα1
L {Ik}−

0.0317

Sα1
L {Gk} (4. 28)

L {X1} =
−0.0123

Sα2
L {X0}+

0.00000492

Sα2
L {I0}, ...,L {Xk+1} =

−0.0123

Sα2
L {Xk}

+
0.00000492

Sα2
L {Ik} (4. 29)

L {I1} =
−0.2659

Sα3
L {I0}+

0.0039

Sα3
L {G0}, ...,L {Ik+1} =

−0.2659

Sα3
L {Ik}+



Fractional Order Derivative Glucose Insulin Model to Control the type 1 Diabetes Mellitus 103

0.0039

Sα3
L {Gk} (4. 30)

The purpose of the work is to analysis the mathematical behaviour of the solution
G(t), X(t), I(t) for the different values of α. By applying the inverse laplace transform
to both sides of the equation (4.27), we get the values of G0, X0, I0 and used for further
process. Putting the values ofG0, X0, I0 into the equations (4.28−4.30) and get the values
of G1, X1, I1. Similarly we find the remaining term G2, G3, G4, ...., X2, X3, X4, .... and
I2, I3, I4, .... in the same manners. Solution can be written as

G(t) = G0 +G1 +G2 +G3 +G4, ... (4. 31)
X(t) = X0 +X1 +X2 +X3 +X4, ... (4. 32)

I(t) = I0 + I1 + I2 + I3 + I4, ... (4. 33)

by substituting the values of G0, X0, I0, G1, X1, I1 and G2, X2, I2, ...., we get

G(t) = 100− 0.547
tα1

α1!
+ 0.0267

tα3

α3!
+ 0.0174

t2α1

2α1!
− 0.0190

tα1+α3

(α1 + α3)!
−

0.0071
tα1+2α3

(α1 + 2α3)!
+ 0.00012

t2α1+α3

(2α1 + α3)!
+ 0.0025

t3α1

3α1!
(4. 34)

X(t) = 1.86103
tα2

α2!
− 1.92× 10−9

t2α2

2α2!
+ 3.5× 10−6

tα2+α3

(α2 + α3)!
+ 0.00028

t3α2

3α2!
+

1.3× 10−7
t2α2+α3

(2α2 + α3)!
− 2.8× 10−6

tα2+2α3

(α2 + 2α3)!
+ 4.87× 10−8

tα1+α2+α3

(α1 + α2 + α3)!
(4. 35)

I(t) = 7 + 0.6983
tα3

α3!
− 0.1856

t2α3

2α3!
− 0.0021

tα1+α3

(α1 + α3)!
− 0.1539

t3α3

3α3!
−

0.0026
tα1+2α3

(α1 + 2α3)!
− 0.00031

t2α1+α3

(2α1 + α3)!
(4. 36)

4.2. Case II for Type 1 Diabetes. Now we study the model for diabetic patient for the
period of 10 hours. The model show that at start time the level of glucose is very high
but when we give glucose then his level of glucose does not fall. After time passing from
250mg/dl it fall only about 275mg/dl [36].
The fractional model after substituting the parameters values for case II.

L {G} =
p1
S

+
0.017

Sα1
L {I(t)} (4. 37)

L {X} =
p2
S

+
3.9599

Sα2+1
− 0.017

Sα2
L {X(t)}+

5.3× 10−6

Sα2
L {I(t)} (4. 38)

L {I} =
p3
S

+
4.297

Sα3+1
− 0.264

Sα3
L {I(t)}+

0.0042

Sα3
L {G(t)} (4. 39)
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with initial conditions G(0) = p1 = 240, p2 = X(0) = 0, I(0) = p3 = 15. We computed
first three terms by using the L-ADM for the equations (4.37− 4.39) . We have followings
series solution

G(t) = 240 + 0.255
tα1
α1!

+ 0.0228
tα1+α3

(α1 + α3)!
− 0.0193

tα1+2α3

(α1 + 2α3)!
, (4. 40)

X(t) = 3.9606
tα2

α2!
− 0.067314

t2α2

(2α2)!
+ 6.8× 10−5

tα2+α3

(α2 + α3)!
+ 0.0011

t3α2

3α2!

−0.0000039
t2α2+α3

(2α2 + α3)!
− 0.00006

tα2+2α3

(α2 + 2α3)!
, (4. 41)

I(t) = 15 + 1.645
tα3

α3!
− 0.3551

t2α3

2α3!
+ 0.2994

t3α3

3α3!
+ 0.0011

tα1+α3

(α1 + α3)!

+0.00031
tα1+2α3

(α1 + 2α3)!
(4. 42)
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Figure 2: Numerical solution of Glucose level of type 1 diabetes at different values of α
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Figure 5: Numerical solution of insulin concentration in plasma of normal person at
different values of α
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Figure 6: Numerical solution of insulin concentration in plasma of type 1 diabetes at
different values of α

5. HE-LAPLACE METHOD

It is worth mentioning that He-Laplace method is an elegant combination of the Laplace
transformation, the homotopy perturbation method and He’s polynomials [7, 26-28]. Con-
sider the system (3.8 − 3.10) with initial condition in equation (2.4), By applying the
He-Laplace Method method subject to the in condition, we have

L {G} =
p1
S

+
m1Gb
Sα1+1

+
m2

Sα1
L {I(t)} − m1

Sα1
L {G(t)} (5. 43)

L {X} =
p2
S
− m3Ib −m6Ib

Sα2+1
− m2

Sα2
L {X(t)}+

m3

Sα2
L {I(t)} (5. 44)

L {I} =
p3
S

+
m6Ib +m4m5

Sα3+1
− m3 +m6

Sα3
L {I(t)}+

m4

Sα3
L {G(t)} (5. 45)

The inverse Laplace transform implies that

G = 100 +
2.536tα1

α1!
+ pL −1(

m2

Sα1
L {I(t)} − m1

Sα1
L {G(t)}) (5. 46)

X =
1.861tα1

α1!
+ pL −1(− m2

Sα2
L {X(t)}+

m3

Sα2
L {I(t)}) (5. 47)

I = 7 +
2.1696tα3

α3!
+ pL −1(−m3 +m6

Sα3
L {I(t)}+

m4

Sα3
L {G(t)}) (5. 48)
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Now apply Homotopy Perturbation Method [7,19], we have
∞∑
k=0

pnGn(t) = 100 +
2.536tα1

α1!
+ pL −1(

m2

Sα1
L {

∞∑
k=0

pnIn(t)}

− m1

Sα1
L {

∞∑
k=0

pnGn(t)}) (5. 49)

∞∑
k=0

pnXn(t) =
1.861tα1

α1!
+ pL −1(− m2

Sα2
L {

∞∑
k=0

pnXn(t)}

+
m3

Sα2
L {

∞∑
k=0

pnIn(t)}) (5. 50)

∞∑
k=0

pnIn(t) = 7 +
2.1696tα3

α3!
+ pL −1(−m3 +m6

Sα3
L {

∞∑
k=0

pnIn(t)}

+
m4

Sα3
L {

∞∑
k=0

pnGn(t)}) (5. 51)

where Gn(t), Xn(t), In(t), are He’s polynomials. The first few component of He’s poly-
nomials Comparing the coefficient of like powers of p, we have

G(t) = 100− 0.5479
tα1

α1!
+ 0.094

t2α1

2α1!
+ 0.026686

tα1+α3

(α1 + α3)!
+ ... (5. 52)

X(t) = 1.861
tα1

α1!
+ 0.00003444

tα2

(α2)!
+ 0.0228903

tα1+α2

(α1 + α2)!

+0.00001067
tα2+α3

(α2 + α3)!
+ ... (5. 53)

I(t) = 7 + 2.1696
tα3

α3!
+ 2.0381

tα3

α3!
+ 0.0989

tα1+α3

(α1 + α3)!
− 0.5769

t2α3

2α3!
(5. 54)

Similarly, for case II, we have following series solution

G(t) = 240 + 0.255
tα1
α1!

+ 0.073049
tα1+α3

(α1 + α3)!
− 0.0193

tα1+2α3

(α1 + 2α3)!
+ ... (5. 55)

X(t) = 3.9599
tα2

α2!
− 0.067314

t2α2

(2α2)!
+ 7.9× 10−5

tα2

α2!
+ 0.00002277

tα2+α3

(α2 + α3)!
+ ...(5. 56)

I(t) = 15 + 1.345
tα3

α3!
− 1.13441

t2α3

2α3!
+ ... (5. 57)
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Figure 7: Comparison with He Laplace and LADM, G(t) of normal person at α
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Figure 10: Comparison with He Laplace and LADM, I(t) in type 1 diabetes at α
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Figure 11: Comparison with He Laplace and LADM, X(t) of normal person at α
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6. NUMERICAL RESULTS AND DISCUSSION

The analytical solution of fractional order model consist of nonlinear system of frac-
tional differential equation has been presented by using Laplace Adomian decomposition
method. To observe the effects of the parameter on the dynamics of the fractional-order
model (3.8 − 3.10), we conclude several numerical simulations varying the value of pa-
rameter given in table 1 with time 20 to 40 minutes. These simulations reveals that a change
of the value affects the dynamics of the model . In figure 1 and 2 clearly shows the bounded
solution according to normal values of glucose level for normal person and type 1 diabetes.
In figure 3 and 4 basal values of insulin properly rise and bounded according to inial con-
ditions and approach to zero when no insulin injected nor produced in human body. Figure
5 represent the insulin concentration in plasma with effect of glucose level. Figure 6 rep-
resents no insulin produce in human body caused by type 1 diabetes with passage of time.
The system gives the solution at fractional derivative on non integer values which are more
appropriate and accurate values in given domain. Glucose level increase in figure 2 due
to cause of type 1 diabetes which control with suitable input values of insulin to normal-
ize the glucose level. For GIS system given in figure (1-6), we observe that the classical
system(i.e α1 = α2 = α3 = 1) fail to stable the glucose insulin system for normal as
well as type-1 diabetics mellitus and do not fulfill the condition and maintenance of close
loop design for an artificial pancreas. it can be easily observe that in figure (1-6) fractional
order values maintain the stability gulose insulin system. In figure(7-12), the comparison
of fractional order model made with Adomian decomposition Method with Laplace trans-
form and He laplace method for normal person and type -1 diabetics mellitus. It should
be observe that the behavior of the glucose insulin system is almost same but LADM gives
more appropriate and comfortable behavior in system.

6.1. Input and output Stability. Stability is a main anxiety in feedback control design
in engineering for automatic control systems because a feedback control law can stabilize
and also can destabilize a system. We use Lyapunov’s indirect method [29] to examine the
system stability (2.1− 2.3). The system equilibrium points depends on the steady state of
glucose and insulin concentration in plasma. The blood glucose level has the steady state
100(mg/dl) and the steady state of insulin in the system (2.1 − 2.3) with the feedback
infusion rates and the values of parameters are given in Tables 1 . Equilibrium point by
using Matlab as (83.6417, 151.3288, 9.3857). Suppose the linear system

ẋ(t) = Ax+B, y(t) = Cx (6. 58)

where x = [G, I,X]T B = [0, 0, 1]T and C = [1, 0, 0] and A is the Jacobian matrix at the
equilibrium. We find the following eigenvalues of A by using the MATLAB are as follows
(−0.0315,−0.0062 + 0.5619i,−0.0062− 0.5619i), Since the eigen values of the system
are negative real parts, it satisfied the inputoutput stability theorem.

6.2. Controllability and observability. The dynamical system has physical properties
Controllability and observability that represents the effect of regulatory system of blood
glucose in human. The system (6.58) is controllable if for any initial state x0 and any
desired state xf , there exists a control of insulin such that x(T ) = xf for some T > 0.
The system (6.58) is observable if any initial state can be uniquely determined by the
output Glucose (blood glucose) over (0, T ) for some T > 0. To check the controllability
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of (6.58), it suffices to examine the rank of the Kalman controllability matrix [29,31].
C = [B|AB|A2B]. Here we take the only measured output of glucose and the only input
is insulin. we compute the determinant of the matrix det(C) = 0.0245. Therefore C
has the full rank of 3 and then the system (6.58) is controllable. In the same way, O =
[CT |ATCT |(AT )2C] and det(O) = −2.3574e005 we can has the full rank of 3 and then
the system (6.58) is observable. Hence the system is controllable and observable. Similarly
for case II, the system is controllable but not observable.

7. CONCLUSIONS

This paper presented a theoretical and numerical investigation of the bio-medical glu-
cose insulin model. It shows the controllability and applicability of the model for the
control of the blood glucose concentration in normal person and type 1 diabetes. For the
purpose of automatic artificial pancreas in the glucose regulatory system, we discuss frac-
tional order glucose insulin model. The model is stable by using the lyapunov equation
and input/output stability is also satisfied for automatic control. Hence the model is stable
in each case to design the close loop for artificial pancreas. System is controllable and
observable for case 1. For case II, the system is controllable but not observable according
to the given parameters values.

It is important to note that Adomian Decomposition method with laplace transform is for
mathematical models based on system of fractional order differential equations are more
powerful approach to compute the convergent solutions. The constructed series by Laplace
adomian decomposition method and He Laplace method for type 1 diabetes model show
a good agreement to control the glucose insulin system. The model provide the continues
glucose measuring in limited time and solutions are bounded in normal values for healthy
person and type 1 diabetes. This is perhaps due to development in the biological approach
for the new model: e.g the hypothesis associated to internal insulin creation through a time
dependent model. Our results show that the fractional-order models can give enhanced
turns to the data than integer-order models in some cases, it is clear that for the satisfac-
tory turns, the models need additional improvement and insertion of these changes should
greatly improve future models.
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