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Abstract. Multilayer unidirectional flows of viscous, immiscible fluids in
a channel bounded by two infinite parallel plates are studied. The bottom
plate is translating in its plane with a time-dependent velocity and the up-
per plate is stationary. A pressure gradient in the flow direction is applied.
The solutions of the initial and boundary condition problem are obtained
using the Laplace transform method. Numerical Stehfest’s algorithm is
used in order to obtain the inverse Laplace transforms. The case of two-
layers with one fluid-fluid interface is completely studied and influence of
the pressure gradient on the fluid behavior is analyzed.
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1. INTRODUCTION

The multilayer flow has gained much interest in the last years especially due to its ap-
plications in the design of cooling systems of electronic device, solar energy collection,
nuclear reactors and other practical applications. Yih [27] was the first who studied the
linear stability of two layer flow in channels with the help of long wave limit. Joseph &
Renardy [12] discussed the stability of two layers Couette – Poiseuille flows. Later on,
Tilley et al. [24, 25] gave detailed in sight views of linear and non- linear stability of two
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layers flow in an inclined channel. It is known that it is difficult task to improve quality of
the multilayer coating on the different surfaces, but later on this difficulty was overcome
by doing experiments on two layers flows of different fluids in channels [23, 18, 2].

Analysis of two-layer flows of viscous non-Newtonian fluids in the channels allow
better understanding for defining the necessary parameters of technological processes for
manufacturing the multilayer products. The multilayer flows in channels have much at-
traction due to their vast range of applications in science and technology. The modern
technologies based upon micro fluids created a lot of revolutions in the world involving
multilayer flows of fluids in micro channels. In the same way the multi layer micro scale
got much attention in the field of modern biomedical, medical physics and other field of
science.

More recently, Govindarajan [10] investigated three-layer Poiseuille channel flows
and highlighted the fact that at higher Schmidt numbers these flows go unstable at lower
Reynolds numbers. Matar et al. [15] considered the pressure-driven channel flow of two
viscous, immiscible, density-matched fluids in the context of cleaning-type applications
with large viscosity contrasts. Hormozi et al. [11] analyzed the problem of multilayer
channel flows with yield stress. Gao et al. [7, 8] obtained analytical solutions for velocity
profiles and flow rates of two-liquid flow in a micro channel which was driven both by elec-
tro osmotic force and pressure gradient. Li et al. [14] studied the steady laminar multilayer
flow in microchannel driven by pressure and electro-static forces. They considered N fluid
layers with known viscosities and have obtained analytical and numerical solutions for the
fluid velocity and shear stress. The convective heat transfer of nanoparticles in multilayer
fluid flow has been explored by Vajravelu et al. [26]. Papaefthymiou et al. [17] investi-
gated the dynamics of viscous immiscible pressure driven multilayer flows in channels and
studied in detail the system of three stratified layers with two internal fluid-fluid interfaces.
Kalmykov et al. [13] studied the two layer flow of magnetic fluids between two horizontal
rigid planes. The mechanism of layer distribution, modeling and numerical simulation for
three-dimensional flow in the multilayer co-extrusion die were studied by Mun et al. [16].
The relevant literature are presented in [1, 3, 4, 5, 6, 9, 19, 20, 21, 22, 28].

In the present study, we developed an analytical solution of unidirectional and fully
developed multilayer flow of incompressible and immiscible viscous fluids in a horizontal
channel between two infinite flat plates, with constant pressure gradient in the x- direc-
tion. The bottom plate has a translational motion with time-dependent velocity and the
upper plate is stationary. Analytical solution of our problem is obtained using the Laplace
transform coupled with the classical method of differential equations with constant coeffi-
cients. Due to complicated mathematical expressions of the Laplace transform, the inverse
Laplace transforms are obtained numerically with the Stehfest’s algorithm.

2. DESCRIPTION OF THE PROBLEM

We consider the flow of n immiscibly and incompressible viscous fluids in a horizontal
channel between two infinite flat plates (Fig. 1). The viscosity of fluid occupying the slab
hj ≤ y ≤ hj+1, j = 0, 1, 2, · · · , n − 1,h0 = 0, hn = h is assumed to be µj , j =
1, 2, · · · , n.

The interface between fluids with viscosities µj andµj+1 is the plane y = hj , j =
1, 2, 3, · · · ,
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FIGURE 1. Flow geometry

n − 1. The fluid of density µ1 has the solid boundary the plate y = h0 = 0 and the
fluid with the viscosity µn has the solid boundary y = hn = h. The flow is driven by a
constant pressure gradient in the x- direction, ∂p

∂x = −p0 = constant. The bottom plate
has a translational motion in its plane with the time dependent velocity U0f(t) along the
x−axis. f(t) is a continuous function of exponential order to infinity with f(0) = 0. The
upper plate is stationary. We assume that the flow is unsteady, unidirectional and fully
developed. The flow geometry is shown in Fig.1.

The basic equations which govern the flow of incompressible fluids of constant density
are:

- the continuity equation

div
−→
Vj = 0, j = 1, 2, ..., n, (2. 1)

- the linear momentum equation

ρj
d
−→
Vj

dt
= µjdivA1j −∇p+ ρj b⃗, (2. 2)

where the subscript j = 1, 2, ..., n denotes the fluid layer number, with j = 1 is the lowest
fluid layer that is in contact with the bottom plate, j = 2 the fluid layer adjacent to the first
layer and so on. The top most layer is represented by j = n .

In the above equation
−→
Vj denotes the velocity vector of the jth layer, ρj is the constant

density of the jth fluid layer, d
−→
Vj

dt is the material derivative of the velocity field, b⃗ is the
body force vector, p is the fluid pressure and A1j = Lj + LT

j , Lj = grad
−→
Vj is the first

Rivlin -Ericksen tensor.
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In the studied problem, the velocities
−→
Vj are assumed to be of the form

−→
Vj = uj(y, t)

−→ex, j = 1, 2, ..., n, (2. 3)

Based on Eq. (2. 3 ), the continuity equation (2. 1 ) is satisfied and the linear momentum
equation, in the absence of body force, becomes

ρj
∂uj(y, t)

∂t
= µj

∂2uj(y, t)

∂y2
+ p0, (2. 4)

or, into equivalent form

∂uj(y, t)

∂t
= νj

∂2uj(y, t)

∂y2
+ pj , j = 1, 2, ..., n, (2. 5)

where νj =
µj

ρj
is the kinematic viscosity of the jth fluid layer and pj =

p0

ρj
.

Along with the partial differential equations (2. 5 ) we consider the following condition:
- the initial condition

uj(y, 0) = 0, y ∈ [0, h], j = 1, 2, ..., n, (2. 6)

- the boundary condition (no- slip condition)

u1(0, t) = U0f(t), t ≥ 0,
un(h, t) = 0, t ≥ 0;

}
, (2. 7)

- the conditions on the fluid interfaces

uj(hj , t) = uj+1(hj , t), j = 1, 2, ..., n− 1, t ≥ 0

µj
∂uj(y,t)

∂y

∣∣∣
y=hj

= µj+1
∂uj+1(y,t)

∂y

∣∣∣
y=hj

, j = 1, 2, ..., n− 1, t ≥ 0

}
, (2. 8)

where f(t) is paisewise continuous function. The interfaces condition (2. 8 ) denotes the
continuity of the velocities and shear stresses of the fluids at the interfaces. It is observed
that condition (2. 6 )-(2. 8 ) are sufficient to find the solution of the partial differential e-
quation (2. 5 ).

3. SOLUTION OF THE PROBLEM

In order to determine the solution of Eq. (2. 5 ), along with the conditions (2. 6 )-(2. 8 ),
we use the Laplace transform to eliminate the variable t. Applying the Laplace transform
[6] to Eq. (2. 5 ) and using the initial condition (2. 6 ), we obtain the transformed equation

sūj(y, s) = νj
∂2ūj(y, s)

∂y2
+

pj
s
, j = 1, 2, ..., n. (3. 9)

The transformed forms of the condition (2. 7 ) and (2. 8 ) are

ū1(0, s) = U0F (s), ūn(h, s) = 0,
ūj(y, s) = ūj+1(hj , s), j = 1, 2, ..., n− 1,

µj
∂ūj(y,s)

∂y

∣∣∣
y=hj

= µj+1
∂ūj+1(y,s)

∂y

∣∣∣
y=hj

, j = 1, 2, ..., n− 1,

 . (3. 10)
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A particular solution of Eq. (3. 9 ) is

ūjp =
pj
s2

, j = 1, 2, ..., n, (3. 11)

and, the general solution of the homogeneous equation associated with Eq. (3. 9 ) is

ūjh = C1j(s)e
−y

√
s
νj + C2j(s)e

y
√

s
νj , j = 1, 2, ..., n. (3. 12)

Now, we obtain the general solution of the Eq. (3. 9 ) given by

ūj(y, s) = C1j(s)e
−y

√
s
νj + C2j(s)e

y
√

s
νj +

pj
s2

, j = 1, 2, ..., n, (3. 13)

where C1j(s), C2j(s) are 2n functions independent of variable y, which are determined by
the conditions gives by Eq. (3. 10 ).

Using conditions (3. 10 ) into Eq. (3. 13 ), we obtain a system of 2n algebraic equations
with 2n unknown functions of s, C1j(s), C2j(s), j = 1, 2, ...n,

C11 + C21 +
p1

s2 = U0F (s),

C1je
−hj

√
s
νj + C2je

hj

√
s
νj +

pj

s2 = C1j+1e
−hj

√
s

νj+1 + C2j+1e
hj

√
s

νj+1 +
pj+1

s2 ,

µj

(
−C1j

√
s
νj
e
−hj

√
s
νj + C2j

√
s
νj
e
hj

√
s
νj

)
=

µj+1

(
−C1j+1

√
s

νj+1
e
−hj

√
s

νj+1 + C2j+1

√
s

νj+1
e
hj

√
s

νj+1

)
,

C1ne
−hn

√
s

νn + C2ne
hn

√
s

νn + pn

s2 = 0.
(3. 14)

Introducing notations

C1j = K2j−1, C2j = K2j , j = 1, 2, ..., n, (3. 15)

the above linear algebraic system is written in the form:

K1 +K2 = U0F (s)− p1

s2 ,

K2j−1e
−hj

√
s
νj +K2je

hj

√
s
νj −K2j+1e

−hj

√
s

νj+1 −K2j+2e
hj

√
s

νj+1 =
pj+1−pj

s2 ,

−µj

√
s
νj
K2j−1e

−hj

√
s
νj + µj

√
s
νj
K2je

hj

√
s
νj + µj+1

√
s

νj+1
K2j+1e

−hj

√
s

νj+1 −

µj+1

√
s

νj+1
K2j+2e

hj

√
s

νj+1 = 0,

K2n−1e
−h

√
s

νn +K2ne
h
√

s
νj = −pn

s2

(3. 16)
In the present paper we will study the particular case of two immiscible fluids. In this case,
the system (3. 16 ) becomes

K1 +K2 = U0F (s)− p1

s2 ,

K1e
−h1

√
s
ν1 +K2e

h1

√
s
ν1 −K3e

−h1

√
s
ν2 −K4e

h1

√
s
ν2 = p2−p1

s2 ,

− µ1√
ν1
K1e

−h1

√
s
ν1 + µ1√

ν1
K2e

h1

√
s
ν1 + µ2√

ν2
K3e

−h1

√
s
ν2 − µ2√

ν2
K4e

h1

√
s
ν2 = 0,

K3e
−h

√
s
ν2 +K4e

h
√

s
ν2 = −p2

s2 .
(3. 17)
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Using relationships

K2 = G(s)−K1, K4 = −p2
s2

e
−h

√
s
ν2 −K3e

−2h
√

s
ν2 , G(s) = U0F (s)− p1

s2
, (3. 18)

the system (3. 17 ) can be written in the form
K1 sinh

(
h1

√
s
ν1

)
+K3

sinh
[
(h−h1)

√
s
ν2

]
e
h
√

s
ν2

= A1(s),

K1
µ1√
ν1

cosh
(
h1

√
s
ν1

)
−K3

µ2√
ν2

cosh
[
(h−h1)

√
s
ν2

]
e
h
√

s
ν2

= B1(s),

(3. 19)

where,
A1(s) =

1
2

[
p1−p2

s2 +G(s)e
h1

√
s
ν1 + p2

s2 e
(h1−h)

√
s
ν2

]
,

B1(s) =
1
2

[
G(s) µ1√

ν1
e
h1

√
s
ν1 + µ2√

ν2

p2

s2 e
(h1−h)

√
s
ν2

]
.

(3. 20)

Finally, we obtain

K1(s) = C11(s) =
A(s)
C(s) , K2(s) = C21(s) = G(s)− A(s)

C(s)

K3(s) = C12(s) =
B(s)
C(s) , K4(s) = C22(s) = −p2

s2 e
−h

√
s
ν2 − B(s)

C(s)e
−2h

√
s
ν2

}
,

(3. 21)
with

A(s) = − µ2√
ν2

cosh
[
(h− h1)

√
s
ν2

]
exp

(
h
√

s
ν2

) A1(s)−
sinh

[
(h− h1)

√
s
ν2

]
exp

(
h
√

s
ν2

) B1(s), (3. 22)

B(s) = B1(s) sinh

(
h1

√
s

ν1

)
− µ1√

ν1
A1(s) cosh

(
h1

√
s

ν1

)
, (3. 23)

C(s) = − µ2√
ν2

sinh

(
h1

√
s

ν1

) cosh
[
(h− h1)

√
s
ν2

]
exp

(
h
√

s
ν2

)
− µ1√

ν1
cosh

(
h1

√
s

ν1

) sinh
[
(h− h1)

√
s
ν2

]
exp

(
h
√

s
ν2

) . (3. 24)

In the case of two layers of fluid, the velocities are given by

ū1(y, s) = C11e
−y

√
s
ν1 + C21e

y
√

s
ν1 + p1

s2 = A(s)
C(s)e

−y
√

s
ν1 +

[
G(s)− A(s)

C(s)

]
e
y
√

s
ν1

= G(s)e
y
√

s
ν1 − 2A(s)

C(s) sinh
(
y
√

s
ν1

)
+ p1

s2 ,

(3. 25)
respectively,

ū2(y, s) = C12e
−y

√
s
ν2 + C22e

y
√

s
ν2 + p2

s2

= B(s)
C(s)e

−y
√

s
ν2 − p2

s2 e
−h

√
s
ν2 e

y
√

s
ν2 − B(s)

C(s)e
−h

√
s
ν2 e

y
√

s
ν2 + p2

s2

= 2B(s)
C(s)

sinh
[
(h−y)

√
s
ν2

]
e
h
√

s
ν2

+ p2

s2

[
1− e

−(h−y)
√

s
ν2

] (3. 26)
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The corresponding shear stresses are

τ̄1(y, s) = µ1
∂ū1(y, s)

∂y
= µ1

[
G(s)

√
s

ν1
e
y
√

s
ν1 − 2A(s)

C(s)

√
s

ν1
cosh

(
y

√
s

ν1

)]
,

(3. 27)

τ̄2(y, s) = −2
B(s)

C(s)

√
s

ν2

cosh
[
(h− y)

√
s
ν2

]
e
h
√

s
ν2

− p2
s2

√
s

ν2
e
−(h−y)

√
s
ν2 . (3. 28)

The Laplace transform (3. 25 )-(3. 28 ) are complicated, therefore, the inverse Laplace
transforms u1(y, t), u2(y, t), τ1(y, t), τ2(y, t) will be obtained with the numerical algo-
rithm proposed by Stehfest [9, 21].

4. RESULTS AND DISCUSSIONS

The flow of n layers of incompressible and immiscible viscous fluids in the channel
bounded of two parallel plates was modeled and studied. Such flows have significance
both theoretically and in applications to the chemical and petroleum industries. The bot-
tom plate of channel has a translational motion in its plane with a time-dependent velocity
along the x-axis. The upper plate is stationary and the distance between parallel plates is
h. The non-slip condition on boundaries was considered. The solutions for the velocity
V⃗j = uj(y, t)e⃗x and for shear stress τj = µj

∂uj(y,t)
∂y , j = 1, 2, ..., n, have been obtained

using the Laplace transform coupled with the classical method of differential equation-
s with constant coefficients. Due to complicated forms of the Laplace transforms of the
velocities and shear stresses, the inverse Laplace transforms were obtained using the nu-
merical algorithm proposed by Stehfest.

Using the Stehfest’s algorithm, the inverse Laplace transform of the function
h̄(y, s) =

∫∞
0

h(y, t) exp(−st)dtis approximated by

h(y, t) ≈ ln 2
t

∑N
k=1 Xkh̄

(
y, k ln 2

t

)
,

Xk = (−1)k+N/2
∑min(k,N/2)

j=[ k+1
2 ]

jN/2(2j)!
(N/2−j)!j!(j−1)!(k−j)!(2j−k)!

(4. 29)

where N is an even number and [x] denotes the integer part of the number x.
In the present paper we analyzed the flow of two-layers. The flow of fluids is gener-

ated by a constant pressure gradient and the motion of bottom plate. In order to incorpo-
rate several types of the plate translation, we have considered for the velocity of bottom
plate a general form described by a time-dependent function f(t), which is a continuous
function with f(0) = 0. In the general expression of the velocity field it can replace
f(t) to study fluid flows for a given motion of the bottom plate (e.g. translation with
constant velocity f(t) = 1, oscillatory motion f(t) = sin(ωt), etc.). In the numeri-
cal case analyzed in this paper we considered a more complicated expression for velocity,
U0f(t) =

p0

ρ1
t+U0erfc

(
h1

2
√
ν1t

)
which, for large values of the time t can be approximated

with p0

ρ1
t+ U0, therefore the bottom plate is moving almost uniform accelerated.

For other constants we have used the following values: ρ1 = 1000(Kg/m3), ρ2 =
899(Kg/m3), µ1 = 10−3(Ns/m2), µ2 = 0.319(Ns/m2), h = 0.5(m), h1 = h/2.
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Using the software Mathcad, numerical calculations have carried out for velocities and
shear stresses given by Eqs. (3. 25 )-(3. 28 ). The numerical results are plotted in graphs
from Fig. 2 which shows the velocity and shear stress profiles versus the spatial coordinate
y for different values of the constant pressure gradient p0and for different time instants. It is
observed from Fig. 2 that fluid velocity and the absolute values of the shear stress increase
with the pressure gradient and with the time t. Also numerical results are plotted in graphs
from Fig. 3 which shows the velocity and shear stress profiles versus the spatial coordinate
y for different values of pressure gradient p0 and constant time (t = 60). The fluid situated
close of the bottom plate moves with an almost constant velocity. In the vicinity of the
interface h1, the velocity of first fluid decreases due to interaction with the second fluid.
The velocity of the second fluid is decreasing with y and has zero velocity on the upper
plate.
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