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Abstract. This article investigates two dimensional nanofluid film flow
of Eyring Powell Fluid with variable heat transmission in the existence of
uniform magnetic field (MHD) on an unsteady porous stretching sheet.The
basic governing time dependent equations of momentum, heat transfer and
mass transfer are modeled and reduced to a system of differential equa-
tions by employing appropriate similarity transformation with unsteady
dimensionless parameters.The important influence of thermophoresis and
Brownian motion have been taken in the nanofluids model.An optimal ap-
proach has been applied to get appropriate results from the modeled prob-
lem.The convergence of HAM (Homotopy Analysis Method) has been
identified numerically.The discrepancy of the Nusslet number, skin fric-
tion, Sherwood number and their influence on the velocity, temperature
and concentration profiles has been scrutinized.The influence of the un-
steady parameter (A) over thin film is explored analytically for different
values.Moreover, for comprehension the physical presentation of the em-
bedded parameters like Film Thickness parameter (β), Magnetic parame-
ter (M), Stretching parameter (γ), and Eyring Powell fluid parameters (k)
have been plotted graphically and discussed.Prandtl number (Pr), Brow-
nian motion parameter (Nb), Thermophoretic parameter (Nt), Schmidth
number (Sc) have been represented by graph and discussed.
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1. INTRODUCTION

In recent few years it has been scrutinized that the thin film flow analysis has signif-
icantly contributed in the area of industries, engineering and technology as well as in
other emerging fields of science.Thin film flow problems have diverse applications in many
fields, fluctuating from a particular situation of flow in human lungs to lubrication prob-
lems in engineering, this is probably one of the largest subclass of thin film flow prob-
lems.The practical applications of thin film flow is a provoking transaction between struc-
tural mechanics and fluid mechanics.Coating of wire and fiber is one of its substantial ap-
plication.Extrusion of polymer and metal from die, crystal growing, food stuff processing,
drawing of plastic sheets, plastic foam processing, manufacturing of plastic fluid, artificial
fibers and fluidization of reactor are well known applications.In view of all these applica-
tions, it becomes an important issue for researchers to develop the study of liquid film on
stretching surface.The flow of liquid film was first studied for viscous flow and further it
is extended to non-Newtonian fluid.Eyring-Powell fluid is an integral part of nonNewto-
nian fluids.Many researchers investigated the effect of MHD and heat on Eyring-Powell
fluid.The at hand amount of study in the form of nano-fluids is less then the least.Hayat
et al.[17] derived Eyring Powell fluid model from kinetic theory of liquids instead of em-
pirical relation.Sirohi et al.[41] has also reported some study on flows of Eyring-Powell
fluid.Patel et al.[33] applied technique of satisfaction with asymptotic boundary condi-
tion for numerical solution on the flow of Eyring-Powell fluid.Crane [14] was the first
one who deliberates the motion of viscous fluid in a linear stretching surface.Dandapat
[15] studied the flow of viscoelastic fluids with heat transfer on a stretching sheet.Ushah
and Sridharan [44] worked on the same problem and extended it to liquid film fluid with
heat transmission analysis on horizontal sheet.Liu and Andersson [28] have used numer-
ical techniques in their work to obtain solution and discussed parameters.Aziz et al.[10]
has observed the effect of inner heat production in an unsteady stretching sheet due to
flow in a thin liquid film on it.Thin film flow of non Newtonian fluids are in aboundance
in many live walks of life.Therefore, it is one of the most common factors of the nature
which is mostly used in field of industry, engineering and technology.Andersson [7] was
the pioneer to study flow of thin liquid film of non Newtonian fluids by taking into account
the Power Law model in an unsteady stretching sheet.After that most of the researchers
[6,12,13,45] have studied Power Law of fluids applying different cases in unsteady stretch-
ing surface.Singh Megahe et al.[29] has observed Casson liquid thin film flow and temper-
ature transmission in the presence of viscous dissipation and variable heat flux having slip
velocity.Fareesa et al.[43] has studied flow of a Nanofluid films of Maxwell fluid with ther-
mal radiation and magneto hydrodynamic properties on an unstable stretching sheet.Noor
Saeed et al.[21] explored Brownian motion and thermophoresis effects on MHD mixed
convective thin film second grade nanofluid flow with Hall effect and heat transfer past a
stretching sheet.Shah et al.[38,39] studied the effects of Hall current on three-dimensional
non-Newtonian nanofluids and micropolar nanofluids in a rotating frame.Hameed et al.[22]
investigated the combined magnetohydrodynamic and electric field effect on an unsteady
Maxwell nanofluid flow over a stretching surface under the influence of variable heat and
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thermal radiation.Muhammad et al.[30] has studied the rotating flow of magneto hydrody-
namic carbon nanotubes over a stretching sheet with the impact of nonlinear thermal ra-
diation and heat generation/absorption.Recently, Ishaq et al.[19] has investigated Entropy
Generation on Nanofluid Thin Film Flow of EyringPowell Fluid with Thermal Radiation
and MHD Effect on an Unsteady Porous Stretching Sheet.In the field of science and tech-
nology most of the mathematical problems are complex in their nature and the exact solu-
tion is almost very difficult or even impossible.Numerical and Analytical methods are used
to find out the approximate solution of such problems.One of the popular and proficient
method for the solution of such type of problems is HAM.Mathematical modeling of many
phenomena, especially in heat transfer, usually leads to a nonlinear equation.Traditional
approaches for solving such equations are time consuming and difficult affairs tasks.In this
paper, based on the homotopy analysis method (HAM), a series solution for the problem of
unsteady nonlinear convective-radiative equation is obtained.In HAM, one would be able
to control the convergence of approximation series and adjust its convergence region, con-
veniently. Ability and efficiency of proposed approach are tested via some cases of above
mentioned problem.It is found that homotopy-analysis approach provides a greatly accel-
erated convergence series solution for problem. Its main advantage is that it can be used to
the nonlinear ordinary differential equations without discretization or linearization and is
a substitute method.Liao [23-27] was the first one to investigate this technique for solving
this type of problems and generally verified that HAM method converges rapidly to approx-
imate solution.The current method also provides series solutions that includes single vari-
able functions.The significance of this method is that it considers all physical parameters
of the problem and provide the opportunity to explore its behavior conveniently.Due to its
fast convergence, many researchers Rashidi [34], Abbasbandy [1,2], Hayat et al.[18], and
Nadeem et al.[32] used this technique to solved highly nonlinear and coupled differential
equations.Many researchers [3,4,5,8,9,11,16,20,31,35,36,37,40,42,46] have contributed in
the same as well as in the related areas.The aim of present work is to analyze nanofluid
liquid film of Eyring-Powell fluid and its flow in the existence of MHD.Keeping in view
assumptions taken into the model problems and the similarity transformation method, the
concerned PDEs are converted to non-linear ODEs and the obtained transformed equations
are analytically solved using (HAM).

2. PROBLEM’S MATHEMATICAL FORMULATION:

Assume two dimensional incompressible nanofluid liquid film of Eyring-Powell fluid
flow along with megnetohydrodynamics on an unsteady porous stretching sheet with si-
multaneous transfer of mass and heat.The coordinate axes are selected such that the slit is
in the direction of x-axis and surface is perpendicular to y-axis respectively.The plate and
its linear velocity are along positive x-axis and are assumed as:

U0(x, t) =
αx

1− γt
(2. 1)

U0(x, t) =
αx

1− γt
(2. 2)
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which is stretching, where γ is the stretching parameter.The surface temperature of the
nanofluid is

Tw(x, t) = T0 − Tref
(
αx2

2v

)
× (1− γt)−3/2 (2. 3)

and similarly the volume concentration for the nanofluid is

Cw(x, t) = C0 − Cref
(
αx2

2v

)
× (1− γt)−3/2 (2. 4)

The time dependent term
αx2

v(1− γt)
is the local Reynold number, dependent on the stretching velocity U0(x, t). Here T0 andC0

are temperature and concentration at the slit respectively, Cref and Tref are the reference
concentration and reference temperature such that Cref ∈ [0, C0] and Tref ∈ [0, T0]. At
the start, the slit is initiated along the Origin and after that an extrinsic force is acted to
stretch the slit in the direction of positive horizontal axis at the rate

α

1− γt
in the time

γ ∈ [0, 1] with U0(x, t) initial velocity.
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FIGURE 1. Geometry of the Physical Model.

The basic governing equations are

div V̂ = 0 (2. 5)

ρ ai = −∇p+∇(T ) + Ĵ × B̂ (2. 6)

(
V̂ .∇

)
T = α∇2T + ρ

[
DB∇C.∇T +

DT

T0
∇T.∇T

]
(2. 7)

(V̂ .∇)C = DB∇2C +
DT

T0
∇2T (2. 8)
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Cauchy stress tensor T can be expressed as

T = −pI + τ (2. 9)

The rheological model of Eyring-Powell fluid [3] is

τij = µ
∂ui
∂xj

+
1

β
sinh−1

[
1

c

∂ui
∂xj

]
(2. 10)

Here β and c represents characteristics of the Eyring-Powell fluid, where p and I are the
pressure and the identity tensor respectively. Where

sinh−1
[

1

c

∂ui
∂xj

]
≈ 1

c

∂ui
∂xj
− 1

6

[
1

c

∂ui
∂xj

]3
,

∣∣∣∣1c ∂ui∂xj

∣∣∣∣ ≺ 1. (2. 11)

Considering the above assumptions, the leading equations for continuity, momentum,
energy and concentration of two dimensional thin film flow are as under:

∂û

∂x
+
∂v̂

∂y
= 0 (2. 12)

∂û

∂t
+ û

∂û

∂x
+ v̂

∂û

∂y
=

(
v +

1

ρβC

)
∂2û

∂y2
− 1

2ρβC3

[(
∂û

∂y

)2
∂2û

∂y2

]
− σB̂2

0

ρ
û(t)

− ν

k∗
û(t) (2. 13)

∂T

∂t
+ û

∂T

∂x
+ v̂

∂T

∂y
=

1

ρcp

∂

∂y

[
K(T )

∂T

∂y

]
+t

[
DB

(
∂C

∂y

∂T

∂y

)
+
Dt

T0

(
∂T

∂y

)2]
(2. 14)

∂C

∂t
+ û

∂C

∂x
+ v̂

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T0

)
∂2T

∂y2
(2. 15)

Here u and v are the fluid velocity components, υ denotes coefficient of kinematic vis-
cosity, ρ represents density where as σ andµ represent the electrical conductivity and dy-
namic viscosity respectively. In equation (2.14) T represents the temperature, α is thermal
diffusivity, k∗ represents porosity, cp represents specific heat, thermal conductivity of fluid

is represented by kp, Brownian diffusion coefficient is denoted by DB , t =
(ρcp)p
(ρcp)f

where

ρf denotes the base fluid density and ρb represents density of the particle, C represents
coefficient of volumetric expansion.
The Boundary conditions for the state problem includes:

û = U0, v̂ = 0, T = Tw, C = Cs, at y = 0, (2. 16)
∂û

∂y
=
∂T

∂y
=
∂C

∂y
= 0, v̂ =

dδ

dx
= 0, at y = δ(t), (2. 17)

Where the thickness of liquid is δ(t). The similarity variables for non dimensionaliza-
tion are as follows:

η =

√
α

υ(1− γt)
y, (2. 18)

Ψ(x, y, t) = x

√
υα

1− γt
f(η), (2. 19)
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T (x, y, t) = T0 − Tref
(
αx2

2v

)
(1− γt)−3/2θ(η), (2. 20)

C(x, y, t) = C0 − Cref
(
αx2

2v

)
(1− γt)−3/2φ(η) (2. 21)

Here Ψ represents stream function such that,
(
û, v̂
)

=

(
∂Ψ

∂y
,−∂Ψ

∂x

)
. The prime indi-

cates derivative w.r.t η and the thickness of non-dimensional nanofluid film is represented

by β. where, β =

(
α

υ(1− γt)

)
δ(t).

dδ

dt
= −βγ

2

[υ
α

]1

2
(
1− γt

)−1

2 (2. 22)

Inserting equations (2.18-2.21) in (2.12-2.15), where (2.12) identically holds and we get
the following governing equations:

(1 + k)f ′′′ − (f ′)2 + ff ′′ −A
(
f ′ + η

2f
′′)− λ(f ′′)2f ′′′ − k∗f ′ −Mf ′ = 0, (2. 23)[

1 + ξθ
]
θ′′ + Pr

[
fθ′ − 2f ′θ − A

2

(
3θ + ηθ′

)
+Nbφ′θ′ +Nt(θ′)2

]
= 0 (2. 24)

φ′′ + Sc

[
fφ′ − 2f ′φ− A

2

(
3φ+ ηφ′′

)]
+
Nt
Nb

φ′′ = 0 (2. 25)

The corresponding non-dimensional boundary conditions are

f ′(0) = 1, f(0) = 0, θ(0) = φ(0) = 1 (2. 26)

f(β) =
sβ

2
, f ′′(β) = 0, θ′(β) = φ′(β) = 0 (2. 27)

The non-dimensional parameters after simplification can be defined as Pr =
v

α
is

prandtl number, M =
σB2

0

ρα
(1 − ξt) is magnetic parameter, Sc =

v

DB
Schmid number,

Nb =
τDB(Cω − C0)

v
is parameter of Brownian motion, Nt =

(ρcp)pDTT0
(ρcp)fTc

is Ther-

mophoretic parameter, A =
ξ

α
is unsteadiness parameter, γ =

1

2ρβC3

( α

1− ξt
)3 (x

r

)3
is

Stretching parameter, k∗ =
υ

ρκ∗
(
1− ξt

)
is Porosity parameter, and k =

1

µBCr
is Eyring

Powell fluid parameter.

3. HOMOTOPIC SOLUTION:

The following initial guesses are nominated as under:

f̂0(η) = η, θ̂0(η) = 1, and φ̂0(η) = 1. (3. 28)

Lf , Lθ, and Lφ are representing linear operators.

Lf (f̂) = f̂ ′′′, Lθ(θ̂) = θ̂′′, Lφ(φ̂) = φ̂′′. (3. 29)

which have the subsequent applicability,
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Lf (e1 + e2η + e3η
2) = 0, Lθ(e4 + e5η) = 0, Lφ(e6 + e7η) = 0 (3. 30)

The coefficients involve in the general solution are ei where 1 ≤ i ≤ 7. The correspond-
ing nonlinear operators Nf , Nθ, Nφ, are carefully chosen of the form:

Nf

[
f̂(η; ξ)

]
= (1 + k)

∂3f̂

∂η3
−
(
∂f̂
∂η

)2
+ f

∂2f̂

∂η2
−A

(
∂f̂

∂η
+
η

2

∂2f̂

∂η2

)
− λ

(
∂2f̂

∂η2

)2
∂3f̂

∂η3
− k∗ ∂f̂

∂η
−M ∂f̂

∂η
(3. 31)

Nθ

[
f̂(η; ξ), θ̂(η; ξ), φ̂(η; ξ)

]
=

(
1 + ξθ̂

Pr

)
∂2θ̂

∂η2
+ f̂

∂θ̂

∂η
− 2θ̂

∂f̂

∂η
− A

2

(
3θ̂ + η

∂θ̂

∂η

)
+Nt

(
∂θ̂

∂η

)2

+Nb
∂θ̂

∂η

∂φ̂

∂η
(3. 32)

Nφ

[
f̂(η; ξ), θ̂(η; ξ), φ̂(η; ξ)

]
=
∂2φ̂

∂η2
+ Sc

[
f̂
∂φ̂

∂η
− 2φ̂

∂f̂

∂η
− A

2

(
3φ̂+ η

∂2φ̂

∂η2

)]

+
Nt

Nb

∂2θ̂

∂η2
(3. 33)

The basic solution process by HAM is defined in [3.28-3.56], the 0th Order system
forms Eqs.(2.23-2.25) as:

(1− ζ)Lf [f̂(η, ζ)− f̂0(η)] = phfNf [f̂(η, ζ)] (3. 34)

(1− ζ)Lθ[θ̂(η, ζ)− θ̂0(η)] = phθNθ[f̂(η, ζ), θ̂(η, ζ), φ̂(η, ζ)] (3. 35)

(1− ζ)Lφ[φ̂(η, ζ)− φ̂0(η)] = ζhφNφ[f̂(η, ζ), θ̂(η, ζ), φ̂(η, ζ)] (3. 36)
The corresponding boundary constraints are

f̂(η, ζ)
∣∣∣
η=0

= 0, f̂(η, ζ)
∣∣∣
η=β

=
sβ

2
(3. 37)

∂f̂(η, ζ)

∂η

∣∣∣∣∣
η=0

= 1,
∂2f̂(η, ζ)

∂η2

∣∣∣∣∣
η=β

= 0 (3. 38)

θ̂(η, ζ)
∣∣∣
η=0

= 1,
∂θ̂(η, ζ)

∂η

∣∣∣∣∣
η=β

= 0 (3. 39)

φ̂(η, ζ)
∣∣∣
η=0

= 1,
∂φ̂(η, ζ)

∂η

∣∣∣∣∣
η=β

= 0 (3. 40)
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where ζ ∈ [0, 1] is the embedding constraint, hf , hθ, hφ are used to regulate conver-
gence. When ζ = 0 , ζ = 1 we obtain;

f̂(η) = f̂(η, 1), θ̂(η) = θ̂(η, 1), φ̂(η) = φ̂(η, 1) (3. 41)
Taylor’s series approximation for ζ = 0 is used to expand the velocity, temperature and

concentration fields f̂(η, ζ), θ̂(η, ζ), and φ̂(η, ζ)

f̂(η, ζ) = f̂0(η) +
∞∑
k=1

f̂k(η)ζk (3. 42)

θ̂(η, ζ) = θ̂0(η) +
∞∑
k=1

θ̂k(η)ζk (3. 43)

φ̂(η, ζ) = φ̂0(η) +
∞∑
k=1

φ̂k(η)ζk (3. 44)

f̂n(η) =
1

n!

∂f̂(η, ζ)

∂η

∣∣∣∣∣
ζ=0

, θ̂n(η) =
1

n!

∂θ̂(η, ζ)

∂η

∣∣∣∣∣
ζ=0

, φ̂n(η) =
1

n!

∂φ̂(η, ζ)

∂η

∣∣∣∣∣
ζ=0

(3. 45)
The secondary constraints hf , hθ and hφ are selected in such a way that the series

(3.42),(3.43) and (3.44) converges at ζ = 1 so, switching ζ = 1 in (3.42),(3.43) and (3.44)
we obtain:

f̂(η) = f̂0(η) +
∞∑
n=1

f̂n(η), (3. 46)

θ̂(η) = θ̂0(η) +
∞∑
n=1

θ̂n(η), (3. 47)

φ̂(η) = φ̂0(η) +
∞∑
n=1

φ̂n(η), (3. 48)

The nth order problem satisfies the following:

Lf

[
f̂n(η)− χnf̂n−1(η)

]
= hfR

f
k(η), (3. 49)

Lθ

[
θ̂n(η)− χnθ̂n−1(η)

]
= hθR

θ
n(η), (3. 50)

Lφ

[
φ̂n(η)− χnφ̂n−1(η)

]
= hφR

φ
n(η). (3. 51)
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The invariable boundary conditions are:

f̂n(0) = f̂ ′n(0) = θ̂n(0) = φ̂n(0) = 0, f̂ ′′n (β) = θ̂′n(β) = φ̂′n(β) = 0 (3. 52)

Here

Rfn(η) = (1 + k)f̂
′′′

n−1 −
n−1∑
k=0

f̂ ′n−1−kf̂
′
k +

n−1∑
k=0

f̂n−1−kf̂
′′
k −A

[
f̂ ′n−1 +

η

2
f̂ ′′n−1

]
+ λ

n−1∑
k=0

(
f̂ ′′n−1−k

)2
f̂ ′′′k −Mf̂ ′n−1 − k∗f̂ ′n−1. (3. 53)

Rθn(η) =
(
1 + ξθ

)
θ̂′′n−1 +

1

Pr
ξ
n−1∑
k=0

θ̂n−1−kθ̂
′′
k +

n−1∑
k=0

f̂n−1−kθ̂
′
k − 2

n−1∑
k=0

f̂ ′n−1−kθ̂k

− A

2

(
3θ̂n−1 + ηθ̂′n−1

)
+Nb

n−1∑
k=1

θ̂′n−1−kφ̂
′
k +Nt

n−1∑
k=1

θ̂′n−1−kθ̂
′
k. (3. 54)

Rφn(η) = φ̂
′′

n−1 + Sc

n−1∑
k=0

f̂n−1−kφ̂
′
k − 2Sc

n−1∑
k=0

f̂ ′n−1−kφ̂k −
ASc

2

(
3φ̂n−1 + ηφ̂′n−1

)
+
Nt

Nb
θ̂′′n−1 (3. 55)

Where

χn =

{
1, ζ > 1
0, ζ 6 1 (3. 56)

4. CONVERGENCE:

When we computed the series solutions of velocity, temperature and concentration func-
tions using HAM, the assisting parameters hf,θ and hφ appears, which are responsible for
adjusting the convergence of solutions. h-curve graphs of f ′′(0),θ′(0) and φ′(0) for 7th or-
der Approximation are plotted to get the possible region of h curve in the Figures (2-3) for
various values of embedded variables. The h-curves consecutively display the valid region.
The convergence region of the h-curve in Figs. 2 and 3 is shown as −0.2 ≤ h ≤ 0.0 which
is a valid region.
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FIGURE 2. Combine h curve of function f and θ at 7th order approxi-
mation, when γ = Sc = A = ξ = β = k = 0.1, Nb = Nt = 0.3,
M = Pr = 1.

FIGURE 3. The h curve function of φ for 7th order approximation, when
γ = Sc = A = ξ = β = k = 0.1, Nb = Nt = 0.3, M = Pr = 1.

FIGURE 4. Influence of A on f(η), where β = 0.4,M = 1,γ = 0.7,λ =
k = 0.6.
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FIGURE 5. Influence of β on f(η), where A = 0.1,M = 1,γ = 0.7,λ =
k = 0.6.

FIGURE 6. Influence of γ on f(η), where β = 0.4,M = 1,A = 0.9,λ =
0.5,k = 0.6.

FIGURE 7. Influence of k on f(η), where β = 0.4,M = 1,A = 0.9,λ =
γ = 0.5.
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FIGURE 8. Influence of M on f(η), where β = 0.4,γ = 0.7,λ =
0.3,A = 0.9,k = 0.6.

FIGURE 9. Influence of A on θ(η), where γ = Sc = ξ = 0.6, β =
0.1,Nb = 0.3, M = 0.5, Nt = k = 0.4, Pr = 1.

FIGURE 10. Influence of β on θ(η), where γ = A = Sc = ξ =
0.6,M = 0.1,Nb = 0.3, Nt = k = 0.4,Pr = 1.
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FIGURE 11. Influence of M on θ(η), where γ = A = Sc = ξ = 0.6,β =
0.1,Nb = 0.3, Nt = k = 0.4,Pr = 1.

FIGURE 12. Influence of Nb on θ(η), where γ = A = Sc = ξ =
0.6,β = 0.1,M = 0.5,Nt = Rd = k = 0.4,Pr = 1.

FIGURE 13. Influence of Nt on θ(η), where γ = A = Sc = ξ =
0.6,β = 0.1,M = 0.5,Nb = 0.3,Rd = k = 0.4,Pr = 1.
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FIGURE 14. Influence of Pr on θ(η), where γ = A = Sc = ξ = 0.6,β =
0.1,M = 5,Nb = 3, Nt = Rd = k = 0.4.

FIGURE 15. Influence of Sc on θ(η), where γ = A = ξ = 0.6,β =
0.1,M = 0.2,Nb = 0.3, Nt = k = 0.4, Pr = 1.

FIGURE 16. Influence of A on φ(η), where γ = Sc = ξ = 0.6,β =
0.1,M = 0.5,Nb = 0.3, Nt = k = 0.4, Pr = 1.
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FIGURE 17. Influence of β on φ(η), where γ = 1.9,Sc = 0.3,ξ =
1.1,M = 0.2, Nb = 0.5, A = 1.2, Nt = 0.5, k = Pr = 0.1.

FIGURE 18. Influence of Nb on φ(η), where γ = Sc = ξ = 0.6,β =
1,M = 0.1,A = 0.5, Nt = k = 0.4, Pr = 1.
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FIGURE 19. Influence of Nt on φ(η), where γ = Sc = ξ = 0.6, β =
0.2,M = 0.1, Nb = A = 0.5, k = 0.5, Pr = 1.

FIGURE 20. Influence of Pr on φ(η), where γ = Sc = A = ξ =
0.6,β = 0.1,M = Nb = Nt = 0.5, k = 0.4.

FIGURE 21. Influence of Sc on φ(η), where γ = ξ = 0.6, β = 0.2,
M = 0.1,Nb = A = 0.5, Nt = k = 0.4, Pr = 1.



Nanofluid Film Flow of Eyring Powell Fluid with Magneto Hydrodynamic Effect on Unsteady Porous Stretching Sheet 163

5. TABLES DISCUSSION

This section is about the discussion of tables. Table.1 displays numerical values of
HAM solutions at different approximation using different values for various parameters.
Clearly the table values shows that homotopy analysis technique is a quickly convergent
technique. Table quantities such as film thickness β, skin friction co-efficient f ′′(0), heat
flux Nu = −θ′(0) and mass flux Sh = −φ′(0) for engineering interest are calculated
from Tables 2,3 and 4. In Table.2 values of skin friction co-efficient f ′′(0) and thin film
thickness β are determined using increasing values of A. It is analyzed that skin friction co-
efficient increases and the thin film thickness reduces randomly with increasing values of
A. In table.3 the effect of M, Nt, A and Pr on wall temperature is calculated takingA = 0.8
the large value of M and Nt increase the wall temperature while the large value of A and
Pr reduces the wall temperature. Table.4 examines the effect of embedding parameters Nb,
β, Pr and Nt on the heat flux Nu = −θ′(0) and mass flux Sh = −φ′(0) . It has been seen
that the increasing values of Nb, β and Pr decreases mass flux while the increasing values
of Nt increases mass flux. It has also been seen that the increasing values of embedded
parameters randomly varies heat flux. The current results of −θ′(0) and −φ′(0) having a
resemblance in appearance.

Table 1. Convergence of f ′′(0), θ′(0) and φ′(0) by HAM Method when Nt = Nb =
0.3, A = Sc = k = ξ = γ = β = 0.1, Pr = M = 1.

Solution f ′′(0) θ′(0) φ′(0)
Approximation

1 -0.05401 -0.10070 -1.10075
4 -0.10218 -0.18890 -1.38506
7 -0.10813 -0.19903 -1.88867

10 -0.10888 -0.20281 -1.99293
13 -0.10894 -0.20154 -2.01113
14 -0.10896 -0.20475 -2.01406
17 -0.10897 -0.20478 -2.01451
20 -0.10897 -0.20479 -2.01458
25 -0.10897 -0.20479 -2.01458

Table 2. Results of skin friction coefficient f ′′(0) and film thickness β for various values
of A.

A Present Results Present Results
f ′′(0) β

0.4 -4.33027 5.523451
0.6 -3.94882 4.002111
0.8 -2.64208 3.992358
1.0 -1.33999 3.113001
1.2 -0.92157 1.625391
1.4 -0.56897 1.896541
1.6 -0.34227 0.876512
1.8 -0.03027 0.266156
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Table 3. The wall temperature for dissimilar values of M, A, Pr and Nt when A =
0.8,Nb = 0.4,β = 0.9,Nb = 1.6

M Nt A Pr Present
(2017)
Results
θ(β)

0 0.1 1.0 0.1 0.223456
1 0.432111
2 0.01 0.712351

0.1 0.0 1.023001
1.0 0.1 1.625341

0.2 1.236540

Table 4. The Nusslet number φ′(0) and Sherwood numbers θ′(0) verses various value
of embedded parameters when A = 0.8.

Nb β Pr Nt −θ′(0) −φ′(0)
Present Present
Results Results

0.0 0.2 1.0 0.1 0.682385 6.68238
0.5 0.541422 4.94142
1.0 0.440569 5.44569

0.2 0.321022 5.12101
0.3 0.300420 5.70742
0.4 0.291420 5.29140

0.5 0.371420 5.37143
1.5 0.182285 6.78223
5.0 0.011422 7.01147

0.4 0.612427 4.11207
0.6 0.691428 4.69458
0.8 0.500987 7.50097

6. DISCUSSION:

The present work focuses on the comprehension of the fluid film motion through mod-
eled parameters.The graphical explanation of these parameters have been illustrated in fig-
ures [4-21] while Fig.2 is the combine h curve graph of velocity and temperature profiles
and Fig.3 is the h curve graph of concentration profile.Both the graphs reflect valid region
which gaurantees that homotopy analysis method is fast convergent technique.The influ-
ence of unsteady constraint A on the f̂(η) field shown in Fig.4.The velocity profile f̂(η)
rises with the rise in A. Velocity increases with the unsteady constraint A.The influance
of film thickness β has been displayed for unlike values of fluid velocity in Fig.5.It is ob-
served that f̂(η) falls over with greater values of β.The impact of stretching parameter
γ on the f̂(η) has been shown in Fig.6. It has been seen that f̂(η) decreases with the
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growing values of stretching parameter.The effect of Erying fluid factor k over the f̂(η)
is exposed in Fig.7.It has been seen, when Erying fluid parameter k increases then it in-
creases the nanofluid film motion, and this influance is clear at the stretching surface.The
characteristics of magnetic factor M on fluid velocity and heat profile are shown in Figs.8
and 11.It is obvious from mathematical formulation that M is inversely varied with ve-
locity flied f̂(η).Increasing M decreases the velocity field.This effect of magnetic field is
caused by the production of friction force to the movement known as Lorentz force which
bring retardation to the flow of the fluid and hence decreases fluid velocity at the upper
surface.It is clear from Fig.16 that all the fluids reflect the similar reaction to the unsteady
parameter.The slope in the temperature distribution falls down with decreasing the width
of thermal boundary layers.It means that unsteady parameter A has inverse effect on the
temperature field. Fig.9. shows that heat profile decreases with the parameter A.Every
fluid observes the same effect on temperature profile for parameter A.Actually, the fluid
produces resistance to the flow of film and shows a tendency to decay the velocity of fluid
flow having greater values of β and it is obvious in Fig.11. The fluid film size absorbs
heat that causes falls down in heat distribution.The free surface temperature is increased
with the Brownian motion constraint as illustrated in Fig.12.The reality is that the random
movement of molecules of fluid produces collisions among the molecules.Increase in the
value of Brownian motion parameter Nb, results increase in temperature of the fluid, con-
sequently, it causes reduction in free surface nanoparticle volume fraction and is shown
in Fig.18.The thermophoresis parameter Nt decreases as the temperature profile increases
and it can be seen in Fig.13.The thermophoresis constraint is responsible for raise in surface
temperature.The random motion of nano particles of fluid produces Brownian motion.This
irregular motion of nano suspended particles is responsible for kinetic energy and it causes
rise in temperature.Consequently, thermophoretic force is produced.This force produces in-
tensity in the fluid to move away from the surface of the stretching sheet.Subsequently, the
temperature inside the boundary layer rises as Nt increases.Physically, the Prandtl number
is the ratio of kinematic viscidness to thermal diffusivity and is a dimensionless quantity.
The value of Pr is increased if the value of thermal diffusivity is less than the momentum
diffusivity.Therefore, the heat transmission at the exterior increases as the values of Pr
increase while mass transmission reduces as the Prandtl number increases.The influance
of Pr is shown in the Fig.14.It obviously shows that θ̂(η) reduces with large Pr num-
ber.The logic behind is that the large value of Prandtl number reduces thermal layer of the
boundary.The consequences are more prominent for minor Prandtl quantity because of rel-
atively greater width of thermal boundary layer.The heat distribution θ̂(η) increases with
the change in the Schmidt number and is shown in Fig.15, and the non-dimensional con-
centration profile reduces with dissimilar measures of parameter Sc displayed in Fig.21.It
is visible that a flow part increases in the horizontal direction by rising the Schmidt num-
ber.It clearly reflects that with rise in the Schmidt number, the flow part increases in the
x-direction.The logic is that the Sc parameter is the ratio of momentum to the concentra-
tion diffusivities.The growth in Sc reduces width of fluid and causes fall down in θ̂(η).The
viscidness dissipation effect on the nanoparticle volume fraction is insignificant for higher
quantities of Schmidt numbers.The concentration of the fluid φ̂(η) increases as values of
β grows as presented by Fig.17.The logic behind is that width of fluid film exhibit direct
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proportion with thermal conductivity as well as with viscosity.As thermophoresis parame-
ter Nt increases, concentration field elevates.Just like surface temperature, thermophoresis
factor also help in increasing the exterior of nanoparticle volume fraction and is illustrated
in Fig.19.The increasing values ofNt decrease the surface mass transfer rate in both steady
and unsteady cases, but shows high mass transfer rate on external edge in unsteady case
as compared to steady one.Concentration profile shows the inverse relation with Pr num-
ber as shown in Fig.20.It means thinning of thermal boundary layer increases flow in the
x-direction, which is clearly exibited in the graph.

7. CONCLUDING REMARKS:

This research work analyzes two dimensional nanofluid film flow of Eyring Powell Fluid
with variable heat transmission over a porous stretching sheet in the existence of uniform
magnetic flied (MHD). The observation of this work depends upon the influence of variable
temperature and magnetic field on nanoliquid film flows. The influence of the skin fraction,
Nusslet number and Sherwood number is shown numerically.
The key points of this work are as under:

• The increasing values of Pr increases the surface temperature, where opposite
effect is found for unsteady parameter A that is the large values of A reduces the
surface temperature.
• Non-dimensional velocity decline in variable viscosity and magnetic parameter.
• The temperature and concentration profile both are directly proportional with mag-

netic field.
• It is perceived that the large value of Magnetic parameter drops the velocity distri-

bution of the nanofluid films.
• The larger values of Brownian motion parameter rises the profile of temperature.
• Thermal boundary layer thickness reduces with rise of Sc, Nusselt number rises

with rise in Prandtl number.
• Porosity parameter decrease the motion of the liquid films.
• It is observed that the temperature profile falls with the large numbers of ther-

mophoresis parameter Nt and increases for small values.
• Augmenting the nanoparticle concentration efficiently increases the friction feature

of Eyring nanofluid.
• The increasing values of Nb reduces the mass flux, where Nt increases the mass

flux. The higher values of Re reduces the mass flux, while it rises with rising
values of Sc.
• The convergence of the HAM method with the variation of the physical parameters

observed numerically.
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