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1. INTRODUCTION

Let λ : I ⊂ R → R be a convex function and ϵ, ε ∈ I with ϵ < ε, the double inequality

λ

(
ϵ+ ε

2

)
≤ 1

ε− ϵ

∫ ε

ϵ

λ (κ) dκ ≤ λ (ϵ) + λ (ε)

2
(1. 1)

is very famous in the theory of convex functions and is known as the Hermite-Hadamard
inequality. The inequality ( 1. 1 ) is considered as a necessary and sufficient condition for a
function λ to be convex over an interval I and it actually provides the bounds of the average
value of a convex function.

In [9], Fejér gave a generalized version of ( 1. 1 ) while studying trigonometric polyno-
mials. Fejér’s original result reads as follows:

Consider the integral
∫ ε

ϵ
λ(κ)µ(κ)dκ, where λ is a convex function in the interval (ϵ, ε),

µ(κ) > 0 for κ in (ϵ, ε) and

µ (ϵ+ α) = µ (ε− α) , 0 ≤ α ≤ 1

2
(ϵ+ ε) .
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Then

λ

(
ϵ+ ε

2

)∫ ε

ϵ

µ(κ)dκ ≤
∫ ε

ϵ

λ(κ)µ(κ)dκ ≤ λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ(κ)dκ. (1. 2)

It has been noticed that the theory of inequalities significantly depends on the theory of
convexity. Since the theory of convexity plays an important role in the theory of inequalities
and in the other areas of pure and applied mathematics, hence it has received a considerable
attention by a number of researchers over the past few decades. Many mathematicians have
tried to extend or to generalize the classical notion of convex sets and convex functions in
several directions. As a consequence of the extensions and generalizations of the classical
convexity, Hermite-Hadamard inequality ( 1. 1 ) and Fejér’s inequality ( 1. 2 ) have been
given different forms and numerous bounds related to the middle and leftmost, and middle
and the rightmost terms in ( 1. 1 ) and ( 1. 2 ) have also been proved, see for instance
[2]-[7] and [8]-[30].

One of the generalizations of the convex sets and convex functions, known as p-convex
sets and p-convex functions, was introduced by Zhang in [31]. In the definitions of p-
convex sets and p-convex functions given in [31], the number p is a positive odd integer
or a fraction with numerator and denominator as positive odd integers and the p-convex
functions are defined over an interval of the set of real numbers R. The definitions of
p-convex sets and p-convex functions were modified by İşcan in [15] by restricting the
domain to be an interval of the set of positive real numbers so that p can be any non-zero
real number. The class of p-convex functions introduced by İşcan contains both the class of
classical convex functions and the class of harmonically convex functions that are defined
over the set of positive real numbers.

In what follows we recall some basic definitions related to p-convex sets, p-convex func-
tions, p-symmetric functions and related Hermite-Hadamard, and Fejér type inequalities for
p-convex functions.

Definition 1.1. [31] An interval I ⊂ R is p-convex if

Mp (κ, β;α) = [ακp + (1− α)βp]
1
p ∈ I

for all κ, β ∈ I and α ∈ [0, 1], where p = 2k + 1 or p = n
m , n = 2r + 1, m = 2s+ 1, k,

r, s ∈ N.

Definition 1.2. [31] Let I be a p-convex set. A function λ : I → R is said to be p-convex
function or λ is said to belong to the class PC (I), if

λ (Mp (κ, β;α)) ≤ αλ (κ) + (1− α)λ (β)

for all κ, β ∈ I and α ∈ [0, 1].

Remark 1.3. It is clear from the Definition 1.2 that the p-convex functions are the convex
functions in the classical sense for p = 1. Since p = 2k + 1 or p = n

m , n = 2r + 1,
m = 2s+1, k, r, s ∈ N, this shows that p ̸= −1. Hence the class PC (I) does not contain
the harmonic convex functions.

Remark 1.4. [14] If I ⊂ (0,∞) and p ∈ R\ {0}, then

Mp (κ, β;α) = [ακp + (1− α)βp]
1
p ∈ I

for all κ, β ∈ I and α ∈ [0, 1].
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Based on Remark 1.4, the following modification of p-convex functions was given in
[14] by İşcan.

Definition 1.5. [15] Let I ⊂ (0,∞) and p ∈ R\ {0}. A function λ : I → R is said to be
p-convex function or λ is said to belong to the class PC (I), if

λ (Mp (κ, β;α)) ≤ αλ (κ) + (1− α)λ (β) (1. 3)

for all κ, β ∈ I and α ∈ [0, 1]. If the inequality ( 1. 3 ) is reversed, then λ is said to be
p-concave.

According to Definition 1.5, we get from the p-convexity the usual convexity and har-
monic convexity when p = 1 and p = −1 of functions defined on I ⊂ (0,∞) respectively.

The following is the corrected version of a proposition given in [15].

Proposition 1.6. Let λ : I ⊂ (0,∞) → R be a function and p ∈ R\ {0}, then
(1) If λ is convex and nondecreasing, then λ is p-convex for p ∈ (−∞, 0) ∪ (0, 1].
(2) If λ is p-convex and nondecreasing for p ≥ 1, then λ is convex.
(3) If λ is p-concave and nondecreasing for p ∈ (−∞, 0) ∪ (0, 1], then λ is concave.
(4) If λ is concave and nondecreasing, then λ is p-concave for p ≥ 1.
(5) If λ is convex and nonincreasing, then λ is p-convex for p ≥ 1.
(6) If λ is p-convex and nonincreasing for p ∈ (−∞, 0) ∪ (0, 1], then λ is convex.
(7) If λ is p-concave and nonincreasing for p ≥ 1, then λ is concave.
(8) If λ is concave and nonincreasing, then λ is p-concave for p ∈ (−∞, 0) ∪ (0, 1].

Proof. (1) Suppose that λ is convex and nondecreasing. For p ∈ (−∞, 0)∪ (0, 1], we have

[ακp + (1− α)βp]
1
p ≤ ακ + (1− α)β

for all κ, β ∈ I and α ∈ [0, 1]. Hence by using the convexity of λ, we have

λ
(
[ακp + (1− α)βp]

1
p

)
≤ λ (ακ + (1− α)β)

≤ αλ (κ) + (1− α) + λ (β)

for all κ, β ∈ I and α ∈ [0, 1]. This shows that λ is p-convex.
(2) Suppose that λ is p-convex and nondecreasing for p ≥ 1. For p ≥ 1, we have

ακ + (1− α)β ≤ [ακp + (1− α)βp]
1
p

for all κ, β ∈ I and α ∈ [0, 1]. Hence by using the p-convexity of λ, we have

λ (ακ + (1− α)β) ≤ λ
(
[ακp + (1− α)βp]

1
p

)
≤ αλ (κ) + (1− α) + λ (β) .

The results (3), (4), (5), (6), (7) and (8) can be proved similarly. �
According to Proposition 1.6, the following p-convex and p-concave functions can be

constructed.

Example 1.7. [15] Let λ : (0,∞) → R, λ(κ) = κ, then λ is a p-convex function for
p ∈ (−∞, 0) ∪ (0, 1] and λ is a p-concave function for p ≥ 1.

Example 1.8. [15] Let λ : (0,∞) → R, λ(κ) = κ−p, p ≥ 1, then λ is a p-convex function.
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Example 1.9. [15] Let λ : (0,∞) → R, λ(κ) = − lnκ and p ≥ 1, then λ is a p-convex
function.

Example 1.10. [15] Let λ : (0,∞) → R,λ(κ) = lnκ and p ≥ 1, then λ is a p-concave
function.

The following Hermite-Hadamard type inequalities were obtained in [15].

Theorem 1.11. [15] Let λ : I ⊂ (0,∞) → R be a p-convex function, p ∈ R\ {0}, and ϵ,
ε ∈ I with ϵ < ε. If λ ∈ L[ϵ, ε], then we have

λ

([
ϵp + εp

2

] 1
p

)
≤ p

εp − ϵp

∫ ε

ϵ

λ (κ)
κ1−p

dκ ≤ λ (ϵ) + λ (ε)

2
. (1. 4)

The inequalities ( 1. 4 ) are sharp.

Definition 1.12. [19] Let p ∈ R\ {0}. A function µ : [ϵ, ε] ⊂ (0,∞) → R is said to

be p-symmetric with respect to
(
ϵp+εp

2

) 1
p if µ (κ) = µ

(
[ϵp + εp − κp]

1
p

)
holds for all

κ ∈ [ϵ, ε].

A weighted version of the inequality ( 1. 4 ) is proved in [19].

Theorem 1.13. [19] Let λ : I ⊂ (0,∞) → R be a p-convex function, p ∈ R\ {0}, ϵ, ε ∈ I
with ϵ < ε. If λ ∈ L [ϵ, ε] and w : [ϵ, ε] → R is non-negative, integrable and p-symmetric

with respect to
(
ϵp+εp

2

) 1
p , then the following inequalities hold

λ

([
ϵp + εp

2

] 1
p

)∫ ε

ϵ

µ (κ)
κ1−p

dκ ≤ p

εp − ϵp

∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ (1. 5)

≤ λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ.

For several new Hermite-Hadamard and Fejér type inequalities related to ( 1. 4 ) and (
1. 5 ), we refer the interested reader to [15], [19] and [29].

In this article, we prove new integral inequalities of Hermite-Hadamard and Fejér type
for differentiable p-convex functions. The results of this paper generalize some known
results given in [15] and [29].

2. MAIN RESULTS

In this section, we recall Gamma, Beta, Hypergeometric functions and some generaliza-
tions of the Hölder inequality.

The Gamma function is defined as

Γ (κ) =
∫ ∞

0

e−αακ−1dα.

The Beta function, also known as the Euler integral of the first kind, is defined as

B (κ, β) =
∫ 1

0

ακ−1 (1− α)
β−1

dα,κ > 0, β > 0.
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The hypergeometric function is given as follows

2F1 (κ, β; c; z) =
1

B (β, β − c)

∫ 1

0

ακ−1 (1− α)
c−β−1

(1− zα)
−ϵ

dα,

where |z| < 1 and c > β > 0.
The weighted Hölder inequality can be stated as follows

∣∣∣∣∫ ε

ϵ

λ (κ)µ (κ)h (κ) dκ
∣∣∣∣ ≤ (∫ ε

ϵ

|λ (κ)|p h (κ) dκ
) 1

p
(∫ ε

ϵ

|µ (κ)|q h (κ) dκ
) 1

q

,

where p, q > 1 and p−1 + q−1 = 1.
The following result is important to derive the results of this paper.

Lemma 2.1. Let λ : (c, d) ⊂ (0,∞) → R be a differentiable mapping on (c, d) and µ :

[ϵ, ε] → [0,∞) be continuous and p-symmetric with respect to
(
ϵp+εp

2

) 1
p for ϵ, ε ∈ (c, d)

with ϵ < ε. If λ ∈ L ([ϵ, ε]), then the following equality holds

(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
×
[
Up−1 (ϵ, ε;α)λ

′
(Up (ϵ, ε;α))− Lp−1 (ϵ, ε;α)λ

′
(Lp (ϵ, ε;α))

]
dα

=
λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dα, (2. 6)

where

Up (ϵ, ε;α) =

[(
1− α

2

)
ϵp +

(
1 + α

2

)
εp
] 1

p

and

Lp (ϵ, ε;α) =

[(
1 + α

2

)
ϵp +

(
1− α

2

)
εp
] 1

p

.

Proof. Let

I1 =

(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
Up−1 (ϵ, ε;α)λ

′
(Up (ϵ, ε;α)) dα

and

I2 =

(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
Lp−1 (ϵ, ε;α)λ

′
(Lp (ϵ, ε;α)) dα.
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By integration by parts, we have

I1 =

(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
Up−1 (ϵ, ε;α)λ

′
(Up (ϵ, ε;α)) dα

=
1

2

∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
d (λ (Up (ϵ, ε;α))) dα

=
1

2

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
λ (Up (ϵ, ε;α))

∣∣∣∣∣
1

0

−
(
εp − ϵp

2p

)∫ 1

0

µ (Up (ϵ, ε;α))λ (Up (ϵ, ε;α)) dα

=
λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
(
εp − ϵp

2p

)∫ 1

0

µ (Up (ϵ, ε;α))λ (Up (ϵ, ε;α)) dα.

By making the substitution κ = Up (ϵ, ε;α), we get

dα =

(
2p

εp − ϵp

)
dκ

Up−1 (ϵ, ε;α)

=

(
2p

εp − ϵp

)
dκ

(Up (ϵ, ε;α))
1−p =

(
2p

εp − ϵp

)
dκ
κ1−p

.

Hence

I1 =

[∫ ε

ϵ

µ (κ)
κ1−p

dκ
]
λ (ε)

2
−
∫ ε

( ϵp+εp

2 )
1
p

λ (κ)µ (κ)
κ1−p

dα.

Similarly, we can prove that

I2 =

(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
Lp−1 (ϵ, ε;α)λ

′
(Lp (ϵ, ε;α)) dα

= −λ (ϵ)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ +

∫ ( ϵp+εp

2 )
1
p

ϵ

λ (κ)µ (κ)
κ1−p

dα.

This shows that

I1 − I2 =
λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dα.

This proves the result of the Lemma. �

Remark 2.2. If p = 1, the result given in ( 2. 6 ) becomes the result proved in [12, Theorem
2.2].

If p = −1, the result of Lemma 2.1 becomes the following important result.

Lemma 2.3. Let λ : (c, d) ⊂ (0,∞) → R be a differentiable mapping on (c, d) and
µ : [ϵ, ε] → [0,∞) be continuous and harmonically-symmetric with respect to 2ϵε

ϵ+ε for ϵ,
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ε ∈ (c, d) with ϵ < ε. If λ ∈ L ([ϵ, ε]), then the following equality holds

ϵε (ε− ϵ)

∫ 1

0

[∫ 2ϵε
(1−α)ε+(1+α)ϵ

2ϵε
(1+α)ε+(1−α)ϵ

µ (κ)
κ2

dκ

]

×

 λ
′
(

2ϵε
(1−α)ε+(1+α)ϵ

)
[(1− α) ε+ (1 + α) ϵ]

2 −
λ

′
(

2ϵε
(1+α)ε+(1−α)ϵ

)
[(1 + α) ε+ (1− α) ϵ]

2

 dα

=
λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ2

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ2

dα. (2. 7)

We can now commence to prove the results of this manuscript.

Theorem 2.4. Let λ : (c, d) ⊂ (0,∞) → R be a differentiable mapping on (c, d) and µ :

[ϵ, ε] → [0,∞) be continuous and p-symmetric with respect to
(
ϵp+εp

2

) 1
p for ϵ, ε ∈ (c, d)

with ϵ < ε. If λ ∈ L ([ϵ, ε]) and
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\ {0} and q ≥ 1,∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤ ∥µ∥∞

(
εp − ϵp

2p

)2 [
α1 (ϵ, ε; p, q)

∣∣∣λ′
(ϵ)
∣∣∣q + α1 (ε, ϵ; p, q)

∣∣∣λ′
(ε)
∣∣∣q] 1

q

, (2. 8)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)| and

α1 (ϵ, ε; p, q) =

∫ 1

0

α

{(
1− α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1 + α

2

)
Lq
p−1 (ϵ, ε;α)

}
dα.

Proof. Taking the absolute value on both sides of the result of Lemma 2.1 and using the
continuous and discrete power-mean inequalities, we have∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤
(
εp − ϵp

4p

)[∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)]1− 1
q

×

(∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)
Uq
p−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣q dα) 1
q

+

(∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)
Lq
p−1 (ϵ, ε;α)

∣∣∣λ′
(Lp (ϵ, ε;α))

∣∣∣q dα) 1
q


≤ 21−

1
q

(
εp − ϵp

4p

)[∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)]1− 1
q
{∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)

×
[
Uq
p−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣q + Lq
p−1 (ϵ, ε;α)

∣∣∣λ′
(Lp (ϵ, ε;α))

∣∣∣q] dα} 1
q

. (2. 9)
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By using the p-convexity of
∣∣∣λ′
∣∣∣q for q ≥ 1, we get

Uq
p−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣q + Lq
p−1 (ϵ, ε;α)

∣∣∣λ′
(Lp (ϵ, ε;α))

∣∣∣q
≤
∣∣∣λ′

(ϵ)
∣∣∣q {(1− α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1 + α

2

)
Lq
p−1 (ϵ, ε;α)

}
+
∣∣∣λ′

(ε)
∣∣∣q {(1 + α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1− α

2

)
Lq
p−1 (ϵ, ε;α)

}
. (2. 10)

By applying ( 2. 10 ) in ( 2. 9 ), we get∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤ 21−
1
q

(
εp − ϵp

4p

)[∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)]1− 1
q
{∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)

×
[∣∣∣λ′

(ϵ)
∣∣∣q {(1− α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1 + α

2

)
Lq
p−1 (ϵ, ε;α)

}
+
∣∣∣λ′

(ε)
∣∣∣q {(1 + α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1− α

2

)
Lq
p−1 (ϵ, ε;α)

}]
dα

} 1
q

. (2. 11)

Since∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ ≤ ∥µ∥∞
∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

1

κ1−p
dκ =

∥µ∥∞
p

[
Up
p (ϵ, ε;α)− Lp

p (ϵ, ε;α)
]

= ∥µ∥∞ α

(
εp − ϵp

p

)
,

hence ∫ 1

0

(∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

)
dα = ∥µ∥∞

(
εp − ϵp

2p

)
.

Thus, the inequality ( 2. 11 ) becomes the following inequality∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣ ≤ ∥µ∥∞

(
εp − ϵp

2p

)2

×
{∫ 1

0

α

[∣∣∣λ′
(ϵ)
∣∣∣q {(1− α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1 + α

2

)
Lq
p−1 (ϵ, ε;α)

}
+
∣∣∣λ′

(ε)
∣∣∣q {(1 + α

2

)
Uq
p−1 (ϵ, ε;α) +

(
1− α

2

)
Lq
p−1 (ϵ, ε;α)

}]
dα

} 1
q

. (2. 12)

The inequality ( 2. 12 ) is the desired inequality. �

Remark 2.5. If µ (κ) = p
εp−ϵp for all κ ∈ [ϵ, ε] and p ∈ R\ {0}, we can get Hermite-

Hadamard type inequalities for p-convex functions from the result of Theorem 2.4.

The following important results can be deduced from the inequality ( 2. 8 ).
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Corollary 2.6. According to the inferences of Theorem 2.4 with q = 1, then∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤ ∥µ∥∞

(
εp − ϵp

2p

)2 [
α1 (ϵ, ε; p, 1)

∣∣∣λ′
(ϵ)
∣∣∣+ α1 (ε, ϵ; p, 1)

∣∣∣λ′
(ε)
∣∣∣] , (2. 13)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)| and

α1 (ϵ, ε; p, 1) =

∫ 1

0

α

{(
1− α

2

)
Up−1 (ϵ, ε;α) +

(
1 + α

2

)
Lp−1 (ϵ, ε;α)

}
dα.

Corollary 2.7. As far as the reasonings of Theorem 2.4 are justified and p = 1, then∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ) dκ −
∫ ε

ϵ

λ (κ)µ (κ) dκ
∣∣∣∣

≤ ∥µ∥∞

(
ε− ϵ

2

)2

∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

2


1
q

, (2. 14)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|

Proof. The proof follows from the fact that

α1 (ϵ, ε; 1, q) = α1 (ε, ϵ; 1, q) =

∫ 1

0

α

{(
1− α

2

)
+

(
1 + α

2

)}
dα =

1

2
.

�

Remark 2.8. The inequality ( 2. 14 ) has been proven in [12, Theorem 2.4]. If µ (κ) = 1
ε−ϵ

for all κ ∈ [ϵ, ε], the result given in ( 2. 14 ) turns out to be the result proved in [30,
Theorem 1].

Corollary 2.9. Letting q = 1 in Corollary 2.7, gives the result for convex functions below∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ) dκ −
∫ ε

ϵ

λ (κ)µ (κ) dκ
∣∣∣∣

≤ ∥µ∥∞

(
ε− ϵ

2

)2

∣∣∣λ′

(ϵ)
∣∣∣+ ∣∣∣λ′

(ε)
∣∣∣

2

 , (2. 15)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|.

Remark 2.10. If we take µ (κ) = 1
ε−ϵ for all κ ∈ [ϵ, ε] in ( 2. 15 ), we get the result

proved in [5, Theorem 2.3].
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Corollary 2.11. If the assumptions of Theorem 2.4 are met and if p = −1, q > 1 and
q ̸= 3

2 , then∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ2

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ2

dκ
∣∣∣∣

≤ ∥µ∥∞

(
ε− ϵ

2ϵε

)2 [
α1 (ϵ, ε;−1, q)

∣∣∣λ′
(ϵ)
∣∣∣q + α1 (ε, ϵ;−1, q)

∣∣∣λ′
(ε)
∣∣∣q] 1

q

, (2. 16)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)| and

α1 (ϵ, ε;−1, q)

=
22q−1ϵ2qε2q (ϵ+ ε)

2−2q
(ε− 5ϵ+ 2ϵq − 2εq) + ϵ2ε2q (ϵ+ 3ε− 2εq + 2ϵq)

(ϵ− ε)
3
(q − 1) (2q − 1) (2q − 3)

+
ϵ2qε

[
(2q − 1)

2
ε2 + 2 (q − 1) (2q − 3) ϵ2 −

(
4q2 − 14q + 3

)
ϵε
]

(ϵ− ε)
3
(q − 1) (2q − 1) (2q − 3)

.

Remark 2.12. If we take µ (κ) = ϵε
ε−ϵ for all κ ∈ [ϵ, ε] in ( 2. 16 ), we get Hermite-

Hadamard type inequalities for harmonically-convex functions.

Theorem 2.13. Let λ : (c, d) ⊂ (0,∞) → R be a differentiable mapping on (c, d) and µ :

[ϵ, ε] → [0,∞) be continuous and p-symmetric with respect to
(
ϵp+εp

2

) 1
p for ϵ, ε ∈ (c, d)

with ϵ < ε. If λ ∈ L ([ϵ, ε]) and
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\

{
0, s

s−2 ,
s

s−1

}
and s, q > 1,

s ̸= 2, then the following inequality holds∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤
(
εp − ϵp

2p

)2

∥µ∥∞

(α2 (ϵ, ε, p; s, x))
1
s


∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+(α1 (ε, ϵ, p; s,−x))
1
s

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

 , (2. 17)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|,

α2 (ϵ, ε, p; s, x) =

(
ϵp + εp

2

) s
p−s

[
p2 − p (1− x)

s
p−s+1

(p+ px+ sx− psx)

(ps− s− 2p) (ps− s− p)x2

]
,

x =
ϵp − εp

ϵp + εp
and s−1 + q−1 = 1.
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Proof. From Lemma 2.1 and employing the weighted version of the Hölder inequality, we
have∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤
(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
×
[
Up−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣+ Lp−1 (ϵ, ε;α)
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣] dα

≤
(
εp − ϵp

2p

)2

∥µ∥∞
∫ 1

0

α
[
Up−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣
+Lp−1 (ϵ, ε;α)

∣∣∣λ′
(Lp (ϵ, ε;α))

∣∣∣] dα ≤
(
εp − ϵp

2p

)2

∥µ∥∞

×

[(∫ 1

0

αUs
p−1 (ϵ, ε;α) dα

) 1
s
(∫ 1

0

α
∣∣∣λ′

(Up (ϵ, ε;α))
∣∣∣q dα) 1

q

+

(∫ 1

0

αLs
p−1 (ϵ, ε;α) dα

) 1
s
(∫ 1

0

α
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣q dα) 1

q

]
. (2. 18)

Since
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\

{
0, s

s−2 ,
s

s−1

}
and s, q > 1, s ̸= 2, we get that

∫ 1

0

α
∣∣∣λ′

(Up (ϵ, ε;α))
∣∣∣q dα ≤

∫ 1

0

α

[(
1− α

2

) ∣∣∣λ′
(ϵ)
∣∣∣q + (1 + α

2

) ∣∣∣λ′
(ε)
∣∣∣q] dα

=
1

12

∣∣∣λ′
(ϵ)
∣∣∣q + 5

12

∣∣∣λ′
(ε)
∣∣∣q (2. 19)

and

∫ 1

0

α
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣q dα ≤

∫ 1

0

α

[(
1 + α

2

) ∣∣∣λ′
(ϵ)
∣∣∣q + (1− α

2

) ∣∣∣λ′
(ε)
∣∣∣q] dα

=
5

12

∣∣∣λ′
(ϵ)
∣∣∣q + 1

12

∣∣∣λ′
(ε)
∣∣∣q . (2. 20)

Moreover, we also observe that

∫ 1

0

αUs
p−1 (ϵ, ε;α) dα =

∫ 1

0

α

[(
1− α

2

)
ϵp +

(
1 + α

2

)
εp
] s

p−s

dα

=

(
ϵp + εp

2

) s
p−s

[
p2 − p (1− x)

s
p−s+1

(p+ px+ sx− psx)

(ps− s− 2p) (ps− s− p)x2

]
(2. 21)
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and∫ 1

0

αLs
p−1 (ϵ, ε;α) dα =

∫ 1

0

α

[(
1 + α

2

)
ϵp +

(
1− α

2

)
εp
] s

p−s

dα

=

(
ϵp + εp

2

) s
p−s

[
p2 − p (1 + x)

s
p−s+1

(p− px− sx+ psx)

(ps− s− 2p) (ps− s− p)x2

]
, (2. 22)

where x = ϵp−εp

ϵp+εp . The result follows by applying ( 2. 19 )-( 2. 22 ) in ( 2. 18 ). �

The following new results for convex and harmonically-convex functions are the direct
consequences of Theorem 2.13.

Corollary 2.14. According to the assumptions of Theorem 2.13 and p = 1,∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ) dκ −
∫ ε

ϵ

λ (κ)µ (κ) dκ
∣∣∣∣ ≤ (ε− ϵ

2

)2
[
1

2

(
ϵ− ε

ϵ+ ε

)2
] 1

s

∥µ∥∞

×



∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

 , (2. 23)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)| and s−1 + q−1 = 1.

Proof. If p = 1, we have

α2 (ϵ, ε, 1, s;x) = α2 (ϵ, ε, 1, s;−x) =
1

2

(
ϵ− ε

ϵ+ ε

)2

.

�

Corollary 2.15. Let the assumptions of Theorem 2.13 be justified and if p = −1, then∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ2

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ2

dκ
∣∣∣∣

≤
(
ε− ϵ

2ϵε

)2

∥µ∥∞

(α2 (ϵ, ε,−1; q))
1
s


∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+(α2 (ε, ϵ,−1; q))
1
s

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

 , (2. 24)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|, s−1 + q−1 = 1 and

α2 (ϵ, ε,−1; q) =
(ϵ+ ε)

2
(q − 1)

2
+ 4

1
1−q (q − 1) ϵ

1+q
1−q (ε− ϵq) (ϵ+ ε)

2q
q−1

2 (ϵ− ε)
2
(q + 1)

.
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Proof. If p = −1, we have

α2 (ϵ, ε,−1; s, x)

= α2 (ϵ, ε,−1; q)

=
(ϵ+ ε)

2
(q − 1)

2
+ 4

1
1−q (q − 1) ϵ

1+q
1−q (ε− ϵq) (ϵ+ ε)

2q
q−1

2 (ϵ− ε)
2
(q + 1)

.

�

Theorem 2.16. Let λ : (c, d) ⊂ (0,∞) → R be a differentiable mapping on (c, d) and µ :

[ϵ, ε] → [0,∞) be continuous and p-symmetric with respect to
(
ϵp+εp

2

) 1
p for ϵ, ε ∈ (c, d)

with ϵ < ε. If λ ∈ L ([ϵ, ε]) and
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\ {0,−1} and s, q > 1, then

the following inequality holds∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤
(
εp − ϵp

2p

)2

∥µ∥∞
{
(α3 (ϵ, ε, p, s;x))

1
s

[
α4 (ϵ, ε; p;x)

∣∣∣λ′
(ϵ)
∣∣∣q

+α5 (ϵ, ε; p;x)
∣∣∣λ′

(ε)
∣∣∣q] 1

q

+ (α3 (ε, ϵ, p, s;−x))
1
s

×
[
α5 (ε, ϵ; p;−x)

∣∣∣λ′
(ϵ)
∣∣∣q + α4 (ε, ϵ; p;−x)

∣∣∣λ′
(ε)
∣∣∣q] 1

q

}
, (2. 25)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|,

α3 (ϵ, ε, p, s;x) =
1

s+ 1

(
ϵp + εp

2

) 1
p−1

2F1

(
1− 1

p
, s+ 1, s+ 2;x

)
,

α4 (ϵ, ε; p;x) =

(
ϵp + εp

2

) 1
p−1 p

[
x− p+ px+ p (1− x)

1
p+1
]

2 (1 + p)x2
,

α5 (ϵ, ε; p;x) =

(
ϵp + εp

2

) 1
p−1

p
[
1− (1− x)

1
p

]
2x

+
p
[
p− (p+ x) (1− x)

1
p

]
2 (1 + p)x2

 ,

x =
ϵp − εp

ϵp + εp
and s−1 + q−1 = 1.

Proof. Applying Lemma 2.1 and using the weighted version of the Hölder inequality, we
have∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣

≤
(
εp − ϵp

4p

)∫ 1

0

[∫ Up(ϵ,ε;α)

Lp(ϵ,ε;α)

µ (κ)
κ1−p

dκ

]
(2. 26)
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×
[
Up−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣+ Lp−1 (ϵ, ε;α)
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣] dα

≤
(
εp − ϵp

2p

)2

∥µ∥∞
∫ 1

0

α
[
Up−1 (ϵ, ε;α)

∣∣∣λ′
(Up (ϵ, ε;α))

∣∣∣
+Lp−1 (ϵ, ε;α)

∣∣∣λ′
(Lp (ϵ, ε;α))

∣∣∣] dα ≤
(
εp − ϵp

2p

)2

∥µ∥∞

×

[(∫ 1

0

αsUp−1 (ϵ, ε;α) dα

) 1
s
(∫ 1

0

Up−1 (ϵ, ε;α)
∣∣∣λ′

(Up (ϵ, ε;α))
∣∣∣q dα) 1

q

+

(∫ 1

0

αsLp−1 (ϵ, ε;α) dα

) 1
s
(∫ 1

0

Lp−1 (ϵ, ε;α)
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣q dα) 1

q

]
. (2. 27)

Since
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\ {0,−1} and q > 1, we get that

∫ 1

0

Up−1 (ϵ, ε;α)
∣∣∣λ′

(Up (ϵ, ε;α))
∣∣∣q dα

≤
∣∣∣λ′

(ϵ)
∣∣∣q ∫ 1

0

(
1− α

2

)[(
1− α

2

)
ϵp +

(
1 + α

2

)
εp
] 1

p−1

dα

+
∣∣∣λ′

(ε)
∣∣∣q ∫ 1

0

(
1 + α

2

)[(
1− α

2

)
ϵp +

(
1 + α

2

)
εp
] 1

p−1

dα

=

(
ϵp + εp

2

) 1
p−1 p

[
x− p+ px+ p (1− x)

1
p+1
]

2 (1 + p)x2

∣∣∣λ′
(ϵ)
∣∣∣q

+

(
ϵp + εp

2

) 1
p−1

p
[
1− (1− x)

1
p

]
2x

+
p
[
p− (p+ x) (1− x)

1
p

]
2 (1 + p)x2

∣∣∣λ′
(ε)
∣∣∣q (2. 28)

and

∫ 1

0

Lp−1 (ϵ, ε;α)
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣q dα

≤
(
ϵp + εp

2

) 1
p−1 p

[
x− p+ px+ p (1− x)

1
p+1
]

2 (1 + p)x2

∣∣∣λ′
(ε)
∣∣∣q

+

(
ϵp + εp

2

) 1
p−1

p
[
1− (1− x)

1
p

]
2x

+
p
[
p− (p+ x) (1− x)

1
p

]
2 (1 + p)x2

∣∣∣λ′
(ϵ)
∣∣∣q .

(2. 29)
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Moreover, we also observe that∫ 1

0

αsUp−1 (ϵ, ε;α) dα =

∫ 1

0

αs

[(
1− α

2

)
ϵp +

(
1 + α

2

)
εp
] 1

p−1

dα

=
1

s+ 1

(
ϵp + εp

2

) 1
p−1

2F1

(
1− 1

p
, s+ 1, s+ 2;x

)
(2. 30)

and∫ 1

0

αsLp−1 (ϵ, ε;α) dα =

∫ 1

0

α

[(
1 + α

2

)
ϵp +

(
1− α

2

)
εp
] 1

p−1

dα

=
1

s+ 1

(
ϵp + εp

2

) 1
p−1

2F1

(
1− 1

p
, s+ 1, s+ 2;−x

)
, (2. 31)

where x = ϵp−εp

ϵp+εp . The result follows by applying ( 2. 28 )-( 2. 31 ) in ( 2. 26 ). �

From Theorem 2.16 the only result for convex functions can be obtained.

Corollary 2.17. If the hypotheses of Theorem 2.16 are fulfilled and p = 1, then∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ) dκ −
∫ ε

ϵ

λ (κ)µ (κ) dκ
∣∣∣∣ ≤ ( 1

s+ 1

) 1
s

×
(
ε− ϵ

2

)2

∥µ∥∞



∣∣∣λ′

(ϵ)
∣∣∣q + 3

∣∣∣λ′
(ε)
∣∣∣q

4


1
q

+

3
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

4


1
q

 ,

(2. 32)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)| and s−1 + q−1 = 1.

Theorem 2.18. Let λ : (c, d) ⊂ (0,∞) → R be a differentiable mapping on (c, d) and µ :

[ϵ, ε] → [0,∞) be continuous and p-symmetric with respect to
(
ϵp+εp

2

) 1
p for ϵ, ε ∈ (c, d)

with ϵ < ε. If λ ∈ L ([ϵ, ε]) and
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\

{
−1,− 1

2 , 0
}

and q ≥ 1, then
the following inequality holds∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣ ≤ (εp − ϵp

2p

)2

∥µ∥∞

×
{
(β1 (ϵ, ε; p, x))

1− 1
q

[
β2 (ϵ, ε; p, x)

∣∣∣λ′
(ϵ)
∣∣∣q + β3 (ϵ, ε; p, x)

∣∣∣λ′
(ε)
∣∣∣q] 1

q

(β1 (ε, ϵ; p,−x))
1− 1

q

[
β3 (ε, ϵ; p,−x)

∣∣∣λ′
(ϵ)
∣∣∣q + β2 (ε, ϵ; p,−x)

∣∣∣λ′
(ε)
∣∣∣q] 1

q

}
, (2. 33)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|,

β1 (ϵ, ε; p, x) =

(
ϵp + εp

2

) 1
p−1

[
p2 − p (1− x)

1
p (p+ x)

(1 + p)x2

]
,



54 Muhammad Amer Latif

β2 (ϵ, ε; p, x) =

(
ϵp + εp

2

) 1
p−1 p2

[
2p (x− 1) + x+ (1− x)

1+ 1
p (2p+ x)

]
2 (p+ 1) (2p+ 1)x3

,

β3 (ϵ, ε; p, x)

=

(
ϵp + xp

2

) 1
p−1 p

[
p (x+ 2p (1 + x))− (1− x)

1
p
(
2x2 + 2p2 (1 + x) + 3px (1 + x)

)]
(p+ 1) (2p+ 1)x3

and

x =
ϵp − εp

ϵp + εp
.

Proof. Taking the absolute value on both sides of the result of Lemma 2.1 and using the
power-mean inequality, we have

∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ)
κ1−p

dκ −
∫ ε

ϵ

λ (κ)µ (κ)
κ1−p

dκ
∣∣∣∣ ≤ (εp − ϵp

2p

)2

∥µ∥∞

×

[(∫ 1

0

αUp−1 (ϵ, ε;α) dα

)1− 1
q
(∫ 1

0

αUp−1 (ϵ, ε;α)
∣∣∣λ′

(Up (ϵ, ε;α))
∣∣∣q dα) 1

q

+

(∫ 1

0

αLp−1 (ϵ, ε;α) dα

)1− 1
q
(∫ 1

0

αLp−1 (ϵ, ε;α)
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣q dα) 1

q

]
.

(2. 34)

Since
∣∣∣λ′
∣∣∣q is p-convex for p ∈ R\

{
−1, 0,− 1

2

}
and q ≥ 1, we get that

∫ 1

0

αUp−1 (ϵ, ε;α)
∣∣∣λ′

(Up (ϵ, ε;α))
∣∣∣q dα

≤
∣∣∣λ′

(ϵ)
∣∣∣q ∫ 1

0

α

(
1− α

2

)
Up−1 (ϵ, ε;α) dα+

∣∣∣λ′
(ε)
∣∣∣q ∫ 1

0

α

(
1 + α

2

)
Up−1 (ϵ, ε;α) dα

=

(
ϵp + εp

2

) 1
p−1

p2
[
2p (x− 1) + x (1− x)

1+ 1
p (2p+ x)

]
2 (p+ 1) (2p+ 1)x3

∣∣∣λ′
(ϵ)
∣∣∣q

+
p
[
p (x+ 2p (1 + x))− (1− x)

1
p
(
2x2 + 2p2 (1 + x) + 3px (1 + x)

)]
(p+ 1) (2p+ 1)x3

∣∣∣λ′
(ε)
∣∣∣q


(2. 35)
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and∫ 1

0

αLp−1 (ϵ, ε;α)
∣∣∣λ′

(Lp (ϵ, ε;α))
∣∣∣q dα

≤
(
ϵp + εp

2

) 1
p−1

p2
[
2p (x+ 1) + x (1 + κ)1+

1
p (2p− x)

]
2 (p+ 1) (2p+ 1)x3

∣∣∣λ′
(ε)
∣∣∣q

+
p
[
p (x− 2p (1− x)) + (1 + x)

1
p
(
2x2 + 2p2 (1− x) + 3px (1− x)

)]
2 (p+ 1) (2p+ 1)x3

∣∣∣λ′
(ϵ)
∣∣∣q
 .

(2. 36)

Moreover, we also observe that∫ 1

0

αUp−1 (ϵ, ε;α) dα =

∫ 1

0

α

[(
1− α

2

)
ϵp +

(
1 + α

2

)
εp
] 1

p−1

dα

=

(
ϵp + εp

2

) 1
p−1

[
p2 − p (1− x)

1
p (p+ x)

(1 + p)x2

]
(2. 37)

and∫ 1

0

αLp−1 (ϵ, ε;α) dα =

∫ 1

0

α

[(
1 + α

2

)
ϵp +

(
1− α

2

)
εp
] 1

p−1

dα

=

(
ϵp + εp

2

) 1
p−1

[
p2 − p (1 + x)

1
p (p− x)

(1 + p)x2

]
, (2. 38)

where κ = ϵp−εp

ϵp+εp . The result follows by applying ( 2. 35 )-( 2. 38 ) in ( 2. 34 ). �

The following interesting Fejér type inequalities for convex functions can be derived
from the result of Theorem 2.18.

Corollary 2.19. If the conditions of Theorem 2.18 are satisfied and if p = 1, the following
Fejér type inequality for convex functions holds∣∣∣∣λ (ϵ) + λ (ε)

2

∫ ε

ϵ

µ (κ) dκ −
∫ ε

ϵ

λ (κ)µ (κ) dκ
∣∣∣∣ ≤ (ε− ϵ

2

)2

∥µ∥∞

(
1

2

)1− 1
q

×



∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

 , (2. 39)

where ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)|.

Remark 2.20. By choosing µ (κ) = p
εp−ϵp , µ (κ) = 1

ε−ϵ , µ (κ) = ϵε
ε−ϵ for all κ ∈ [ϵ, ε],

one can get Hermite-Hadamard type inequalities for p-convex functions, convex functions
and harmonically-convex functions from Theorem 2.13, Theorem 2.16, Theorem 2.18 and
the related corollaries of these theorems.
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3. COMPARISON OF THE RESULTS

In this section, we compare the bounds of the results obtained. Let the bounds in Corol-
lary 2.7, Corollary 2.14, Corollary 2.17 and Corollary 2.19 be denoted by E1 (ϵ, ε; q),
E2 (ϵ, ε; q), E3 (ϵ, ε; q) and E4 (ϵ, ε; q), that is,

E1 (ϵ, ε; q) =


∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

2


1
q

,

E2 (ϵ, ε; q) =

[
1

2

(
ϵ− ε

ϵ+ ε

)2
]1− 1

q

×



∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

 ,

E3 (ϵ, ε; q) =

(
q − 1

2q − 1

)1− 1
q

×



∣∣∣λ′

(ϵ)
∣∣∣q + 3

∣∣∣λ′
(ε)
∣∣∣q

4


1
q

+

3
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

4


1
q

 ,

and

E4 (ϵ, ε; q) =

(
1

2

)1− 1
q

×



∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

 .

We have omitted ∥µ∥∞ = supκ∈[ϵ,ε] |µ (κ)| and
(
ε−ϵ
2

)2
since they are fixed in all these

error bounds. Suppose λ (κ) = κ
2
q
+1

2
q+1

, κ ∈ (0,∞), q > 1, then
∣∣∣λ′

(κ)
∣∣∣q = κ2 is convex.

Let us take ϵ = 1, ε = 5 and q ∈ [2, 5], then it is obvious from Figure 1 that E2 (ϵ, ε; q)
and E4 (ϵ, ε; q) are better error bounds than E1 (ϵ, ε; q) and E3 (ϵ, ε; q). Indeed, the error
bound E2 (ϵ, ε; q) is less than all the other error bounds. Hence it reveals that the result
of Corollary 2.14 is better than those results given in Corollary 2.7, Corollary 2.17 and
Corollary 2.19.

Now we compare the results of Corollary 2.11 and Corollary 2.15. Let the error bounds
in Corollary 2.11 and Corollary 2.15 be denoted by E5 (ϵ, ε; q) and E6 (ϵ, ε; q) respectively.
That is,

E5 (ϵ, ε; q) =
[
α1 (ϵ, ε;−1, q)

∣∣∣λ′
(ϵ)
∣∣∣q + α1 (ε, ϵ;−1, q)

∣∣∣λ′
(ε)
∣∣∣q] 1

q
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and

E5 (ϵ, ε; q) = (α2 (ϵ, ε,−1; s))
1
s


∣∣∣λ′

(ϵ)
∣∣∣q + 5

∣∣∣λ′
(ε)
∣∣∣q

12


1
q

+ (α2 (ε, ϵ,−1; s))
1
s

5
∣∣∣λ′

(ϵ)
∣∣∣q + ∣∣∣λ′

(ε)
∣∣∣q

12


1
q

,

where α1 (ϵ, ε;−1, q) and α2 (ϵ, ε,−1; q) are defined in Corollary 2.11 and Corollary 2.15
respectively. We have omitted the quantity

(
ε−ϵ
2ϵε

)2 ∥µ∥∞ in these error bounds since it is

common in them. As we know,
∣∣∣λ′

(κ)
∣∣∣q = κ2, κ ∈ (0,∞) is harmonically-convex for

q > 1. By taking ϵ = 1, ε = 5 and q ∈ [2, 5], it is obvious from Figure 2 that E6 (ϵ, ε; q) is
a better error bound than E5 (ϵ, ε; q).

4. CONCLUSIONS

We have established a new weighted identity involving a differentiable mapping and a
non-negative p-symmetric mapping. A number of new integral inequalities of Fejér and
Hermite-Hadamard type for differentiable p-convex functions are investigated. A compari-
son for the different results of the manuscript is demonstrated by drawing graphs using the
software Mathematica. We strongly believe that such a comparison of the bounds by using
graphs is very useful for the reader as one can compare the results at a glance.
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