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Abstract. In the present research, a time fractional inverse diffusion-wave
problem of finding the inaccessible boundary value, by the input data at
an interior point, is investigated. The numerical algorithm is based on
the marching finite difference method. Because of ill-posedness of this
inverse problem, we apply the mollification regularization technique to
obtain a stable numerical solution. It is proven that the numerical scheme
is stable and convergent. In the end, the performance of the proposed
numerical approach is assessed by some test examples.
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1. INTRODUCTION

In recent decades, employing differential and integral equations to model many phe-
nomena in different branches of engineering and sciences, have been found more atten-
tion. Mathematical physics [2, 23], mechanical engineering [9, 12, 15, 24, 31], viscoelastic
[3, 16], thermodynamics [14], complex materials [6, 11], heat transfer and distribution
[5, 25], network synthesis [26] and mathematical Biosciences [7, 29] are some examples of
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these disciplines. Some of these models are based on equations with fractional order oper-
ators. The fractional diffusion-wave equation is one of these equations that can be obtained
from the generalization of the diffusion or wave equation of integer order. This equation is
used to describe some anomalous diffusion processes [4, 16]. In some real situations, the
boundary data related to the problem cannot be accessible. We only have some additional
noisy measured data at an interior point of the domain of the problem. This type of problem
is categorized as an inverse problem. The main difficulty in working on these problems is
their ill-posedness, that is, some small noise in the input functions may be caused a large
error in the solution of the problem [1, 8, 13, 19, 27, 30, 34]. Moreover, finding a numerical
approximation for the fractional derivative is an ill-posed process, since the fractional de-
rivative is defined by a nonlocal weak singular integration [21]. As a result, research works
on inverse problems related to the time-fractional inverse diffusion-wave equation are very
few.

Consider the following equation:

D
(α)
t u(x, t) = uxx(x, t) + f(x, t), (x, t) ∈ Ω := [0, 1]× [0, 1], (1. 1)

with the initial and the boundary value conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ [0, 1], (1. 2)

u(0, t) = ϕ(t), u(1, t) = ρ(t), t ∈ [0, 1], (1. 3)

where f(x, t) is the source term andD(α)
t u(x, t) is the Caputo fractional derivative of order

1 < α < 2 defined as [22]:

D
(α)
t u(x, t) =

1

Γ(2− α)

∫ t

0

∂2u(x, s)

∂s2

ds

(t− s)α−1
, α ∈ (1, 2).

In this study, we are concerned with the inverse problem of approximating the unknown
boundary condition ρ(t), while the initial functions φ(x) and ψ(x) and the boundary con-
dition ϕ(t) are considered as known functions. To determine the set of functions (u, ρ)
in the inverse problem ( 1. 1 )-( 1. 3 ), we need a supplementary condition. Here, the
condition

u(x̄, t) = η(t), t ∈ [0, 1], (1. 4)
at an interior point 0 < x̄ < 1 is used.

The paper consists of the following sections. In the next section, we separate the prob-
lem ( 1. 1 )-( 1. 4 ) into two direct and inverse subproblems, respectively in the domains
0 ≤ x ≤ x̄ and x̄ ≤ x ≤ 1. Afterwards, we apply an implicit finite difference method to
obtain the numerical solution of the direct subproblem and a combination of the marching
method along with the mollification method to solve the inverse subproblem. In Section
3, it is proven that the numerical procedure is stable and convergent. Finally, in Section 4,
numerical examples are provided.

2. NUMERICAL PRODECURE

2.1. Mollification regularization method
The time-fractional inverse problem with unknown boundary condition is sensitive to the
noisy input data and is generally ill-posed [13]. In practice, we have only a perturbed ap-
proximation of the input function η(t) in the condition ( 1. 4 ). Thus, using an appropriate
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regularization method is necessary to find a stable numerical solution. In this work, we em-
ploy the mollification technique. This method is a regularization procedure that stabilizes
an ill-posed problem by restoring continuity subject to the data [17, 18, 20, 33]. It uses a
convolution of the noisy input data and a smooth function with a parameter, to filter the
high-frequency components of the noisy data.

Let δ > 0 and p > 0 such that pδ < 0.5. The δ-mollification of an integrable function
is based on convolution with the Gaussian kernel

ρδ,p(t) =

{
Apδ

−1exp(− t2

δ2 ), |t| ≤ pδ,
0, |t| > pδ.

where

Ap =
(∫ p

−p
exp(−s2)ds

)−1

.

The δ-mollifier ρδ,p is a non-negative C∞(−pδ, pδ) function vanishing outside (−pδ, pδ)
and satisfying ∫ pδ

−pδ
ρδ,p(t)dt = 1. (2. 5)

Now, let g(t) is an integrable function on I = [0, 1] and t ∈ Iδ = [pδ, 1 − pδ]. The
δ-mollification of g is defined as

Jδg(t) = (ρδ,p ∗ g)(t) =

∫ t+pδ

t−pδ
ρδ,p(t− s)g(s)ds.

The parameter δ is specified by the generalized cross validation (GCV) criteria [20]. In the
rest, we define the mollification of a discrete function.

Suppose Z = {1, 2, ...,m},K = {tj : j ∈ Z} ⊂ I and ∆t = sup
j∈Z

(tj+1−tj), satisfying

tj+1 − tj > d > 0 , j ∈ Z,

where m is a positive integer and d is a positive constant. Let G = {g(tj) = gj : j ∈ Z}
be a discrete function defined on K. We set

sj =
1

2
(tj + tj+1), j ∈ Z.

Now, the discrete δ-mollification of G is defined as:

JδG(t) =

∞∑
j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)
gj .

and

JδG(ti) =

∞∑
j=−∞

(∫ sj

sj−1

ρδ(ti − s)ds
)
gj

=

η∑
j=−η

(∫ sj

sj−1

ρδ(−y)dy
)
gi+j , (2. 6)



64 A. Babaei, S. Banihashemi, A. Mohammadpour

where η =
[
p
δ

∆t

]
+ 1. Subject to ( 2. 5 ), we obtain

∞∑
j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)

=

∫ pδ

−pδ
ρδ(s)ds = 1.

Theorem 2.1. Let the functions g and gε are uniformly Lipschitz on R and ‖g−gε‖∞ ≤ ε,
then there exists a constant C, independent of δ, such that

‖Jδgε − g‖∞ ≤ Cδ + ε.

Theorem 2.2. Let the functions g and gε are uniformly Lipschitz on R. Also, let
G = {gj : j ∈ Z} and Gε = {gεj : j ∈ Z} be the discrete versions of g and gε,
which are defined on K, satisfying ‖G−Gε‖∞ ≤ ε. Then

‖D2(JδG)(tj)−D2(JδGε)(tj)‖∞ ≤ C
ε

δ2
, j ∈ Z,

where D2 is second-order finite difference operator and C in the above relation is a con-
stant, independent of δ.

The proofs of these theorems can be found in [20].

Theorem 2.3. Suppose G = {gj : j ∈ Z} is the discrete version of g, which is defined on
K and let a differentiation operator D2

δ be defined by the following rule:

D2
δ(G) = D2(JδG)(t)

∣∣∣
K
.

Then, there exists a constant C, independent of δ, such that

‖D2
δ(G)‖∞ ≤

C‖G‖∞
δ2(∆t)2

.

Proof. According to ( 2. 6 ), for t = tj ∈ K, we have

|D2
δ(G)| =

∣∣∣ ∞∑
j=−∞

(∫ sj

sj−1

ρδ(t+ ∆t− s)− 2ρδ(t− s) + ρδ(t−∆t− s)
(∆t)

2 ds
)
gj

∣∣∣
6 ‖G‖∞

∞∑
j=−∞

∫ sj

sj−1

|ρδ(t+ ∆t− s)− 2ρδ(t− s) + ρδ(t−∆t− s)|
(∆t)

2 ds

= ‖G‖∞
η∑

j=−η

∫ sj

sj−1

|ρδ(∆t− y)− 2ρδ(−y) + ρδ(−∆t− y)|
(∆t)

2 dy,

where η =
[
p
δ

∆t

]
+ 1 . So, we obtain

|D2
δ(G)| ≤ ‖G‖∞

(∆t)2

η∑
j=−η

∫ sj

sj−1

|d∗(y)|dy,
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where

d∗(y) = ρδ(−(y −∆t))− 2ρδ(−y) + ρδ(−(y + ∆t))

=

∫ ∆t

0

∫ 0

−∆t

ρ
′′

δ (−(y + ξ1 + ξ2))dξ1ξ2,

and

ρ
′′

δ (x) =
Ap
δ

(
− 2

δ2
exp(−x

2

δ2
) +

4x2

δ4
exp(−x

2

δ2
)
)
.

Therefore, we have (see [20])

|D2
δ(G)| ≤ ‖G‖∞

(∆t)2

∫ ∆t

0

∫ 0

−∆t

( η∑
j=−η

∫ sj

sj−1

|ρ
′′

δ (−(y + ξ1 + ξ2))|dy
)
dξ1ξ2

=
‖G‖∞
(∆t)2

∫ ∆t

0

∫ 0

−∆t

∫ pδ−(ξ1ξ2)

−pδ−(ξ1ξ2)

|ρ
′′

δ (−(y + ξ1 + ξ2))|dydξ1ξ2 ≤
C‖G‖∞
δ2(∆t)2

.

�

Suppose the exact function η, in the additional condition ( 1. 4 ), is not available, but a
perturbed version ηε is at hand. By applying the described method, we get η̌(t) = Jδηε(t),
where η̌ is the mollified version of η and δ is called the radius of mollification. In the rest,
we use η̌ in our numerical computations. Moreover, we will use the mollification technique
to find a stable estimation of Caputo’s derivative.

2.2. The finite difference algorithm.
Now, we present a numerical scheme to solve the problem ( 1. 1 )-( 1. 4 ). For this purpose,
we separate ( 1. 1 )-( 1. 4 ) into two subproblem. The first subproblem is a direct problem
as:

D
(α)
t u(x, t) = uxx(x, t) + f(x, t), (x, t) ∈ [0, x̄]× [0, 1], (2. 7)
u(x, 0) = φ(x), x ∈ [0, x̄], (2. 8)
ut(x, 0) = ψ(x), x ∈ [0, x̄], (2. 9)
u(0, t) = ϕ(t), t ∈ [0, 1], (2. 10)
u(x̄, t) = η(t), t ∈ [0, 1], (2. 11)

because it has known initial and boundary conditions. Another subproblem is the following
inverse problem:

D
(α)
t u(x, t) = uxx(x, t) + f(x, t), (x, t) ∈ [x̄, 1]× [0, 1], (2. 12)
u(x, 0) = φ(x), x ∈ [x̄, 1], (2. 13)
ut(x, 0) = ψ(x), x ∈ [x̄, 1], (2. 14)
u(x̄, t) = η(t), t ∈ [0, 1], (2. 15)
u(1, t) = ρ(t), t ∈ [0, 1]. (2. 16)

Suppose
xi = ih, i = 0, 1, ...,M,

tn = nk, n = 0, 1, ..., N,
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where M and N are positive integers, h = 1
M and k = 1

N . Thus, the domian
Ω = [0, 1]× [0, 1] can be discretized by the mesh points (xi, tn). In addition, suppose

fni = f(ih, nk), ϕn = ϕ(nk), ηn = η(nk), φi = φ(ih), ψi = ψ(ih),

and x̄ = sh where 1 ≤ s ≤M − 1. To obtain an implicit finite difference formula for Eq.
( 2. 7 ), we employ the discrete estimations to the time and space derivative terms which
have been given in [32] as:

ut(xi, tn) =
1

k
(un+1
i − uni ) + O(k), (2. 17)

δxxu
n
i := uxx(xi, tn) =

1

h2
(uni−1 − 2uni + uni+1) + O(h2). (2. 18)

where uni = u(xi, tn).
The Riemann-Liouville fractional integral operator Jt of order µ > 0 is defined as [22]:

J
(µ)
t f(x, t) =

1

Γ(µ)

∫ t

0

(t− s)µ−1f(x, s)ds.

Applying the operator J (α−1)
t on the two sides of Eq. ( 2. 7 ) results [10]:

ut(x, t) = ψ(x) +
1

Γ(α− 1)

∫ t

0

∂2u(x, s)

∂x2

ds

(t− s)2−α + F (x, t), (2. 19)

where F (x, t) = J
(α−1)
t f(x, t). Using Eqs. ( 2. 17 ) and ( 2. 18 ), we obtain the following

finite difference scheme for Eq. ( 2. 19 ) as

un+1
i − uni = kψi + γ

n+1∑
j=0

ω
(α)
j δxxu

n−j+1
i + kFn+1

i , (2. 20)

where γ = kα

h2 , ω(α)
0 = 1 and

ω
(α)
j =

(−1)jΓ(2− α)

Γ(j + 1)Γ(2− α− j)
, j ≥ 1.

Also,

Fn+1
i = kα−1

n+1∑
j=0

ω
(α)
j fn−j+1

i + O(k).

Now, we give a numerical scheme for solving the direct subproblem ( 2. 7 )-( 2. 11 ). By
using Eq. ( 2. 20 ), for i = 1, ..., s− 1 and n = 0, 1, ..., N − 1, we have

−γu1
i−1 + (1 + 2γ)u1

i − γu1
i+1 = u0

i + kψi + kF 1
i , (2. 21)

for n = 0, and

−γun+1
i−1 +(1+2γ)un+1

i −γun+1
i+1 = uni +γ

n+1∑
j=1

ω
(α)
j δxxu

n−j+1
i +kψi+kF

n+1
i , (2. 22)

for n ≥ 1, with the initial temperature distribution

u0
i = φi, i = 0, 1, ..., s,
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and
un0 = ϕn, uns = ηn, n = 1, 2, ..., N.

Using Eqs. ( 2. 21 )-( 2. 22 ), for i = 1, ..., s − 1 and n = 0, 1, ..., N − 1, we obtain the
following matrix form

AU1 = U0 + Ψ + F1, (2. 23)
in which

A =



1 + 2γ −γ 0 0 0 · · · 0
−γ 1 + 2γ −γ 0 0 · · · 0
0 −γ 1 + 2γ −γ 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · −γ 1 + 2γ −γ
0 0 0 · · · 0 −γ 1 + 2γ


(s−1)×(s−1)

,

B =


1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · 0 1 −2 1


(s−1)×(s+1)

,

U0 = (u0
1, u

0
2, ...., u

0
s−1)t,U1 = (u1

1, u
1
2, ...., u

1
s−1)t, Ψ = k(ψ1, ψ2, ...., ψs−1)t and

F1 = k(F 1
1 , F

1
2 , ...., F

1
s−1)t,

where the superindex t denotes the transposition. Also, for n ≥ 1, from ( 2. 22 ) we have

AUn+1 = Un + γ

n+1∑
j=1

ω
(α)
j BŪn−j+1 + Ψ + Fn+1, (2. 24)

in which

Un = (un1 , u
n
2 , ...., u

n
s−1)t,

Un+1 = (un+1
1 , un+1

2 , ...., un+1
s−1 )t,

Ūj = (uj0, u
j
1, ...., u

j
s−1, u

j
s)
t,

Ψ = k(ψ1, ψ2, ...., ψs−1)t and Fn+1 = k(Fn+1
1 , Fn+1

2 , ...., Fn+1
s−1 )t. The linear systems

( 2. 23 ) and ( 2. 24 ) give the approximate solution of ( 2. 7 )-( 2. 11 ).
Now, we find the numerical solution of the inverse subproblem ( 2. 12 )-( 2. 16 ). To

this end, we apply the proposed scheme for i = s+ 1, ...,M and n = 1, 2, ..., N . Suppose
υ = Jδu is the mollified version of u and the value of υ(x, t) at (xi, tn) is indicated by
Uni . In addition, suppose

Wn
i = υx(ih, nk), Qni = D

(α)
t υ(ih, nk), fni = f(ih, nk), η̌n = η̌(nk).

Notice that
Uns = η̌n, Qns = D

(α)
t (η̌n), n = 1, 2, ...N,

and
U0
i = φi, i = s, s+ 1, ...,M.
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It should be noted that uns−1 can be obtained from the solution of the direct subproblem.
So, we can approximate υx(x̄, t) at the node points as

Wn
s =

1

h
(η̌n − uns−1), n = 1, 2, ..., N.

Now, the approximate solution of ( 2. 12 )-( 2. 16 ) can be found by the finite difference
marching scheme

Uni+1 = Uni + hWn
i , (2. 25)

Wn
i+1 = Wn

i + h(Qni − fni ), (2. 26)

Qni+1 = D
(α)
t (Jδi+1

Uni+1). (2. 27)
where i = s, ...,M − 1 and n = 1, 2, ..., N .
In ( 2. 27 ), let ϑni := JδiUni at each level i for n ∈ {0, 1, ..., N}. The discrete computed
fractional order derivative, denoted by D(α)

t ϑni in the grid points, will be as [28]

D
(α)
t ϑni =

k−α

Γ(3− α)

j−1∑
r=0

dj,r(ϑ
r+2
i − 2ϑr+1

i + ϑri ) + O(k), (2. 28)

where dj,r = (j − r)2−α − (j − r − 1)2−α.

3. STABILITY AND CONVERGENCE

In the present section, we prove that the finite difference scheme ( 2. 25 )-( 2. 27 ) for
numerical solving of the inverse problem ( 2. 12 )-( 2. 16 ) is stable and convergent.

Theorem 3.1. (Stability of the marching algorithm) Suppose |Ui|, |Wi|, |Qi| are maximum
values of |Uni |, |Wn

i |, |Qni |, where n = 0, 1, ..., N . For the marching scheme ( 2. 25 )-
( 2. 27 ), there exist two constants θ1 and θ2, such that

max{|UM |, |WM |, |QM |} ≤ θ1 max{|Us|, |Ws|, |Qs|}+ θ2.

Proof. Let Mf = max
x,t∈[0,1]

{|f(x, t)|}. By using ( 2. 25 ) and ( 2. 26 ), we have

|Uni+1| ≤ (1 + h) max{|Uni |, |Wn
i |}, (3. 29)

|Wn
i+1| ≤ (1 + h) max{|Wn

i |, |Qni |}+ hMf . (3. 30)
From ( 2. 27 ) and Theorem 2.3, we obtain

|Qni+1| = |D
(α)
t (Jδi+1U

n
i+1)| =

∣∣∣ 1

Γ(2− α)

∫ t

0

D2(Jδi+1U
n
i+1)

(t− s)α−1
ds
∣∣∣

≤ 1

Γ(2− α)

∫ t

0

C‖Uni+1‖∞
δ2
i+1k

2|(t− s)α−1|
ds =

C(nk)2−α‖Uni+1‖∞
δ2
i+1k

2Γ(3− α)
.

Let δ̄ = min
i
{δi}. By applying ( 3. 29 ), we have

|Qni+1| ≤
C(nk)2−α(1 + h)

δ̄2k2Γ(3− α)
max{|Uni |, |Wn

i |}. (3. 31)

Also, let

Ĉ = max
{

1,
C(nk)2−α

δ̄2k2Γ(3− α)

}
.
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From ( 3. 29 )-( 3. 31 ), we obtain

max{|Ui+1|, |Wi+1|, |Qi+1|} ≤ (Ĉ + hĈ) max{|Ui|, |Wi|, |Qi|}+ hMf .

Iterating this inequality M − s times, we get

max{|UM |, |WM |, |QM |} ≤ (Ĉ + hĈ)M−s max{|Us|, |Ws|, |Qs|}+ τhMf ,

where τ =
∑M−s−1
i=0 (Ĉ + hĈ)i. This inequality implies

max{|UM |, |WM |, |QM |} ≤ ĈM−s exp(1) max{|Us|, |Ws|, |Qs|}+ τhMf .

Letting θ1 = ĈM−s exp(1) and θ2 = τhMf complete the proof of stability. �

Theorem 3.2. The finite difference marching scheme ( 2. 25 )-( 2. 27 ) is convergent.

Proof. Suppose i ∈ {s + 1, ...,M} and n ∈ {0, 1, ..., N}. First, we define the discrete
error functions ∆Uni = Uni − u(ih, nk) and ∆Wn

i = Wn
i − ux(ih, nk). By applying

Theorem 2.2, we have

|Qni −D
(α)
t u(ih, nk)| = |D(α)

t (JδiUni )−D(α)
t u(ih, nk) + O(k)|

= |D(α)
t (Uni − u(ih, nk)) + O(k)| ≤ 1

Γ(2− α)

∫ nk

0

Cε

δ2
i (nk − s)α−1

ds+ O(k)

=
Cε(nk)2−α

δ2
i Γ(3− α)

+ O(k) ≤ Cε

δ2
i Γ(3− α)

+ O(k) = Cα
ε

δ2
i

+ O(k), (3. 32)

where Cα =
C

Γ(3− α)
.

Expanding the exact solution u(x, t) by the Taylor series, we obtain

u((i+ 1)h, nk) = u(ih, nk) + hux(ih, nk) + O(h2), (3. 33)

ux((i+ 1)h, nk) = ux(ih, nk) + h(D
(α)
t u(ih, nk)− f(ih, nk)) + O(h2), (3. 34)

From ( 2. 25 ) and ( 3. 33 ), we have

∆Uni+1 = Uni+1 − u((i+ 1)h, nk)

= Uni + hWn
i − u((i+ 1)h, nk)

= Uni + hWn
i − u(ih, nk)− hux(ih, nk) + O(h2)

= (Uni − u(ih, nk)) + h(Wn
i − ux(ih, nk)) + O(h2)

= ∆Uni + h∆Wn
i + O(h2).

So, we result

|∆Uni+1| ≤ |∆Uni |+ h|∆Wn
i |+ O(h2). (3. 35)
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By using ( 2. 26 ), ( 3. 32 ) and ( 3. 34 ), we have

∆Wn
i+1 = Wn

i+1 − ux((i+ 1)h, nk)

= Wn
i + h(Qni − fni )− ux((i+ 1)h, nk)

= Wn
i + h(Qni − fni )− ux(ih, nk)− h(D

(α)
t u(ih, nk)− f(ih, nk)) + O(h2)

= Wn
i − ux(ih, nk) + h(Qni −D

(α)
t u(ih, nk)) + O(h2)

= ∆Wn
i + hCα

ε

δ2
i

+ O(hk) + O(h2).

So, we get

|∆Wn
i+1| ≤ |∆Wn

i |+ hCα
ε

δ2
i

+ O(hk) + O(h2). (3. 36)

Let |∆Ui| = max
0≤n≤N

|∆Uni | and |∆Wi| = max
0≤n≤N

|∆Wn
i |. Thus, from ( 3. 35 ), ( 3. 36 ),

we obtain

|∆Ui+1| ≤ |∆Ui|+ h|∆Wi|+ O(h2),

|∆Wi+1| ≤ |∆Wi|+ hCα
ε

δ2
i

+ O(hk) + O(h2).

Let δ̂ = min
i
{δi}, hence

|∆Ui+1| ≤ (1 + h) max{|∆Ui|, |∆Wi|}+ O(h2),

|∆Wi+1| ≤ max{|∆Wi|}+ hCα
ε

δ̂2
+ O(hk) + O(h2),

and
max{|∆Ui+1|, |∆Wi+1|} ≤ (1 + h) max{|∆Ui|, |∆Wi|}+ Λ,

where Λ = hCα
ε

δ̂2
+ O(hk) + O(h2). Now, suppose ∆i = max{|∆Ui|, |∆Wi|}. Thus,

we have
∆i+1 ≤ (1 + h)∆i + Λ,

and

∆M ≤ (1 + h)∆M−1 + Λ

≤ (1 + h)2∆M−2 + (1 + h)Λ + Λ

≤ ... ≤ (1 + h)M−s∆s + τΛ,

where τ =
∑M−s−1
i=0 (1 + h)

i. Now, by using Theorem 2.1, for n ∈ {0, 1, ..., N}, there
exists constants Cn and Dn, such that

|∆Uns | = |Uns − u(sh, nk)| ≤ Cnδ + ε,

|∆Wn
s | = |Wn

s − ux(sh, nk)| ≤ Dnδ + ε.

Let C
′

= max{Cn, Dn| n = 0, ..., N}, then we have

∆s = max{|∆Uns |, |∆Wn
s |} ≤ C

′
δ + ε,

and
∆M ≤ exp(1)(C

′
δ + ε) + τΛ.
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As a result, by choosing δ̂ = δ̂(ε), when ε, h and k tend towards 0, δ and Λ tend towards
0. Thus, ∆M will tend to 0. It completes the proof. �

4. NUMERICAL IMPLEMENTATION

The present section is dedicated to investigating the ability of the introduced algorithm.
To simulate the data for the inverse problem, some random noises are added to the data
resulted from the function η(t), in the additional condition ( 1. 4 ). Suppose that ε is a
noise level. For generating noisy data, the relation

ηε(ti) = η(ti)(1 + ε× rand(i)),

will be used, where rand(i) is a uniformly distributed random number in [−1, 1]. Also, to
demonstrate the accuracy of our method, by using the L2−norm, we define

EL2
(h, k) = max

1≤n≤N
‖un − Un‖.

We calculate the convergence order of the proposed method with the following formulas

Order(h) = log h1
h2

(EL2
(h1, k)

EL2
(h2, k)

)
, Order(k) = log k1

k2

(EL2
(h, k1)

EL2
(h, k2)

)
.

The computations are performed on a personal computer using a 2.20 GHz processor and
the codes are written in Matlab R2014a.

Example 1. Consider Eq. ( 1. 1 ) with f(x, t) = −ex(2tα +
π csc(πα)

Γ(−α)
). Also, let

φ(x) = ψ(x) = 0, ϕ(t) = tα and ρ(t) = e1tα. The exact solution of this problem is
u(x, t) = tαex.

Figure 1 shows the exact and the estimated solutions for ρ(t) with regularization and
without regularization when α = 1.5, x̄ = 0.65, M = 200, N = 150 and
ε = 1%, 5%, 10%, 15%. Furthermore, Figure 2 shows the exact and the estimated solu-
tions to ρ(t) for values α = 1.2, 1.4, 1.6, 1.8 when x̄ = 0.65, M = 200, N = 100 and
ε = 1%, 10%, 20%.

Now, we test the errors in the sense of the L2-norm of the numerical solutions under
various time and space steps. First, the temporal errors and convergence orders are investi-
gated by fixing x̄ = 0.5 and M = 100 and letting N vary. Table 1 presents the maximum
L2-norm errors and convergence orders of the method. From which we can see that, in
the presence of noise, the numerical errors are decreasing as the mesh is refined. Also, the
convergence orders are more than 1. Next, we investigate the numerical accuracies of the
method in space. The computational results, whenN = 100, are listed in Table 2. It can be
seen from the table that for various noise levels, by increasing the number of space steps,
the errors are decreased. Also, the convergence orders become more than 1.5. So we can
expect these values converge to 2 when the number of steps is increased. Those are in good
agreement with the theoretical results.

Figure 3 shows the exact and numerical approximation of u(x, t) when α = 1.5, x̄ =
0.5,M = 200, N = 200 and ε = 10%. Finally, Figure 4 displays the absolute error
function for the estimated solution when ε = 1%.
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FIGURE 1. The function ρ(t) and its numerical values without regularization
and with regularization in Example 1 when α = 1.5.
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FIGURE 2. The function ρ(t) and its numerical estimations in Example 1 for
different values of α and ε when x̄ = 0.65.

Example 2. In this example, we consider the inverse problem associated with the direct
problem

D
(α)
t u(x, t) = uxx(x, t),

u(x, 0) = ut(x, 0) = 0,
u(0, t) = 0,

u(1, t) =

{
t, 0 6 t 6 1

2 ,
1− t, 1

2 < t 6 1.
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FIGURE 3. The exact and numerical solution for Example 1 when α =

1.5, x̄ = 0.5 and ε = 10% .
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FIGURE 4. The absolute error function for numerical solution of Example 1
when α = 1.5, x̄ = 0.5 and ε = 1% .
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TABLE 1. The maximum L2-norm errors and convergence orders for Example 1 whenM = 100.

α N EL2
Order(k) EL2

Order(k) EL2
Order(k)

ε = 1% ε = 5% ε = 10%
1.25 64 0.0991 ∗ 0.1187 ∗ 0.1291 ∗

128 0.0724 1.3688 0.0863 1.3754 0.0921 1.4017
256 0.0525 1.3790 0.0621 1.3897 0.0652 1.4126
512 0.0379 1.3852 0.0446 1.3924 0.0456 1.4298

1.5 64 0.1053 ∗ 0.1263 ∗ 0.1401 ∗
128 0.0760 1.3855 0.0904 1.3971 0.0986 1.4209
256 0.0544 1.3971 0.0642 1.4081 0.0687 1.4352
512 0.0387 1.4057 0.0454 1.4141 0.0475 1.4463

1.75 64 0.1166 ∗ 0.1371 ∗ 0.1570 ∗
128 0.0831 1.4031 0.0961 1.4266 0.1095 1.4338
256 0.0584 1.4229 0.0672 1.4301 0.0751 1.4581
512 0.0409 1.4303 0.0465 1.4452 0.0511 1.4697

TABLE 2. The maximum L2-norm errors and convergence orders for Example 1 whenN = 100.

α M EL2 Order(h) EL2 Order(h) EL2 Order(h)
ε = 1% ε = 5% ε = 10%

1.25 64 0.0945 ∗ 0.1101 ∗ 0.1313 ∗
128 0.0667 1.4168 0.0763 1.4430 0.0883 1.4870
256 0.0452 1.4757 0.0511 1.4932 0.0576 1.5330
512 0.0306 1.5359 0.0331 1.5438 0.0368 1.5652

1.5 64 0.1044 ∗ 0.1247 ∗ 0.1436 ∗
128 0.0721 1.4480 0.0831 1.5006 0.0941 1.5260
256 0.0480 1.5021 0.0535 1.5533 0.0601 1.5657
512 0.0311 1.5434 0.0340 1.5735 0.0376 1.5984

1.75 64 0.1167 ∗ 0.1296 ∗ 0.1493 ∗
128 0.0782 1.4923 0.0852 1.5211 0.0971 1.5376
256 0.0511 1.5303 0.0546 1.5604 0.0619 1.5687
512 0.0324 1.5772 0.0342 1.5965 0.0383 1.6162

Here, we do not have the analytic solution of the problem. Thus, we will use the approxi-
mate solution of the direct problem, obtained by the numerical scheme proposed in Section
2, as an exact solution. Then, the additional data η(t) will be found by using this supposed
exact solution, although it contains some computational errors.

Figure 5 shows the function ρ(t) and its estimations, with regularization and without
regularization when α = 1.5, x̄ = 0.7, M = 200, N = 200 and ε = 1%, 5%, 10%, 15%.
Also, Figure 6 shows the exact and the estimated solutions to ρ(t) for several values of
α = 1.3, 1.6 when x̄ = 0.65, M = N = 200 and ε = 1%, 5%, 10%, 15%.

Now, we investigate the spatial and temporal errors and convergence orders. Let x̄ =
0.5 and M = 100. Table 3 presents errors and convergence orders for different time
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FIGURE 5. The function ρ(t) and its numerical approximations without regu-
larization and with regularization in Example 2 when α = 1.5.

TABLE 3. The maximum L2-norm errors and convergence orders for Example 2 whenM = 100.

α N EL2
Order(k) EL2

Order(k) EL2
Order(k)

ε = 1% ε = 5% ε = 10%
1.25 64 0.0271 ∗ 0.0376 ∗ 0.0442 ∗

128 0.0169 1.6036 0.0227 1.6564 0.0260 1.7000
256 0.0103 1.6408 0.0134 1.6940 0.0149 1.7450
512 0.0062 1.6613 0.0078 1.7179 0.0085 1.7529

1.5 64 0.0466 ∗ 0.0618 ∗ 0.0801 ∗
128 0.0285 1.6351 0.0365 1.6932 0.0457 1.7527
256 0.0169 1.6864 0.0211 1.7299 0.0255 1.7922
512 0.0099 1.7071 0.0120 1.7583 0.0140 1.8214

1.75 64 0.0771 ∗ 0.0940 ∗ 0.1061 ∗
128 0.0456 1.6908 0.0543 1.7311 0.0591 1.7953
256 0.0261 1.7471 0.0306 1.7745 0.0324 1.8241
512 0.0146 1.7877 0.0168 1.8214 0.0174 1.8621

steps. Also, by fixing the time step N = 100, Table 4 presents errors and convergence
orders in the spatial direction. It can be seen from these tables that the numerical errors are
decreasing as the level of noise and the mesh size become smaller. Also, the results about
the convergence orders are similar to Example 1.
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TABLE 4. The maximum L2-norm errors and convergence orders for Example 2 whenN = 100.

α M EL2
Order(h) EL2

Order(h) EL2
Order(h)

ε = 1% ε = 5% ε = 10%
1.25 64 0.0402 ∗ 0.0574 ∗ 0.0766 ∗

128 0.0325 1.2369 0.0435 1.3195 0.0552 1.3877
256 0.0236 1.3771 0.0298 1.4597 0.0370 1.4919
512 0.0168 1.4048 0.0195 1.5282 0.0235 1.5745

1.5 64 0.0553 ∗ 0.0702 ∗ 0.0847 ∗
128 0.0421 1.3135 0.0515 1.3631 0.0597 1.4188
256 0.0297 1.4175 0.0349 1.4756 0.0388 1.5387
512 0.0200 1.4850 0.0224 1.5580 0.0241 1.6100

1.75 64 0.0663 ∗ 0.0786 ∗ 0.0887 ∗
128 0.0487 1.3614 0.0559 1.4061 0.0610 1.4541
256 0.0333 1.4625 0.0364 1.5357 0.0393 1.5522
512 0.0221 1.5068 0.0232 1.5690 0.0243 1.6173
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FIGURE 6. The function exact ρ(t) and its numerical approximations in Ex-
ample 2 for several values of α and ε when x̄ = 0.65.

5. CONCLUSION

In this work, a time-fractional inverse diffusion-wave problem for restoring an unknown
boundary condition was investigated. To this aim, a numerical scheme based on the finite
difference method was proposed. According to the ill-posedness of this type of inverse
problems, the mollification technique was employed to compute the stabilized numerical
solution. The numerical procedure was completely explained and it was proven that the
presented method is stable and convergent. In the end, some test problems were surveyed



A numerical scheme to solve an inverse problem related to a time-fractional diffusion-wave equation 77

to show the ability and the accuracy of the mentioned algorithm. The obtained convergence
orders confirm that the convergence speed of the presented method is good, even in the
presence of the noise up to fifteen percent. Therefore, the results verify the accuracy and
the stability of the method.
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