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Abstract. Decay of a potential vortex through an incompressible viscous
fluid is numerically studied using a fractional model. The influence of
temporal and spatial fractional parameters on the fluid velocity and the
circulation on a circle of radius r is graphically represented and discussed.
As the corresponding diagrams are almost identical and difficult enough
to be distinguished, five tables with numerical values have been included.
The differences are small enough, but they exist. In all cases the vortex
deaden in space. As a check of results that have been obtained, a com-
parison between numerical and exact solutions is presented. As expected,
when the fractional parameters are in close proximity of one and the third
parameter δ tends to one, the velocity profiles corresponding to the nu-
merical solution tends to superpose over that of exact solution.
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1. INTRODUCTION

The decay problem of a potential vortex through a viscous fluid was analytically and
graphically solved by Zierep [19]. It consists in the following initial value problem

∂ω(r, t)

∂t
= ν

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t); r, t > 0 and ω(r, 0) =

Γ0

2πr
, (1. 1)

where ω(r, t) is the rotational component of velocity in the cylindrical coordinate system
(r, θ, z), ν is the kinematic viscosity of the fluid and Γ0 is the circulation of the poten-
tial vortex. The corresponding solution that has been obtained by means of the similarity
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transformation of variables has the simple form

ω(r, t) =
Γ0

2πr

{
1− exp

(
− r2

4νt

)}
. (1. 2)

The value of the circulation Γ(r, t) on a circle of radius r, which is of physical interest
because it describes the diffusion of vorticity, is

Γ(r, t) = 2πrω(r, t) = Γ0

{
1− exp

(
− r2

4νt

)}
. (1. 3)

The solution of this interesting problem has been already extended to second grade [10],
Maxwell [8] and Oldroyd-B [9] fluids. In all cases, the classical solutions (1.2) and (1.3)
have been recovered as limiting cases of the corresponding solutions. The decay of the
potential vortex and of the corresponding tangential shear stress in such fluids have been
graphically underlined and discussed and comparisons with viscous fluids have been also
provided. Unfortunately, the usage of fractional derivatives in the governing equations of
Newtonian fluids has been never taken into consideration although the interest for frac-
tional models has been substantially increased in the last time.

Fractional calculus gained importance and popularity due to its vast potential of ap-
plications in various fields including rheology, quantum mechanics, heat transfer, poly-
mer physics, chemical physics and many others. The first authors who applied fractional
derivatives in viscoelasticity are Bagley and Torvik [2] and a very good agreement with
experimental results using fractional calculus has been obtained by Caputo and Mainardy
[5, 6]. It seems that the fractional differential equations accurately describe different phys-
ical phenomena than the corresponding ordinary partial differential equations and the first
authors who used a time fractional derivative in the governing equation of a viscous fluid
were Debnath and Bhatta [7]. Recently, Pan et al. [15] used the spatial fractional deriva-
tive in the temperature equation and found it more capable to explain the abnormal thermal
conductivity enhancement as compared with the integer order derivative.

On the other hand, the fractional models are more adequate because the fractional or-
der derivatives can describe memory and hereditary properties of materials [14]. Further-
more, Makris et al. [13] used experimental data in order to calibrate a fractional derivative
Maxwell model. More exactly, they found the value of the fractional parameter so that the
predicted material properties to be in excellent agreement with the experimental data. In
the existing literature, there are more definitions of the fractional derivative and two of them
have been recently used by Abro et al. [1] and Raza [17]. In order to see them, as well
as for an interesting review concerning the applications and the importance of fractional
calculus, we recommend the work of Sheoran and Kundu [18].

Based on the above-mentioned observations, our interest here is to study the decay of a
potential vortex through a viscous fluid using a fractional model. Particularly, we want to
know how the two fractional parameters (temporal and spatial) affect this potential vortex.
For this, the dimensionless fractional partial differential equation governing the motion is
numerically solved by means of the finite difference method. The influence of fractional
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parameters on the decay of potential vortex and the circulation Γ(r, t) is graphically un-
derlined and discussed and comparisons with the classical solutions (1.2) and (1.3) are
also included. However, in order to bring to light all hypotheses under which the classical
solution (1.2) exists, we determined it by means of the integral transform method.

2. STATEMENT OF THE PROBLEM

In the following, we consider the partial differential equation (1.1)1 with the initial
distribution of velocity

ω(r, 0) =
Γδ

2πrδ
; δ ∈ (0, 1]. (2. 4)

The new initial condition is a generalization of the condition (1.1)2. It allows us to enlarge
(δ > 1) or to diminish (δ < 1) the vortex intensity.

In order to provide solutions that are free of the flow geometry, we introduce the next
non-dimensional entities

t∗ =
t

t0
, r∗ =

r

(Γδt0)
1
δ+1

, ω∗ =
2πω

(Γδ
tδ0

)
1
δ+1

, Γ∗ =
Γ

(Γ2
δt

1−δ
0 )

1
1+δ

, νδ =
ν

(Γ2
δt

1−δ
0 )

1
1+δ

,

(2. 5)
where t0 is a characteristic time and the dimension of the constant Γδ is m1+δ

s . It reduces to
Γ0 for δ = 1. Introducing Eqs. (2.5) in (1.1) and (2.4) and dropping out the star notation,
it results that

∂ω(r, t)

∂t
= νδ

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t), r, t > 0; ω(r, 0) =

1

rδ
. (2. 6)

As regards the circulation Γ(r, t), its non-dimensional form is

Γ(r, t) = rω(r, t). (2. 7)

The dimensionless fractional model corresponding to this problem is based on the frac-
tional partial differential equation

Dα
t ω(r, t) = νδ

(
D2β
r +

1

r
Dβ
r −

1

r2

)
ω(r, t); r, t > 0, (2. 8)

with the initial condition (2.6)2. Here Dα
t (.) and Dβ

r (.), D2β
r (.) are temporal, respectively

spatial Caputo fractional derivatives which are defined by [3].

Dε
uf(u) =

{
1

Γ(n−ε)
∫ u

0
f(n)(v)

(u−v)1+ε−n dv n ∈ N \ {0}, n− 1 < ε < n,

f (n)(u) n ∈ N.
(2. 9)

According to this definition, in order to determine the value of a time fractional de-
rivative in a given point, all previous values of the respective function have to be taken
into consideration. Consequently, the memory formalism which is a characteristic of the
behavior of viescoelastic fluids can be represented using fractional derivatives.
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3. NUMERICAL SOLUTION

In order to solve the fractional partial derivative equation (2.8) with the initial condition
(2.6)2, we firstly make the transformation s = tα and search for a series solution of the
form

ω(r, s) =

∞∑
m=0

am(r)sm = a0(r) + a1(r)s+ a2(r)s2 + ... (3. 10)

Replacing Eq. (3.10) in (2.8) and using the identity

Dα
t s

m = Dα
t t
mα =

Γ(1 +mα)

Γ(1 +mα− α)
tmα−α =

Γ(1 +mα)

Γ (1 + (m− 1)α)
sm−1; m ≥ 1,

(3. 11)
we obtain
∞∑
m=1

am(r)b−1
m sm−1 = ν

∞∑
m=0

[
D2β
r am(r) +

1

r
Dβ
r am(r)− 1

r2
am(r)

]
sm

= ν

∞∑
m=1

[
D2β
r am−1(r) +

1

r
Dβ
r am−1(r)− 1

r2
am−1(r)

]
sm−1,

(3. 12)

where bm = Γ[1+(m−1)α]
Γ(1+mα) .

Identifying the coefficients of sm−1, we find the recurrence relation

am(r) = νbm

[
D2β
r am−1(r) +

1

r
Dβ
r am−1(r)− 1

r2
am−1(r)

]
; m ≥ 1, (3. 13)

with (see Eqs. (2.6)2 and (3.10))

a0(r) = ω(r, o) =
1

rδ
. (3. 14)

In order to determine the solution of the recurrent equation (3.13), we shall use the finite
difference method for different intervals of the fractional parameter β.

Case 1: 0 < β < 1
2

On the interval [0,R] we consider the grid points 0 = r0 < r1 < r2 < ... < rn =
R; rn = nh, h = R

N , n = 0, 1, 2, ..., N

In this case both β and 2β belong to (0,1) and the Caputo derivative of a function f(r)
in the point rn is given by

Dε
rf(rn) =

1

Γ(1− ε)

∫ rn

0

f ′(ρ)

(rn − ρ)ε
dρ =

1

Γ(1− ε)

n∑
j=1

∫ rj

rj−1

f ′(ρ)

(rn − ρ)ε
dρ. (3. 15)
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For ρ ∈ [rj−1, rj ] the value of the derivative f ′(ρ) can be approximated by f(rj)−f(rj−1)
h .

Consequently, Eq. (3.15) becomes

Dε
rf(rn) =

1

Γ(1− ε)

n∑
j=1

f(rj)− f(rj−1)

h

∫ rj

rj−1

1

(rn − ρ)ε
dρ

=

n∑
j=1

γnj [f(rj)− f(rj−1)]; n = 1, 2, ..., N,

(3. 16)

where
γnj =

1

hΓ(2− ε)
[
(rn − rj−1)1−ε − (rn − rj)1−ε] . (3. 17)

According to the last two equalities, we can write that

D2β
r am−1(rn) =

n∑
j=1

cnj [am−1(rj)− am−1(rj−1)] = Am−1,n, (3. 18)

Dβ
r am−1(rn) =

n∑
j=1

dnj [am−1(rj)− am−1(rj−1)] = Bm−1,n, (3. 19)

where n = 1, 2, 3, ..., N , m = 1, 2, 3, ... and

cnj =
1

hΓ(2− 2β)
[(rn − rj−1)1−2β − (rn − rj)1−2β ],

dnj =
1

hΓ(2− β)
[(rn − rj−1)1−β − (rn − rj)1−β ].

(3. 20)

Using Eqs. (3.18) and (3.19) in Eq. (3.13), we find that

am,n = νbm(Am−1,n + r−1
n Bm−1,n − r−2

n am−1,n); n = 1, 2, ..., N, m = 1, 2, 3, ...
(3. 21)

where am,n = am(rn). Consequently, the solution of the fractional partial derivative
equation (2.8) in the grid points {rn} is given by

ω(rn, t) =

∞∑
m=0

am(rn)sm =

∞∑
m=0

am,nt
αm; n = 1, 2, ..., N, m = 1, 2, 3, ... (3. 22)

where the coefficients am,n are determined by the recurrent equation (3.21).

Case 2: 1
2 < β ≤ 1

In this case 1 < 2β ≤ 2 and, according to the definition (2.9),

D2β
r am−1(r) =

1

Γ(2− 2β)

∫ r

0

a′′m−1(ρ)

(r − ρ)2β−1
dρ. (3. 23)

On the interval [rj−1, rj ] the second order derivative a′′m−1(ρ) can be approximated by
the relation

a′′m−1(ρ) ≈ am−1(rj+1)− 2am−1(rj) + am−1(rj−1)

h2
; j − 1, 2, ..., n, m = 1, 2, 3, ...

(3. 24)
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and the Caputo derivative D2β
r am−1(r) in the grid point rn is given by

D2β
r am−1(rn) =

n∑
j=1

am−1(rj+1)− 2am−1(rj) + am−1(rj−1)

h2Γ(3− 2β)
×

[(rn − rj−1)2−2β − (rn − rj)2−2β ] = Cm−1,n.

(3. 25)

The Caputo derivative Dβ
r am−1(rn) is approximated by the same equality (3.19) and

the approximate solution of our equation (2.8) is again given by Eq. (3.22) with

am,n = νbm(Cm−1,n + r−1
n Bm−1,n − r−2

n am−1,n); n = 1, 2, ..., N, m = 1, 2, 3, ...
(3. 26)

Case 3: β = 1
2

In this case 2β = 1 and the equality (3.13), in rn, becomes

am(rn) = νbm[a′m−1(rn) +
1

rn
D

1
2
r am−1(rn)− 1

r2
n

am−1(rn)]; m ≥ 1. (3. 27)

Direct computations show that D
1
2
r am−1(rn) can be approximated by

D
1
2
r am−1(rn) ≈ 2

n∑
j=1

am−1(rj)− am−1(rj−1)

h
√
π

[(rn − rj−1)
1
2 − (rn − rj)

1
2 ] = Dm−1,n.

(3. 28)
while

a′m−1(rn) ≈ am−1,n − am−1,n−1

h
= Em−1,n. (3. 29)

Introducing Eqs. (3.28) and (3.29) in (3.27), it results that

am,n = νbm(Em−1,n + r−1
n Dm−1,n − r−2

n am−1,n). (3. 30)

4. EXACT SOLUTION FOR α = β = 1, δ = 1

It is worth pointing out the fact that our numerical solutions from the previous
section are not conclusive without any comparison with an exact solution. Such a solution,
as it results from introduction, has been provided by Zierep without any proof. He used
the similarity by transformation of variables but did not present the hypotheses (restrictive
conditions) under which this solution exists. In order to bring to light these conditions, and
to avoid repetition, we shall determine this solution using the Hankel transform. To do that,
in addition to the natural conditions

ω(r, t),
∂ω(r, t)

∂r
→ 0 as r →∞, (4. 31)

the following supplementary hypotheses

lim
r→0

rω(r, t) = 0, lim
r→∞

rω(r, t) <∞, lim
r→0

r
∂ω(r, t)

∂r
<∞, lim

r→∞
r
∂ω(r, t)

∂r
<∞,

(4. 32)
have to be imposed. The two conditions from Eq. (4.31) assure the fact that the fluid is
quiescent at infinity and there is no shear in the free streems [4, 16].
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Now, multiplying Eq. (2.6)1 by rJ1(ρr) and integrating with respect to r from 0 to
infinity, we find that

∂ωH(ρ, t)

∂t
= ν

∫ ∞
0

rJ1(ρr)

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t)dr, (4. 33)

where J1(.) is the standard Bessel function of first kind and order one, and

ωH(ρ, t) =

∫ ∞
0

rω(r, t)J1(ρr)dr, (4. 34)

is the Hankel transform of ω(r, t).

Direct computations clearly show that, in the view of previous conditions (4.31) and
(4.32), the integral from Eq. (4.33) reduces to (see also [7])∫ ∞

0

rJ1(ρr)

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, t)dr = −ρ2ωH(ρ, t). (4. 35)

Introducing Eq. (4.35) in (4.33) and bearing in mind the initial condition (2.6)2 with δ = 1
and the fact that the Hankel transform of 1

r is 1
ρ , we attain to the next initial value problem

∂ωH(ρ, t)

∂t
+ νρ2ωH(ρ, t) = 0; ωH(ρ, 0) =

1

ρ
, (4. 36)

whose solution is given by

ωH(ρ, t) =
1

ρ
e−νρ

2t; t > 0. (4. 37)

Finally, applying the inverse Hankel transform to Eq. (4.37) and using the known result
[12]. ∫ ∞

0

J1(ρr)e−a
2ρdρ =

1

r

{
1− exp

(
− r2

4a2

)}
, (4. 38)

we find

ω(r, t) =
1

r

{
1− exp

(
− r2

4νt

)}
, (4. 39)

which is just the dimensionless form of the classical solution (1.2). Introducing Eq. (4.39)
in (2.7), the corresponding dimensionless form of the circulation Γ(r, t) is

Γ(r, t) = 1− exp
(
− r2

4νt

)
. (4. 40)

5. NUMERICAL RESULTS AND DISCUSSIONS

Exact solutions for the velocity ω(r, t) and the circulation Γ(r, t) corresponding
to the decay of a potential vortex through a viscous fluid, with or without time fractional
derivative, have been developed and discussed by Fetecau et al. [11], respectively Zierep
[19]. The purpose of this work is to extend the previous results to a fractional model with
temporal and spatial fractional derivatives. Moreover, in order to obtain a larger variation
of the vortex magnitude, the initial distribution of velocity was taken under the form (2.4).
Due to the computing difficulties, as well as of the intricate form of an exact solution, the
problem is numerically solved using a software based on the finite difference method. In
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the classical case, when α = β = δ = 1, the exact solution is determined using Hankel
transform in order to bring to light all restrictions in which this solution exists.

Now, in order to see the influence of fractional parameters α and β on the dimension-
less velocity ω(r, t) and the corresponding circulation Γ(r, t), their profiles are depicted in
Figs. 1-5 for δ = 0.25 or 0.5 and different values of α and β. Since these profiles are very
close and difficult to be distinguished, the tables 1-5 containing the exact values of the two
physical entities have been added. Finally, in order to emphasize the accuracy of numerical
solutions that have been here obtained, the diagrams of ω(r, t) and Γ(r, t) are presented for
the different values of δ → 1 and α = β = 0.95 (nearby to one) in Fig. 6. In all figures
ν = 0.003 (air), Γ0 = 4 and t0 = 3 in SI units.

In Figs. 1 and 2 the diagrams of velocity and circulation against r are displayed at three
values of α, two values of δ and fixed values of t and β ∈

(
0, 1

2

)
. The diagrams of the two

physical entities seem to be almost identical for all values of r, but the difference between
their values appears in Tables 1 and 2. Approximately speaking, in all cases the fluid veloc-
ity smoothly decreases from maximum values in the vicinity of r = 0 to the zero value for
large values of r while the circulation increases from the zero value to the asymptotic value
for r going to infinity. The influence of δ, as it results from the two tables, is significant.
In addition, as expected, the values of velocity and circulation are higher for δ = 0.5 as
compared to those corresponding to δ = 0.25. Consequently, the vortex intensity decreases
for decreasing values of δ. In the case of δ = 0.25 and α = 0.45 or 0.65 the fluid velocity
increases for low values of r and then decreases to the asymptotic value.

Figs. 3 and 4 present similar diagrams when the temporal fractional parameter α is fixed
and β varies between 0 and 1

2 and the results are almost identical both as form and intensity.
Fig. 5 presents the diagrams of velocity and circulation when α varies between (0,1) and
β = 0.95 is greater than 1/2. In this case, their profiles have the same form as those of
classical solutions for all values of α but seem to be identical. This is the reason that we
included here the table 5.

In the last figure 6, the profiles of ω(r, t) and Γ(r, t) against r are presented both for
ordinary and fractional fluids when α = β = 0.95 (very close to one) and δ going to one.
As expected, the velocity diagrams are almost identical as form to those obtained by Zierep
[19, Fig. 7] and Fetecau et al. [11, Fig. 1]. More exactly, in all cases, the fluid velocity
increases up to a maximum value in the proximity of r = 0 and then smoothly decreases
to the zero value for increasing values of r. Consequently, the vortex intensity diminishes
for increasing values of r and the vortex deaden in space. Furthermore, when δ → 1, the
velocity profiles tend to superpose over that corresponding to the ordinary case. As regards
the circulation Γ(r, t), as well as in [11, Fig.2], it smoothly increases from zero value to the
asymptotic value 1.
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Velocity ω(r, t) Circulation Γ(r, t)
β = 0.45 β = 0.45

r α = 0.45 α = 0.65 α = 0.85 α = 0.45 α = 0.65 α = 0.85
0.015 2.15961 2.21563 2.29752 0.03224 0.03323 0.03446
0.03 2.22382 2.24535 2.26954 0.0667 0.06736 0.06809

0.045 2.0965 2.10641 2.11692 0.09434 0.09479 0.09526
0.06 1.98118 1.98654 1.99215 0.11887 0.11919 0.11953

0.075 1.88711 1.89039 1.89381 0.14153 0.14178 0.14204
0.09 1.81003 1.81222 1.81448 0.1629 0.1631 0.1633

0.105 1.74567 1.74722 1.74881 0.1833 0.18346 0.18363
0.12 1.69091 1.69205 1.69323 0.20291 0.20305 0.20319

0.135 1.64354 1.64441 1.64531 0.22188 0.222 0.22212
0.15 1.60199 1.60267 1.60338 0.2403 0.2404 0.24051

Table 1: Dimensionless velocity and circulation values corresponding to
Fig. 2.1 for different values of r

Velocity ω(r, t) Circulation Γ(r, t)
β = 0.45 β = 0.45

r α = 0.45 α = 0.65 α = 0.85 α = 0.45 α = 0.65 α = 0.85
0.015 5.63885 5.84042 6.10644 0.08458 0.08761 0.0916
0.03 5.19504 5.26196 5.33712 0.15585 0.15786 0.16011

0.045 4.49051 4.51921 4.55007 0.20207 0.20336 0.20475
0.06 3.97095 3.9858 4.00151 0.23826 0.23915 0.24009

0.075 3.5868 3.59557 3.60476 0.26901 0.26967 0.27036
0.09 3.29196 3.29762 3.30354 0.29628 0.29679 0.29732

0.105 3.05773 3.06163 3.06569 0.32106 0.32147 0.3219
0.12 2.86633 2.86915 2.87209 0.34396 03443 0.34465

0.135 2.70636 2.70848 2.71068 0.36536 0.36564 0.36594
0.15 2.57017 2.57181 2.57351 0.38553 0.38577 0.38603

Table 2: Dimensionless velocity and circulation values corresponding to
Fig. 2.2 for different values of r

Velocity ω(r, t) Circulation Γ(r, t)
α = 0.65 α = 0.65

r β = 0.10 β = 0.30 β = 0.50 β = 0.10 β = 0.30 β = 0.10
0.015 2.15725 2.17911 2.20052 0.03236 0.03269 0.03301
0.03 2.23585 2.24123 2.24418 0.06708 0.06724 0.06733

0.045 2.10353 2.10567 2.10637 0.09466 0.09476 0.09479
0.06 1.98544 1.98652 1.98668 0.11913 0.11919 0.1192
0.75 1.88998 1.89058 1.89057 0.14175 0.14179 0.14179
0.09 1.81212 1.81247 1.81238 0.16309 0.16312 0.16311

0.105 1.74728 1.74749 1.74737 0.18346 0.18349 0.18347
0.12 1.69219 1.69232 1.69219 0.20306 0.202308 0.20306

0.135 1.6446 1.64467 1.64454 0.22202 0.22203 0.22201
0.15 1.60289 1.60292 1.60279 0.24043 0.24044 0.24042

Table 3: Dimensionless velocity and circulation values corresponding to
Fig. 2.3 for different values of r
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Velocity ω(r, t) Circulation Γ(r, t)
α = 0.65 α = 0.65

r β = 0.10 β = 0.30 β = 0.40 β = 0.10 β = 0.30 β = 0.40
0.015 5.64259 5.7164 5.78902 0.08464 0.08575 0.08684
0.03 5.24415 5.25754 5.26216 0.15732 0.15773 0.15786

0.045 4.51819 4.52193 4.52117 0.20332 0.20349 0.20345
0.06 3.98755 3.98874 3.98742 0.23925 0.23932 0.23925

0.075 3.59781 3.59808 3.59681 0.26984 0.26986 0.26976
0.09 3.29983 3.29971 3.2986 0.29698 0.29697 0.29687

0.105 3.06376 3.06337 3.06241 0.32169 0.32165 0.32155
0.12 2.871 2.87062 2.86979 0.34452 0.34447 0.34438

0.315 2.71015 2.70973 2.70901 0.36587 0.36581 0.36572
0.15 2.57332 2.5729 2.57226 0.386 0.38593 0.38584

Table 4: Dimensionless velocity and circulation values corresponding to
Fig. 2.4 for different values of r

Velocity ω(r, t) Circulation Γ(r, t)
β = 0.95 β = 0.95

r α = 0.45 α = 0.65 α = 0.85 α = 0.45 α = 0.65 α = 0.85
0.015 1.84312 1.89217 1.96663 0.02765 0.02838 0.0295
0.03 2.00281 2.04255 2.09158 0.06008 0.06128 0.06275

0.045 1.97881 2.00315 2.03006 0.08905 0.09014 0.09135
0.06 1.91084 1.92547 1.9409 0.11465 0.11553 0.11645

0.075 1.83983 1.84917 1.85895 0.13799 0.13869 0.13942
0.09 1.77533 1.78175 1.78852 0.15978 0.16036 0.16097

0.105 1.71857 1.72327 1.72828 0.18045 0.18094 0.18147
0.12 1.6688 1.67241 1.6763 0.20026 0.20069 0.20116

0.135 1.62491 1.6278 1.63094 0.21936 0.21975 0.22018
0.15 1.58592 1.58829 1.59089 0.23789 0.23824 0.23863

Table 5: Dimensionless velocity and circulation values corresponding to
Fig. 2.5 for different values of r

FIGURE 1. Velocity and circulation profiles against r for fractional
model when δ = 0.25, β = 0.45 < 1

2 and different values of α
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FIGURE 2. Velocity and circulation profiles against r for fractional
model when δ = 0.5, β = 0.45 < 1

2 and different values of α

FIGURE 3. Velocity and circulation profiles against r for fractional
model when δ = 0.25, α = 0.65 and different values of β < 1

2

FIGURE 4. Velocity and circulation profiles against r for fractional
model when δ = 0.5, α = 0.65 and different values of β < 1

2
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FIGURE 5. Velocity and circulation profiles against r for fractional
model when δ = 0.25, β = 0.95 > 1

2 and different values of α

FIGURE 6. Velocity and circulation profiles against r for ordinary and
fractional models at different values of δ

6. CONCLUSION

The decay of a potential vortex in a Newtonian fluid is numerically studied using
a fractional model with temporal and spatial fractional derivatives. To allow a larger vari-
ation of the vortex magnitude, the initial distribution of velocity has been a little changed.
The employment of fractional parameters allow us to get a larger scale of values of the
solutions in which the memory effects are taken into consideration. Furthermore, there
exists the possibility to determine the values of fractional parameters so that the predicted
characteristics of the model to be in excellent agreement with the exact data corresponding
to those of a real vortex. The intensity or the force of vortex can be also extended or dimin-
ished by means of the initial condition (2.6)2.
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In order to bring to light the influence of fractional parameters on the vortex, the profiles
of velocity ω(r, t) and the circulation Γ(r, t) are presented in Figs. 1-5 for two different
initial conditions (δ = 0.25 and 0.5) and diverse values of α and β. As these profiles are
difficult to be distinguished, five tables with exact values are included. The close values of
the magnitude of the two relevant physical entities at fixed values of α and β but different
values of r justify the proximity of their diagrams. In Fig. 6, for comparison, the diagrams
of the same entities are presented both for ordinary and fractional model for values of α
and β closed to one and δ going to one. The main conclusions can be summarized as:

• In all cases the fluid velocity increases until a maximum value in the vicinity of
r = 0 and then smoothly decreases to the zero value for large values of r.

• The circulation Γ(r, t) smoothly increases from zero value to the asymptotic value
1.

• Fluid velocity, as well as the circulation, is an increasing function with respect to
the fractional parameters α and β if δ < 1 . Consequently, as expected, the vortex
intensity is lower for fractional in comparison to ordinary fluids. An opposite effect
appears when δ > 1 but the corresponding graphs are not included here.

• For α = β = 0.95 (around one) and δ going to one, as it was to be expected, the
profiles of velocity and circulation tend to superpose over those corresponding to
ordinary fluids.

FIGURE LEGENDS

Fig. 1. Velocity and circulation profiles against r for fractional model when δ = 0.25. β =
0.45 < 1/2 and different values of α.

Fig. 2. Velocity and circulation profiles against r for fractional model when δ = 0.25, β =
0.45 < 1/2 and different values of α.

FIg. 3. Velocity and circulation profiles against r for fractional model when δ = 0.25, α =
0.65 and different values of β < 1/2.

Fig. 4. Velocity and circulation profiles against r for fractional model when δ = 0.5, α =
0.65 and different values of β < 1/2.

Fig. 5. Velocity and circulation profiles against r for fractional model when δ = 0.25, β =
0.95 > 1/2 and different values of α.

Fig. 6. Velocity and circulation profiles against r for ordinary and fractional models at
different values of δ.
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