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Abstract. The aim of this article is to compare the Sobolev gradient tech-
nique with the Adomian decomposition method for computing a Ginzburg-
Landau equation. A convergence criterion for the application of ADM to
the generalized Ginzburg-Landau equation is also presented. From the
computational point of view, the Sobolev gradient is efficient, easy to use
and offer greater accuracy in case of larger domains than ADM.
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1. INTRODUCTION

A numberof reallife problemsare modeledasnonlineardifferential equationswhich
arenot easyto handledueto the difficulties in solvingthemeitheranalyticallyor numer-
ically. We encounteisuchproblemsin manybrancheof scienceandengineering.While
solvingtheseproblemswe haveto makecertainassumptionso solvethem. Thetraditional
methodausuallyneedinearization discretizationperturbatioror sometransformationgn
orderto solvenonlinearsystems.

Thesemethodsinclude Adomian decompositiormethod,introducedby Adomian|[2, 3]

which providesa quickly convergenseriessolutionandneedsno suchalterations.Other
methodsncludehomotopydecompositioomethod,Taylor collocationmethod differential
transformmethod,homotopyperturbationmethod,variationaliteration method[5, 6, 9,

16,18,19,7,10,11,29] andmanymore[12, 13, 14, 23, 30, 33, 37]. Thesemethodshas
succesgo dealwith nonlinearproblems,but the region of convergences not up to the
desiredsolution. To overcomethesedrawbacksyesearcthasbeencarriedto derive new
algorithmsbased on the gradietgchniques.

For the solution of PDEs, it is convenientto constructa functional which representhe
sumof squareof residuesf the equationto be solvedandto find the critical point of that
functional. The pointsat which the functionalis minimal are the solutionsof the given
differential equation. This is the basisof steepestiescenimethods. This methodalways
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gives the minimum of the functional. However, the biggest disadvantage of the method is
that, if it is used on a badly scaled system to locate the minimum, it will take an infinite
number of iterations. The convergence speed is slow since each step taken towards a min-
imum is very small. If we take larger steps then the result obtained may have large errors.
To overcome this problem, the recently developed theory of Sobolev gradients [27] gives a
systematic way to deal such problems, both in function spaces and finite dimensional set-
tings. Sobolev gradients have been successfully applied for the solution of ODEs [27, 25]
and PDEs [25, 8].

The method has also been used to find minima of energy functionals. Sial et. al. mini-
mized energy functionals related with GL models [34, 35, 36] and their corresponding time
evolution is discussed in [31, 32]. Karotson used this method as a preconditioner for non-
linear elliptic problems [22], for the potential equation in electrostatic [20] and semilinear
elliptic systems [21]. Knowles used it to solve some inverse problems in groundwater mod-
eling [15] and in elasticity [24]. Nattika and Sauter [28] applied this method successfully
to solve differential algebraic equations.

Many researchers have compared the ADM with other existing methods to solve stochastic
and deterministic problems. Edwerd et. al. [17] have compared the ADM and RK meth-
ods to approximate solutions of predator prey model equations. Wazwaz [38] showed a
comparison between ADM and Taylor series methods. In this paper the aim is to compare
ADM with some gradient descent methods such as Sobolev gradient method. The solution
of the Ginzburg-Landau (GL) equation using ADM has already been provided by Adomian
[4] but no convergence analysis of the proposed method is discussed. So, one of our contri-
bution in this article is to furnish that the sufficient condition of convergence for the series
solution obtained.

The paper is organized as follow, in sectiarthe proposed model is presented, secion
deals with the ADM applied to G-L equation, in sectiénconvergence proof in case of

real G-L equation is discussed. Next we apply the Sobolev gradient method on the given
model problem. In the subsequent section, numerical results are presented by solving an
example and in the end, the summary of the results obtained is discussed.

2. A MODEL PROBLEM
Consider the GL equation
dp d%p

- = i , 2 ) -
5 = 0~ (kt+id) [p[Tp+ (p+ib)os, 2.1

with corresponding initial condition

p(x,0) =g(x),0<z<1,t>0
whereb, ¢, k, p and-~y are realy > 0, k£ > 0. Takingb, ¢ = 0, we get the real GL equation

Op 0?

o _ . _ 2 gp
5 = P klpptugs. (2.2
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The aim of this research is to furnish the condition which is sufficient for the convergence
of the GL equation in real case.

3. ADOMIAN DECOMPOSITIONMETHOD (ADM)
To solve Eqg. (2. 1) using ADM we define two operators such that
0 0?
- L,=—.
ot and Ly Ox?

Writing the given equation in operator form

LtE

Lip = (p+ib)Lap — (k +ic) | p [* p+ yp. (3.3)
L, is an invertible operator anfl; * represents one-fold integration such thag,'(-) =
t
Of(~)dt.
By applyingZL; * on both side of Eq. ( 3. 3), we have
Li'Lip =Ly 'yp — (k+ic)L ' | p|? p+ (u+ib) Ly Lap, (3.4)
pla,t) = p(z,0) = yLy 'p = (k+ic) Ly | p [P p+ (n+ib) Ly ' Lop. (3.5)
pla,t) = g(a) + Ly 'p = (k+ic) Ly [ p [P p+ (4 i) Ly ' Lop. (3. 6)

p(z,t) can be written in decomposition form as

- ipn(z,t). (3.7
Putting Eq. (3. 7)in Eq. (3. 6), we ge;0
P, = o) #4573 pn) = L (3 Al )
n=0
+(p+ z‘b)Lt_le(i Pn)- (3.8)
n=0
po = g(z) = p(z,0), (3.9)
p1 =L, 'po — (k +ic) Ly (Ag) + (4 ib) Ly * Lapo, (3. 10)

p2 =L 'p1 — (k+ic)L;(Ay) + (u+ib)L; ' Lopy, (3. 11)
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Pn+1 = 'YLt_lpn —(k+ Z‘C)Lt_l(An) + (1 + ib)Lt_lLrpw (3.12)

where A,, are the Adomian polynomials which need to be evaluated, and-s&rm ap-

proximant to evaluatg is ¢,, = > p, that converges tp.
n=0

Now to evaluated{| p |*}, we introduce the following functions

| p |=pn(p); n(p) = H(u) — H(—u),

whereH andn are the Heaviside step functions of first and second kind respectively. The
functions are defined as below

H = +1, forp > 0 and0 for p < 0,

and
n=+1,forp > 0and—1forp < 0.

Therefore,

lp 1> p=p*n*(p).
Now we find A{| p |2 p}

A = Pg,

A= 317%]91,

Ay = 3pip2 + 3p3po,

Az = p} + 3pgps + 6pop1p2,

Ay = 3pipa + 3pip2 + 3p3po + 6pop1ps,

As = 3pgps + 3pips + 3p3p1 + 6pop1pa + 6pop2ps,

By putting these values into Eq.3.8), we get all the components aef The analytical
solution can be found by using the approximation

ple.t) = lm o, (3.13)
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4. CONVERGENCEANALYSIS

Consider the Hilbert spacH = L?((c,d) x [0,7]), the set of continuous function from
(¢c,d) x [0,7] to R, definez : (¢,d) x [0,7] — R with the inner product

<p,w >pg= / p(z, s)w(z, s)dsdz, 4. 14)
(¢,d)x[0,7]
and
p?(z, s)dsdx < 4o0.
(e,d)x[0,7]
The associated norm is defined as
I p =< p,p >u= / 2(x, 5)dsdz. (. 15)

(e,d)x[0,7]
Next we consider the GL equation in operator form
¢ 2
L(¢):H@—k|¢| ¢+ . (4. 16)
In the following theorem, we prove the convergence of our proposed method.

Theorem 4.1. The ADM method applied to the GL equation converges towards a solution
if the operator L) satisfies the following hypotheses:

Hy: (L(¢) — L(¥), ¢ — ) > K(&,9)|lé — |, M(d, ) >0, V¥ p,¢ € H.

H, : ForanyK > 0,3C(K) > 0, such that forp, ¢ € H, with ||¢]| < K, ||| < K , we
have(L(¢) — L(v),y) < C(K)[|¢ — ||yl foreveryy € H.

Proof. First, we prove thdi; (the strong monotonicity) for the operatorgd)(

L)~ L) = (6~ ) — k(P ()6 — P 0)0°) + (6 — )
iy 2 .
= 6~ ) KO0 - ) Y
+ (o —). (4. 17)

Now we have

_n2
(L(9) — L), 6 — ) = (5o (6~ ¥),6 — ¥}

2
N (@) (—(d — 1) Y ¢* ' — ) +v( — ¥, 6 — V). (4. 18)

=0

By using the Cauchy-Schwarz inequality along with the property@;@fin H, we get
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0? 0?
(3@ 0)6-4) < lss6—0)ll6— vl

51||¢ - ’(/}H27

IA

or

iy
<w(¢ — ), ¢ — ) > —d1]|¢ — ¥|°.

Again by using Cauchy-Schwartz inequality, we have

«¢w§é&iW¢¢hgmﬂ¢wﬁ
Hence o
(=(¢—7) ZQ:d?Q’ﬁ//i, ¢ — ) > =3K%|j¢ — |*.
Similarly, we can write -

(@ —v,0—v)=llo—v|*
By using Eqgs (18), (20) and (22) in Eq. (17), we have

pdille — ¥l|> — 3kn? (@) M> (| — ||* + ]| ¢
[ud1 — 3kn? (@) M? —~]|¢ — ¥||?

(L(¢) = L(), ¢ — ) > Ml —¢]|*, M >0
whereM = ué; — 3kn?(¢)K? — v, which implies tha#; > %.

(L(¢) = L(¥), ¢ = ¢)

2
2

Next we prove thefl; hypothesis

(L)~ L)1) = 15 (6= h.3) = W66 — ) 3 60 )

=0

+7{(é = ¥),y).

[ + kn?(6)3M? +Allé — ¢ |ll|y]
C(E)llo — Lyl

I VARVAN

where

(4. 19)

(4. 20)

(4. 21)

(4. 22)

(4. 23)

— 9|

(4. 24)

(4. 25)

pd2ll6 = llllyll — kn*(9)3M>[l6 — wllllyll + vllé — ¢yl

(4. 26)
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C(K) = udy + 3kK*n*(¢) +~ > 0, (4. 27)

which completes the second axiom of the proof. a

5. SOBOLEV GRADIENT METHOD

The current section is devoted to define steepest descent in continuous space using Sobolev
gradients. A comprehensive analysis associated with frame work of Sobolev gradients is
presented in [27].

Let us consider thafl denotes a complete inner product spaGeis a real valued!

function fromH to R. By the Riesz representation theorem, for each H, there exists a

unique member off, denoted byW ;G such that

J'(y)h =< h,VugJ(y) >u, y,h € H. (5. 28)

Define the gradient of aty to beV J. Each inner product has an associated gradient and
descent direction. To speed up the minimization process, the selection of an inner product
space is crucial and vital in steepest descent method.

A number of gradients for a functiod can be constructed by choosing different inner
product spaces which have diverse numerical chracteristics. If the gradient of a function

is defined in a Sobolev space, then we call that gradient a Sobolev gradient. For the detailed
introduction of Sobolev spaces, readers are advised to see [1]. The steepest descent method
can be divided in two categories: continuous steepest descent and discrete steepest descent.
Let Vg J be as given by Eq. (5. 28 ) than discrete steepest descent means a process of
constructing a sequendgy. } and the starting point of the sequenge

Yk = Yk—1 *5k(vHJ)(yk—1)7 kil,?,.... (5 29)
For each iteratiott;, dy, is chosen in such a way that it minimizes, if possible,

J(@k-1 = 6k(VEJ)(Yr-1))- (5. 30)

The functionp : [0,00) — H in contrast to continuous steepest descent, is constructed
such that

% = —=VG(p(t)), p(0) = pinitiai- (5.31)

With appropriate conditions off, p(t) — p~ WhereG(p..) represents the minima ¢f.

Thus (5. 29) can be interpreted to a numerical simulation procedure for approximating
results of ( 5. 31 ). Regarding the existence and uniqueness of the continuous steepest
descent method, we have the following theorems due to Neuberger:

Theorem 5.1. Let G be a non-negative’()) function (a differentiable function whose
derivative is continuous) on a Hilbert spaéé which has a locally lipschizian gradient.
Then, for each: € H, there exists a unique functign: [0, co) — H with
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p(0) = =,

()= —(VaG)p(t), t>0.

Theorem 5.2. Suppose all the conditions in the hypothesis of the above theorem are satis-
fied and

lim p(t) = u,

t—oo

exists, then

VsG(p(t)) = 0.

Next, consider the GL Eqg. (2. 2) on the interval [0,1] with the given initial conditions.
To solve the equation numerically, our instigation is based on gradient descent methods. A
number of gradients of functionals is constructed to employ these methods.

Consider a vectgs € RM on a patterned rectangular mesh. We symbolizé pgr H?2
the vector spac& provided with the standard inner productp, n >= > P ().

The operatordy, Dy, D11 : RM — RM~2 are defined by

Do(p)(j) = p(j +1), (5. 32)
Di(p)(j) = ]%;p(j), (5.33)

(p(j +2) —2p(j +1) + p(i))
62 ’

forj =1,2,..,M — 2 andf, = ﬁ denoteghe spacing between the nodeg), is

the averaging operator, and picks all the points in the grid except endpoints. The operators

D, and D, estimates the first and second derivatives by using standard central difference

formulas. The theoretical development in this paper does not affect by the choice of central

difference formula, other possibilities may also be feasible.

The numerical description of the given problem to evolve from one tiwet + J; is to

compute

D11(p)(j) = (5.34)

Do (1= 70)p + kéep® — f) — ude D11 (p) = 0, (5. 35)

where f present in the equation is value pht the previous time angis thep desired at
the next time level. Defing € RM~2 by

F(p) = Do (1 —8¢)p + kép* — f) — ué, D11 (p), (5. 36)
which is zero when we have the desipedNext we define a functiona¥(p)
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G(p) = M, (5.37)

is zero if F'(p) is zero.

5.1. Gradients and minimization. The gradientVG(p) € RM of a functionalG(p) in
Ls is found by solving

G(p+h) = G(p)+ < VG(p),h > +O(h?), (5. 38)

for some test functions. To increase the functional fastest one has to move in the gradient
direction. Thus to decrease the functional fastest, one has to move in the opposite direction
—VG(p). This is the footing of any steepest descent algorithm. So to re@iipg we
replace an initiap with p — AVG(p). Here\ is the step size taken towards minimum. For

the next iteration, once again we find the gradient and step taken towards minimum. The
process is repeated until eith@(p) or VG (p) is smaller than some set tolerance. The step
size A can vary for each iteration. To find optim&kome line minimization routine can be
used, but in our experiments we used fixed value of it.

In this particular case,

VG(P) = [(1 — o + 3k§tp2)D6F(p) - M(SthlF(p)} ) (5.39)

gives the coveted gradient.

The steepest descent performed.inspace is inefficient. As we increase the dimension of

the problem or increase the number of nodes, the steps taken to reach minimum increase
substantially. Rather than abandoning steepest descent, we look for some other spaces in
which a gradient is defined which overcomes this inefficiency. Neuberger [27] saw that the
gradient defined L, space is rough, therefore compelling us to choose sm&b if the
gradient is smooth than one can use biggeHe suggested that a better way to find the
minimum of a functional is to do the minimization in an appropriate Sobolev space better
suited to the problem.

A new spacéd? in RM with the inner product is defined as

(pm)s = <Do(p),Do(n) > + < Di(p), D1(n) > +
< Dll(p)aDll(n) >, (5 40)
becauseF'(p) andG(p) have Dy, in them. By following Mahavier's idea to construct a

weighted Sobolev space we defined a new Hilbert spagén R . The inner product in
this new space is

(p.mw = (1=05)% < Do(p), Do(n) > + < Di1(p), D1(n) > +
(6¢)> < D11(p), D11(n) >, (5. 41)

because this inner product considers the coefficieni3;fand D in F(p) andG(p).
The desired Sobolev gradie& G(p), V.,G(p) in H3 andHj is found by solving
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(D4Do + DiDy + D{;D11) V,G(p) = VG(p), (5. 42)

(1=6)?DEDy + DiDy + (8,)°Di;D11) VuG(p) = VG(p), (5. 43)

respectively.

6. NUMERICAL RESULTS

Consider the problem

pe—p+ | p PP — Paw = 2(1 — t +2°83), (6. 44)
with the condition

p(z,0) =0. (6. 45)
Now Eg. (16) becomes

Ltp_p+|p|2p_La:p:f(xat)v (6 46)
therefore,

p(z,t) = p(z,0) + Lt_lpn - Lt_lAn + Lt_lepn + Lt_l(f(:c,t)). (6. 47)

o0
The decomposition series solutipfi, t) into > p,(z,t) gives the term by term
n=0

1 1 .
po = p(z,0) + Lt_l(f(x,t)) =t — ixtz + Zaz‘}t‘l (6. 48)

_ _ _ 1 1 1 1
pP1 = Lt 1p0 — Lt 1A0 =+ Lt 1L$p0 = §$t2 — 6$t3 — ngtél — E$3t5

1
+5x4t5 +..., (6.49)

andso on, on the similar pattern we can find the other components as well.
Now we solve given example by the Sobolev gradient method. zLet [0, 1] with the
initial conditionp(z,0) = 0. Writing equation in operator form

F(p) = Do ((1=06:)p+6:2° — (1 —t+a°%) = f) = 6:Duu(p), (6. 50)

the gradient of the functional is given by

VG(p) = [(1 -6 + 36:p*) DLF(p) — 6: DL F(p)] - (6. 51)
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TABLE 1. Comparison of results if,, HZ, H2 with 6, = 0.2 upto5
time steps.
A iterations CPUs M

Ly HZ[ A2 | L, HZ [ A2 | L, H?2 z -
5.0x10°7]3.0]1.7]806.735/ 393 | 114| 7886819 0.789 0.281 |51
- —— 3017 | —— 385|199 | —— 3.593 0.914 | 101
- — = 3017 | —— 371|101 | —— 20.220 | 5.592 | 201
- — = 30|17 | — 381|100 | —— 138.383| 37.628| 401

To study the potency of our algorithm, we assume steepest descent 2, HQQ. To find

the gradients inH3, 1?122 we solve Egs. (34) and (35) by some iterative methods such as
conjugate gradient method.

To solve equation numerically, we discretize our domain ihfonodes with internodal
spacing. The initial state was set = 0.0 on all nodes initially. The functiop was then
evolved. The amended value pfvas taken as correct when the infinity normna¥ (p))

was less than0~7.

To see the efficiency of the algorithm in different spaces, total number of minimization
steps and CPU time were recorded in Tahle

From Tablel the results inif7 are far good than the results in, but the best results are in

0.9 - - - - . . . .
osl. © &o——6—e—» © © ——o
0.7} /'n —o— Euclidean R
Unweighted
0.6} O - Weighted b
0.5} a i
0.4} -
a
0.3} ’ e
‘a
0.2} e
o iy
0.1f R - PP
g ...
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10

FIGURE 1. Graph of firstl0 iterations in comparison with gradients in
Lo, H2, H3.
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TABLE 2. Comparison of the approximate solution obtained by ADM
and Sobolev gradient methods for time- 1.

T ADM | H2

0.0000 | 0.0000| 0.0000
0.0938 | 0.0934/ 0.0937
0.2188 | 0.2118| 0.2185
0.3125| 0.3117| 0.3121
0.4062 | 0.4039| 0.4032
0.5000 | 0.4823| 0.4956
0.6250 | 0.5963| 0.6086
0.7188 | 0.6814| 0.7012
0.8125 | 0.7709| 0.7988
0.9062 | 0.8523| 0.8791
1.0000 | 0.9543| 0.9786
| Ell~ | 0.0857] 0.0214

In Figure 1 resultsof using steepest descent i, H2, ﬁ% for the first ten iterations
in comparison with infinity norm of the gradient vector, with an initial valueuot= 0
is shown. It is quite evident from the graph that tﬁé gradient is the best option for
convergence.

To show the comparison with ADM, relative error can be subsequently as

p(i) — Pexact|

Pexact ’
(wherepexactis the exact solution of the given GL equation.

To solve the given example with ADM we take fourth order approximation and we
consider the gradient ii%2 space when solving the given problem with descent methods.
Table2 shows the comparative study of Sobolev gradient method with ADM.

From the Table2, we observe that the presented results are in excellent agreement with
ADM.

| E Jloo= maX=1,_ (6.52)

7. CONCLUSION

In this paper, a comparison is given between the ADM and the Sobolev gradient meth-
ods for the solution of GL equation. The obtained results show that the Sobolev gradient
method is robust and effective in terms of accuracy. If the domain of the problem becomes
larger even than this method still converges. This is not true in the case of ADM, as the
rate and region of convergence are potential shortcomings of the method. ADM converges
very slowly for wider regions. The truncated solution is also very inaccurate in that re-
gion, therefore the application area of the method is very much limited. Also to find the
series solution by ADM, the initial state of the system must be known. This is not in the
case of Sobolev gradients. By the introduction of suitable weight functions in the construc-
tion of Sobolev space its performance can be further improved. Using simple optimization
algorithm, for any arbitrary initial guess, this method finds the minimum of a functional.
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The choice of underlying space and gradient plays a vital role in the construction of efficient
algorithms. A number of different gradients can be defined from the same functional, which
have different numerical properties. It is still an open problem as to how we can select a
suitable space and define a gradient in it, such that it is best suited for the given problem
except for linear problems [26].
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