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Abstract. The aim of this article is to compare the Sobolev gradient tech-
nique with the Adomian decomposition method for computing a Ginzburg-
Landau equation. A convergence criterion for the application of ADM to
the generalized Ginzburg-Landau equation is also presented. From the
computational point of view, the Sobolev gradient is efficient, easy to use
and offer greater accuracy in case of larger domains than ADM.
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1. INTRODUCTION

A number of real life problems are modeled as nonlinear differential equations which 
are not easy to handle due to the difficulties in solving them either analytically or numer-
ically. We encounter such problems in many branches of science and engineering. While 
solving these problems, we have to make certain assumptions to solve them. The traditional 
methods usually need linearization, discretization, perturbation or some transformations in 
order to solve nonlinear systems.
These methods include Adomian decomposition method, introduced by Adomian [2, 3] 
which provides a quickly convergent series solution and needs no such alterations. Other 
methods include homotopy decomposition method, Taylor collocation method, differential 
transform method, homotopy perturbation method, variational iteration method [5, 6, 9, 
16, 18, 19, 7, 10, 11, 29] and many more [12, 13, 14, 23, 30, 33, 37]. These methods has 
success to deal with nonlinear problems, but the region of convergence is not up to the 
desired solution. To overcome these drawbacks, research has been carried to derive new 
algorithms based on the gradient techniques.
For the solution of PDEs, it is convenient to construct a functional which represent the 
sum of square of residues of the equation to be solved and to find the critical point of that 
functional. The points at which the functional is minimal are the solutions of the given 
differential equation. This is the basis of steepest descent methods. This method always
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gives the minimum of the functional. However, the biggest disadvantage of the method is
that, if it is used on a badly scaled system to locate the minimum, it will take an infinite
number of iterations. The convergence speed is slow since each step taken towards a min-
imum is very small. If we take larger steps then the result obtained may have large errors.
To overcome this problem, the recently developed theory of Sobolev gradients [27] gives a
systematic way to deal such problems, both in function spaces and finite dimensional set-
tings. Sobolev gradients have been successfully applied for the solution of ODEs [27, 25]
and PDEs [25, 8].

The method has also been used to find minima of energy functionals. Sial et. al. mini-
mized energy functionals related with GL models [34, 35, 36] and their corresponding time
evolution is discussed in [31, 32]. Karotson used this method as a preconditioner for non-
linear elliptic problems [22], for the potential equation in electrostatic [20] and semilinear
elliptic systems [21]. Knowles used it to solve some inverse problems in groundwater mod-
eling [15] and in elasticity [24]. Nattika and Sauter [28] applied this method successfully
to solve differential algebraic equations.
Many researchers have compared the ADM with other existing methods to solve stochastic
and deterministic problems. Edwerd et. al. [17] have compared the ADM and RK meth-
ods to approximate solutions of predator prey model equations. Wazwaz [38] showed a
comparison between ADM and Taylor series methods. In this paper the aim is to compare
ADM with some gradient descent methods such as Sobolev gradient method. The solution
of the Ginzburg-Landau (GL) equation using ADM has already been provided by Adomian
[4] but no convergence analysis of the proposed method is discussed. So, one of our contri-
bution in this article is to furnish that the sufficient condition of convergence for the series
solution obtained.
The paper is organized as follow, in section2, the proposed model is presented, section3
deals with the ADM applied to G-L equation, in section4, convergence proof in case of
real G-L equation is discussed. Next we apply the Sobolev gradient method on the given
model problem. In the subsequent section, numerical results are presented by solving an
example and in the end, the summary of the results obtained is discussed.

2. A MODEL PROBLEM

Consider the GL equation

∂p

∂t
= γp− (k + ic) | p |2 p + (µ + ib)

∂2p

∂x2
, (2. 1)

with corresponding initial condition

p(x, 0) = g(x), 0 ≤ x ≤ 1, t > 0

whereb, c, k, µ andγ are real,µ > 0, k > 0. Takingb, c = 0, we get the real GL equation

∂p

∂t
= γp− k | p |2 p + µ

∂2p

∂x2
. (2. 2)
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The aim of this research is to furnish the condition which is sufficient for the convergence
of the GL equation in real case.

3. ADOMIAN DECOMPOSITIONMETHOD (ADM)

To solve Eq. ( 2. 1 ) using ADM we define two operators such that

Lt ≡ ∂

∂t
and Lx ≡ ∂2

∂x2
.

Writing the given equation in operator form

Ltp = (µ + ib)Lxp− (k + ic) | p |2 p + γp. (3. 3)

Lt is an invertible operator andL−1
t represents one-fold integration such that,L−1

t (·) =
t∫
0

(·)dt.

By applyingL−1
t on both side of Eq. ( 3. 3 ), we have

L−1
t Ltp = L−1

t γp− (k + ic)L−1
t | p |2 p + (µ + ib)L−1

t Lxp, (3. 4)

p(x, t)− p(x, 0) = γL−1
t p− (k + ic)L−1

t | p |2 p + (µ + ib)L−1
t Lxp. (3. 5)

p(x, t) = g(x) + γL−1
t p− (k + ic)L−1

t | p |2 p + (µ + ib)L−1
t Lxp. (3. 6)

p(x, t) can be written in decomposition form as

p(x, t) =
∞∑

n=0

pn(x, t). (3. 7)

Putting Eq. ( 3. 7 ) in Eq. ( 3. 6 ), we get

p(x, t) = g(x) + γL−1
t (

∞∑
n=0

pn)− (k + ic)L−1
t (

∞∑
n=0

An{| p |2 p})

+(µ + ib)L−1
t Lx(

∞∑
n=0

pn). (3. 8)

p0 = g(x) = p(x, 0), (3. 9)

p1 = γL−1
t p0 − (k + ic)L−1

t (A0) + (µ + ib)L−1
t Lxp0, (3. 10)

p2 = γL−1
t p1 − (k + ic)L−1

t (A1) + (µ + ib)L−1
t Lxp1, (3. 11)

...
...
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pn+1 = γL−1
t pn − (k + ic)L−1

t (An) + (µ + ib)L−1
t Lxpn. (3. 12)

whereAn are the Adomian polynomials which need to be evaluated, and anm-term ap-

proximant to evaluatep is φm =
m∑

n=0
pn that converges top.

Now to evaluateA{| p |2}, we introduce the following functions

| p |= pη(p); η(p) = H(u)− H(−u),

whereH andη are the Heaviside step functions of first and second kind respectively. The
functions are defined as below

H = +1, for p > 0 and0 for p < 0,

and
η = +1, for p > 0 and−1 for p < 0.

Therefore,
| p |2 p = p3η2(p).

Now we findA{| p |2 p}

A0 = p3
0,

A1 = 3p2
0p1,

A2 = 3p2
0p2 + 3p2

1p0,

A3 = p3
1 + 3p2

0p3 + 6p0p1p2,

A4 = 3p2
0p4 + 3p2

1p2 + 3p2
2p0 + 6p0p1p3,

A5 = 3p2
0p5 + 3p2

1p3 + 3p2
2p1 + 6p0p1p4 + 6p0p2p3,

.

.

.

By putting these values into Eq.(3.8), we get all the components ofz. The analytical
solution can be found by using the approximation

p(x, t) = lim
n→∞

φn. (3. 13)
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4. CONVERGENCEANALYSIS

Consider the Hilbert spaceH = L2((c, d)× [0, τ ]) , the set of continuous function from
(c, d)× [0, τ ] toR, definez : (c, d)× [0, τ ] →R with the inner product

< p,w >H=
∫

(c,d)×[0,τ ]

p(x, s)w(x, s)dsdx, (4. 14)

and ∫

(c,d)×[0,τ ]

p2(x, s)dsdx < +∞.

The associated norm is defined as

|| p ||2H=< p, p >H=
∫

(c,d)×[0,τ ]

p2(x, s)dsdx. (4. 15)

Next we consider the GL equation in operator form

L(φ) = µ
∂2φ

∂x2
− k | φ |2 φ + γφ. (4. 16)

In the following theorem, we prove the convergence of our proposed method.

Theorem 4.1. The ADM method applied to the GL equation converges towards a solution
if the operator L(φ) satisfies the following hypotheses:

H1 : 〈L(φ)− L(ψ), φ− ψ〉 ≥ K(φ, ψ)‖φ− ψ‖2,M(φ, ψ) > 0, ∀ φ, ψ ∈ H.

H2 : For anyK > 0, ∃C(K) > 0, such that forφ, ψ ∈ H, with ‖φ‖ ≤ K, ‖ψ‖ ≤ K , we
have〈L(φ)− L(ψ), y〉 ≤ C(K)‖φ− ψ‖‖y‖ for everyψ ∈ H.

Proof. First, we prove theH1 (the strong monotonicity) for the operator L(φ)

L(φ)− L(ψ) = µ
∂2

∂x2
(φ− ψ)− k(η2(φ)φ3 − η2(ψ)ψ3) + γ(φ− ψ)

= −µ
−∂2

∂x2
(φ− ψ) + k(η2(φ)[−(φ− ψ)

2∑

i=0

φ2−iψi

+ γ(φ− ψ). (4. 17)

Now we have

〈L(φ)− L(ψ), φ− ψ〉 = −µ〈−∂2

∂x2
(φ− ψ), φ− ψ〉

+kη2(φ)〈−(φ− ψ)
2∑

i=0

φ2−iψi, φ− ψ〉+ γ〈φ− ψ, φ− ψ〉. (4. 18)

By using the Cauchy-Schwarz inequality along with the property of∂2

∂x2 in H, we get
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〈 ∂2

∂x2
(φ− ψ), φ− ψ〉 ≤ ‖ ∂2

∂x2
(φ− ψ)‖‖φ− ψ‖

≤ δ1‖φ− ψ‖2, (4. 19)

or

〈−∂2

∂x2
(φ− ψ), φ− ψ〉 ≥ −δ1‖φ− ψ‖2. (4. 20)

Again by using Cauchy-Schwartz inequality, we have

〈(φ− ψ)
2∑

i=0

φ2−iψi, φ− ψ〉 ≤ 3K2‖φ− ψ‖2. (4. 21)

Hence

〈−(φ− ψ)
2∑

i=0

φ2−iψi, φ− ψ〉 ≥ −3K2‖φ− ψ‖2. (4. 22)

Similarly, we can write

〈φ− ψ, φ− ψ〉 = ‖φ− ψ‖2. (4. 23)

By using Eqs (18), (20) and (22) in Eq. (17), we have

〈L(φ)− L(ψ), φ− ψ〉 ≥ µδ1‖φ− ψ‖2 − 3kη2(φ)M2‖φ− ψ‖2 + γ‖φ− ψ‖2
≥ [µδ1 − 3kη2(φ)M2 − γ]‖φ− ψ‖2

〈L(φ)− L(ψ), φ− ψ〉 ≥ M‖φ − ψ‖2, M ≥ 0 (4. 24)

whereM = µδ1 − 3kη2(φ)K2 − γ, which implies thatδ1 ≥ 3kη2(φ)K2+γ
µ .

Next we prove theH2 hypothesis

〈L(φ)− L(ψ), y〉 = µ〈 ∂2

∂x2
(φ− ψ, y〉 − kη2(φ)〈(φ− ψ)

2∑

i=0

φ2−iψi, y〉

+γ〈(φ− ψ), y〉. (4. 25)

〈L(φ)− L(ψ), y〉 ≤ µδ2‖φ− ψ‖‖y‖ − kη2(φ)3M2‖φ− ψ‖‖y‖+ γ‖φ− ψ‖‖y‖
≤ [µδ2 + kη2(φ)3M2 + γ]‖φ− ψ‖‖y‖
= C(K)‖φ− ψ‖‖y‖, (4. 26)

where
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C(K) = µδ2 + 3kK2η2(φ) + γ > 0, (4. 27)

which completes the second axiom of the proof. ¤

5. SOBOLEV GRADIENT METHOD

The current section is devoted to define steepest descent in continuous space using Sobolev
gradients. A comprehensive analysis associated with frame work of Sobolev gradients is
presented in [27].
Let us consider thatH denotes a complete inner product space,G is a real valuedC1

function fromH to R. By the Riesz representation theorem, for eachx ∈ H, there exists a
unique member ofH, denoted by∇HG such that

J ′(y)h =< h,∇HJ(y) >H , y, h ∈ H. (5. 28)

Define the gradient ofJ aty to be∇HJ . Each inner product has an associated gradient and
descent direction. To speed up the minimization process, the selection of an inner product
space is crucial and vital in steepest descent method.
A number of gradients for a functionJ can be constructed by choosing different inner
product spaces which have diverse numerical chracteristics. If the gradient of a functionJ
is defined in a Sobolev space, then we call that gradient a Sobolev gradient. For the detailed
introduction of Sobolev spaces, readers are advised to see [1]. The steepest descent method
can be divided in two categories: continuous steepest descent and discrete steepest descent.
Let ∇HJ be as given by Eq. ( 5. 28 ) than discrete steepest descent means a process of
constructing a sequence{yk} and the starting point of the sequencey0

yk = yk−1 − δk(∇HJ)(yk−1), k = 1, 2, .... (5. 29)

For each iterationk, δk is chosen in such a way that it minimizes, if possible,

J(xk−1 − δk(∇HJ)(yk−1)). (5. 30)

The functionp : [0,∞) → H in contrast to continuous steepest descent, is constructed
such that

dp

dt
= −∇G(p(t)), p(0) = pinitial. (5. 31)

With appropriate conditions onG, p(t) → p∞ whereG(p∞) represents the minima ofG.
Thus ( 5. 29 ) can be interpreted to a numerical simulation procedure for approximating
results of ( 5. 31 ). Regarding the existence and uniqueness of the continuous steepest
descent method, we have the following theorems due to Neuberger:

Theorem 5.1. Let G be a non-negativeC(1) function (a differentiable function whose
derivative is continuous) on a Hilbert spaceH which has a locally lipschizian gradient.
Then, for eachx ∈ H, there exists a unique functionp : [0,∞) → H with
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p(0) = x,

p′(t) = −(∇HG)p(t), t ≥ 0.

Theorem 5.2. Suppose all the conditions in the hypothesis of the above theorem are satis-
fied and

lim
t→∞

p(t) = u,

exists, then

∇sG(p(t)) = 0.

Next, consider the GL Eq. ( 2. 2 ) on the interval [0,1] with the given initial conditions.
To solve the equation numerically, our instigation is based on gradient descent methods. A
number of gradients of functionals is constructed to employ these methods.

Consider a vectorp ∈ RM on a patterned rectangular mesh. We symbolize byL2 or H2
0

the vector spaceRM provided with the standard inner product< p, η >=
∑

j p(j)η(j).
The operatorsD0, D1, D11 : RM → RM−2 are defined by

D0(p)(j) = p(j + 1), (5. 32)

D1(p)(j) =
p(j + 2) − p(j)

2δx
, (5. 33)

D11(p)(j) =
(p(j + 2)− 2p(j + 1) + p(i))

δ2
x

, (5. 34)

for j = 1, 2, ..,M − 2 andδx = 1
(M−1) denotesthe spacing between the nodes.D0 is

the averaging operator, and picks all the points in the grid except endpoints. The operators
D1 andD11 estimates the first and second derivatives by using standard central difference
formulas. The theoretical development in this paper does not affect by the choice of central
difference formula, other possibilities may also be feasible.
The numerical description of the given problem to evolve from one timet to t + δt is to
compute

D0

(
(1− γδt)p + kδtp

3 − f
)− µδtD11(p) = 0, (5. 35)

wheref present in the equation is value ofp at the previous time andp is thep desired at
the next time level. DefineF ∈ RM−2 by

F (p) = D0

(
(1− γδt)p + kδtp

3 − f
)− µδtD11(p), (5. 36)

which is zero when we have the desiredp. Next we define a functionalG(p)
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G(p) =
< F (p), F (p) >

2
, (5. 37)

is zero ifF (p) is zero.

5.1. Gradients and minimization. The gradient∇G(p) ∈ RM of a functionalG(p) in
L2 is found by solving

G(p + h) = G(p)+ < ∇G(p), h > +O(h2), (5. 38)

for some test functionsh. To increase the functional fastest one has to move in the gradient
direction. Thus to decrease the functional fastest, one has to move in the opposite direction
−∇G(p). This is the footing of any steepest descent algorithm. So to reduceG(p), we
replace an initialp with p− λ∇G(p). Hereλ is the step size taken towards minimum. For
the next iteration, once again we find the gradient and step taken towards minimum. The
process is repeated until eitherG(p) or∇G(p) is smaller than some set tolerance. The step
sizeλ can vary for each iteration. To find optimalλ some line minimization routine can be
used, but in our experiments we used fixed value of it.
In this particular case,

∇G(p) =
[
(1− γδt + 3kδtp

2)Dt
0F (p)− µδtD

t
11F (p)

]
, (5. 39)

gives the coveted gradient.
The steepest descent performed inL2 space is inefficient. As we increase the dimension of
the problem or increase the number of nodes, the steps taken to reach minimum increase
substantially. Rather than abandoning steepest descent, we look for some other spaces in
which a gradient is defined which overcomes this inefficiency. Neuberger [27] saw that the
gradient defined inL2 space is rough, therefore compelling us to choose smallλ. So if the
gradient is smooth than one can use biggerλ. He suggested that a better way to find the
minimum of a functional is to do the minimization in an appropriate Sobolev space better
suited to the problem.
A new spaceH2

2 in RM with the inner product is defined as

(p, η)s = < D0(p), D0(η) > + < D1(p), D1(η) > +
< D11(p), D11(η) >, (5. 40)

becauseF (p) andG(p) haveD11 in them. By following Mahavier’s idea to construct a
weighted Sobolev space we defined a new Hilbert spaceĤ2

2 in RM . The inner product in
this new space is

(p, η)w = (1− δt)2 < D0(p), D0(η) > + < D1(p), D1(η) > +
(δt)2 < D11(p), D11(η) >, (5. 41)

because this inner product considers the coefficients ofD11 andD0 in F (p) andG(p).
The desired Sobolev gradients∇sG(p),∇wG(p) in H2

2 andĤ2
2 is found by solving
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(
Dt

0D0 + Dt
1D1 + Dt

11D11

)∇sG(p) = ∇G(p), (5. 42)

(
(1− δt)2Dt

0D0 + Dt
1D1 + (δt)2Dt

11D11

)∇wG(p) = ∇G(p), (5. 43)

respectively.

6. NUMERICAL RESULTS

Consider the problem

pt − p+ | p |2 p− pxx = x(1− t + x2t3), (6. 44)

with the condition

p(x, 0) = 0. (6. 45)

Now Eq. (16) becomes

Ltp− p+ | p |2 p− Lxp = f(x, t), (6. 46)

therefore,

p(x, t) = p(x, 0) + L−1
t pn − L−1

t An + L−1
t Lxpn + L−1

t (f(x, t)). (6. 47)

The decomposition series solutionp(x, t) into
∞∑

n=0
pn(x, t) gives the term by term

p0 = p(x, 0) + L−1
t (f(x, t)) = xt− 1

2
xt2 +

1
4
x3t4 (6. 48)

p1 = L−1
t p0 − L−1

t A0 + L−1
t Lxp0 =

1
2
xt2 − 1

6
xt3 − 1

4
x3t4 − 1

10
x3t5

+
1
5
x4t5 + ..., (6. 49)

andso on, on the similar pattern we can find the other components as well.
Now we solve given example by the Sobolev gradient method. Letx ∈ [0, 1] with the
initial conditionp(x, 0) = 0. Writing equation in operator form

F (p) = D0

(
(1− δt)p + δtz

3 − x(1− t + x2t3)− f
)− δtD11(p), (6. 50)

the gradient of the functional is given by

∇G(p) =
[
(1− δt + 3δtp

2)Dt
0F (p)− δtD

t
11F (p)

]
. (6. 51)
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TABLE 1. Comparison of results inL2, H2
2 , Ĥ2

2 with δt = 0.2 upto 5
time steps.

λ iterations CPUs M
L2 H2

2 Ĥ2
2 L2 H2

2 Ĥ2
2 L2 H2

2 Ĥ2
2 -

5.0×10−7 3.0 1.7 806.735 393 114 7886819 0.789 0.281 51
−−− 3.0 1.7 −− 385 99 −− 3.593 0.914 101
−−− 3.0 1.7 −− 371 101 −− 20.220 5.592 201
−−− 3.0 1.7 −− 381 100 −− 138.383 37.628 401

To study the potency of our algorithm, we assume steepest descent inL2, H2
2 , Ĥ2

2 . To find
the gradients inH2

2 , Ĥ2
2 we solve Eqs. (34) and (35) by some iterative methods such as

conjugate gradient method.
To solve equation numerically, we discretize our domain intoM nodes with internodal
spacingδ. The initial state was setf = 0.0 on all nodes initially. The functionp was then
evolved. The amended value ofp was taken as correct when the infinity norm ofπG(p))
was less than10−7.
To see the efficiency of the algorithm in different spaces, total number of minimization
steps and CPU time were recorded in Table1.
From Table1 the results inH2

2 are far good than the results inL2 but the best results are in
Ĥ2

2 .

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

Euclidean
Unweighted
Weighted

FIGURE 1. Graph of first10 iterations in comparison with gradients in
L2, H2

2 , Ĥ2
2 .
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TABLE 2. Comparison of the approximate solution obtained by ADM
and Sobolev gradient methods for timet = 1.

x ADM Ĥ2
2

0.0000 0.0000 0.0000
0.0938 0.0934 0.0937
0.2188 0.2118 0.2185
0.3125 0.3117 0.3121
0.4062 0.4039 0.4032
0.5000 0.4823 0.4956
0.6250 0.5963 0.6086
0.7188 0.6814 0.7012
0.8125 0.7709 0.7988
0.9062 0.8523 0.8791
1.0000 0.9543 0.9786
‖ E ‖∞ 0.0857 0.0214

In Figure 1 resultsof using steepest descent inL2, H2
2 , Ĥ2

2 for the first ten iterations
in comparison with infinity norm of the gradient vector, with an initial value ofu = 0
is shown. It is quite evident from the graph that theĤ2

2 gradient is the best option for
convergence.

To show the comparison with ADM, relative error can be subsequently as

‖ E ‖∞= maxi=1,..,M

∣∣∣∣
p(i)− pexact

pexact

∣∣∣∣ , (6. 52)

(wherepexactis the exact solution of the given GL equation.
To solve the given example with ADM we take fourth order approximation and we

consider the gradient in̂H2
2 space when solving the given problem with descent methods.

Table2 shows the comparative study of Sobolev gradient method with ADM.
From the Table2, we observe that the presented results are in excellent agreement with
ADM.

7. CONCLUSION

In this paper, a comparison is given between the ADM and the Sobolev gradient meth-
ods for the solution of GL equation. The obtained results show that the Sobolev gradient
method is robust and effective in terms of accuracy. If the domain of the problem becomes
larger even than this method still converges. This is not true in the case of ADM, as the
rate and region of convergence are potential shortcomings of the method. ADM converges
very slowly for wider regions. The truncated solution is also very inaccurate in that re-
gion, therefore the application area of the method is very much limited. Also to find the
series solution by ADM, the initial state of the system must be known. This is not in the
case of Sobolev gradients. By the introduction of suitable weight functions in the construc-
tion of Sobolev space its performance can be further improved. Using simple optimization
algorithm, for any arbitrary initial guess, this method finds the minimum of a functional.
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The choice of underlying space and gradient plays a vital role in the construction of efficient
algorithms. A number of different gradients can be defined from the same functional, which
have different numerical properties. It is still an open problem as to how we can select a
suitable space and define a gradient in it, such that it is best suited for the given problem
except for linear problems [26].
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