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Abstract. A plane permutation is a pajr = (s, 7) wheres is ann-cycle
andr is an arbitrary permutation. In this paper, we study the properties
of p under two instances; when= s andr = s~!'. We also define the
diagonal of the derived plane permutation and establish that it coincides
with the diagonal of the underlying plane permutation.
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1. INTRODUCTION

A plane permutation is represented in a two line notation where the top line lists the el-
ements of the cycle and the bottom line lists the corresponding images of the elements on
the top line. Chen [4] described a plane permutation as a pairefaele and an arbitrary
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permutation which gives rise to three other permutations; the uppiese verticalr and the
diagonalD,. He studied the properties pfunder some permutation statistics (exceedance
and anti exceedance) and found that if the cardinality of the exceedance sets of two plane
permutation®; andps are equal, thep; andp, are said to be equivalent. Recently, Chen

[4] applied the theory of plane permutations in the study of genome arrangements and graph
embeddings.

The derived plane permutation also gives rise to three distinct permutations: the horizon-
tal permutatior(s”"), the vertical permutatiofw”) and the diagonal permutatig¢m,» ). In
this work, we investigate the structureivhent = s andr = s~ on a finite sefn]. We
study the exceedance and anti-exceedance sets in the two instances above and show some
inclusion relation on the sets. Furthermore, we prove that the diagonal plane permutation
is equal to the diagonal derived plane permutation.

2. PRELIMINARIES
In this section, we give some relevant definitions as they relate to the work.

Definition 2.1. Let A = [n] and f : A — A be a bijection such that;, as, . .., a, € A.
If

flar) = ao, f(az) = as, ..., flan) = a1,

then is called ann-cycle, written agayas . . . a,,).

Definition 2.2. (Chen and Reidys [3]A plane permutation is a paip = (s, ) of an
n-cycles = (s;)"Z! and an arbitrary permutation such that is represented in the form;

o So S1 So ce Sn—1
P=\n(s0) m(s1) m(s2) ... m(Sp_1)
Definition 2.3. (Chen and Reidys [3]The diagonal of a plane permutation is defined as
D,=so0 a1l
Definition 2.4. (Chen and Reidys [3}) derived plane permutation ¢f is defined as a
pair p" = (s",7") of ann-cycles" obtained by transposing the blocks, ..., s;] and
[Sk, ..., s for sequencé = (i,j,k,l)suchthatl <i<j<k<I<n-1linsofpand
ﬂ.h — D—lsh
st

We state here that ancycle s(or s”) induces a partial order, (or <) ons(or s")

wherer <, y (orx <, y) if = appears beforgin s(or s") from left to right.

Definition 2.5. An element; is an exceedance ofif s; <, 7(s;) otherwises; is an anti-
exceedance. Similarly, an elemefitis an exceedance of' if s <. 7"(sh) otherwise
sl is an anti-exceedance. The exceedance and anti-exceedgnaesafenoted a&zc(p)

and AEz(p) respectively.

3. DIAGONAL PLANE PERMUTATIONS

We begin this section by stating some results on diagonal plane permutations when
m™=S.
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Lemma 3.1. (Chen and Reidys [3])For a plane permutatiop = (s, 7), we have
|Bxc(p)| = |AEz(D,)| - 1.

Proposition 3.2. Letp = (s, ) be a plane permutation such that= s. ThenD, is the
identity permutatiore.

Proof. The proof follows from Definition 2.3. O

Proposition 3.3. Letp = (s, 7) be a plane permutation such that= s. The following
hold:

(1) Exe(D,) =0

(2) AEx(Dp) = {s0,81---8n—1}-

Proof. The proof follows from Proposition 3.2. O

Lemma 3.4. Letp = (s, 7) be a plane permutation ojm] such thatr = s. Then

(1) Exc(p) = {s0,51,---,Sn—2}
(2) AEz(p) = {sn-1}

Proof. Supposes = m = (sgs1 ... Sn—1) then by construction g, we haves; <, 7(s;)
forall0 <i<n-—2ands,_; >, m(s,—_1). This implies:
(1) The elements of the exceedence sep afe thes; for all 0 < i < n — 1, that is,
Exc(p) = {s0, 81, - -, 8n—2} and thug Ezc(p)| = n — 1.
(2) Sinces,,_ is the only element not i zc(p) thenAEx(p) is a singleton of,, ;.
This completes the proof.

O

Proposition 3.5. Letp = (s,m) be a plane permutation on such that= s. Thensg =
m(sp—1)@ands; = w(s;—1),forall 1 <i<n-—1.

Proof. The construction op whenrw = s, is

_ So S1 S2 ... Sn—1
p S1 S2 S3 ... S0 )
Fromp above, itis obvious thaly = 7(s,,—1) ands; = n(s;—;) foralll <i<n-1. O

The next result shows the inclusion relation of exceedence and anti-exceedence sets of a
plane permutation and its diagonal.

Lemma 3.6. For a plane permutatiop = (s, 7) such thatr = s, then the following hold:
(1) Exzc(D,) C AEx(p) C AEx(D,)
(2) Exc(Dp) C Exc(p) C AEx(Dp)
() AEz(D,) \ Exc(p) = AEx(p)
(4) AEx(D,)\ AEx(p) = Exc(p).

In what follows, we state the results when the second instance of our assumption is consid-
ered.

Proposition 3.7. Letp = (s, 7) such thatr = s~%. Thens,,_; = 7(so) ands; = m(s;41)
WVo<i<n-—2.
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Proof. By construction
p= S0 1 ... Sp—-3 Spn—2 Spn-1
Sp—1 SO0 .-+ Sn—4 Spn-3 Sp-2

It follows from p above thak,,_1 = 7(sg) forall0 < ¢ <n —2ands; = 7(s;+1). O

For a plane permutation= (s, ) on [n] such thatr = s~!, the following hold:

(1) Exc(p) = {so}
(2) AEx(p) ={s1,82,---,8n—1}

Proof. Suppose = s~ 1, this implies thatr = (s,,_15,_2...5150) and

_ < S0 S1 ... Spn—-3 Sn-2 Sn1>
P Sn—1 S0 .-+ Sp—4 Sn-3 Spn-2)
Also, we havesy <, 7(sg) ands; >¢ w(s;) forall1 <i <n — 1. Thus:
(1) so is the only member of the exceedance sep.oBinces; <, 7(sq) this shows
that Exc(p) = {so}-
(2) The anti-exceedance set pfare all s; such thatl < ¢ < n — 1. Therefore

AFExz(p) = {s1,82,...,8n-1}. Clearly,|AEzc(p)| = n — 1. Hence, the result
holds.

O

Proposition 3.8. Letp = (s, 7) be a plane permutation such that= s~!. Then

D — (sos2...Sn—2),(s183...8,—1), ifniseven;
P (soS2...$n—15183 ... Sn—2), if n is odd.

Proposition 3.9. Suppose = (s, 7) on [n] such thatr = s~ 1, then

(1) Exc(D,) = {s0,51,---,5n—3}
(2) AEa:(Dp) = {Sn_g,sn_1}.

Proof. By Proposition 3.9, when is even or odds; <, 7(s;) for0 <i <n — 2. So:
(1) s; forms the exceedance set®Bf, for all 0 < i < n — 2 sinces; <, 7 (s;). Hence
EIC(DP) = {807 S1ye-ny 5n73}-
(2) Sinces,,—3, s,—1 are notinExzc(D,), then itis obvious that they are Ez(D),,).
O

Lemma 3.10. Suppose = (s, 7) such thatr = s~*. The following hold:
(1) Exc(p) C Exc(Dy)
(2) ABx(D,) C AEx(p)
(3) (Eze(D,)\ Exc(p)) U AEx(D,) = AEz(p)
(4) AEx(p) \ AEx(D,) = Exc(D,) \ Exc(p).

Proof. The proofs of (1) and (2) are trivial consequences of Corollary 3.8 and Proposition
3.10.

(3). Given
(Exc(Dy) \ Exc(p)) UAEz(D,) = AEx(p)
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(Bre(Dy)\ Bxc(p) U AB#(Dy) = (Ere(Dy) 0\ (Bre(p))?) U ABx(D,)

(Exc(Dy) N AEx(p)|U AEx(D,)

({So, ey Sn,3} N {817 82, ..., Snfl}) U {Sn,Q, Snfl}
= AFEz(p).

(4). Also, given
AEx(p) \ AEx(D,) = Exc(D,) \ Exc(p)
then
AEz(p) \ AEx(D,) = AEx(p) N (AEx(D,))°

= AFEz(p)N Exc(D,)

= FExc(Dy) N AEx(p)

= FExc(Dp) \ Exc(p).

O

The next lemma gives the inclusion relations of the exceedance and anti-exceedance sets
on a plane permutation and its diagonal when the two instances of our assumptions are
involved.
Lemma 3.11. Letp = (s, 7). The following hold:

(l) (E],‘C( ) 1) - (EZ‘C( )7r=s)

(2) (AEz(p)r=s) C (AEZ(p)r=s—1)

) (Ezc(Dp)r=s) C (Exc(D ) —s-1)

(4) (AEz(Dp)r=s-1) C (AEx( p)m=s)

(5) (Exc(p)res- 1) U(AEz(p)r=s) = {50, Sn—1}

(6) (Exc(p)r=s)U (AEx(p)res-1) = (AEx(Dp)r=s)-

Proof. The proofs of (1),(2),(5) and (6) follow from Corollary 3.8 and Lemma 3.5. Also,
the proofs of (3) and (4) follow Propositions 3.3 and 3.10. O

4. DIAGONAL DERIVED PLANE PERMUTATIONS

Given a derived plane permutatiph = (s", 7"*), then-cycle s" obtained by transpos-
ing the blockgs; ... s;] and]sy ... s;] in then-cycles of p is defined by
Sh = (8081 ce o818k -+ - S1Sj41 -+ - Sk—1Si -+ - S5S[41 .-+ )
For the special case gf+ 1 = k, s" is given by

h
8" = (5081 ...8i—15k..-515; ... 8;8141).

The derived plane permutatigrt = 7") is represented as:
phz cee8i—1 Sk .--95] Sj41---Sk—1 Si..-85 Sl4+1 .- >
m(sp—1) w(sk)...m(s5) 7(sj41)...7(si—1) m(s5)...7(s1) 7(s141))---

We build on the settings of the diagonal of plane permutation for its version of the
derived plane permutation.



14 K. O. Aremu, R. A. Abdulmumin, M. lbrahim, J. Abubakar

The diagonal of a derived plane permutation is defined as

Dyn = s" o (x")71.

Proposition 4.1. Letp = (s, 7) andp” = (s, 7"). Then

|Exze(p)| + |[Exe(p")| < 2n — 2.
Proof. In everyn—cycle there exists at least one anti-exceedance, which implies that the
exceedance is bounded hy- 1.
Case |: Suppose the—cycle ofp andp” have exactly one anti-exceedance. Then we have
exactlyn — 1 exceedance fgr andp”, so

|Exc(p)| + |Exc(p™)| = 2n — 2.

Case II: Suppose the—cycle ofp andp” have more than one anti-exceedance, this implies
that exceedance gfandp” will be strictly less tharn — 2.
Combining these two cases we have

|Exc(p)| + |Exc(®™)| < 2n — 2.

]
Proposition 4.2. Letp = (s, 7) andp” = (s", 7). Then
Dy = D,.
Proof. Let s" = es" wheree is an identity permutation. Then
sh = D, o Dp_1 osh
= D,o (D;1 ) Sh)
= D,o ah
sho(n™™ = Dyor"o(x")7!
Dy = Dyo (7" o (x)71)
‘. Dph, = Dp.
0

Proposition 4.3. Letp = (s, 7) andp” = (s",7"). Then
|Bae(p")| = |ABz(Dy)| - 1.

Proof. Let p" be a derived plane permutation. Suppe&ds an exceedance @f*, then
7" (s?) is an anti-exceedance 6f,., andr" (s!) >.» Du (7" (s?)) for0 <i <n-—1,so

|Exc(p") = |AE2(D.)|.
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Considering the last element of the cycié, , andr”(s”_,) are anti-exceedances pf
andD,. respectively. So the anti-exceedancdby. increases by 1. Therefore

|Exc(ph)| = |AExz(D,n)| — 1.
g
Lemma 4.4. Letp = (s", ") andp” = (s",7"). Then
|Bac(p")| = |ABz(D,)| - 1.
Proof. The proof follows from Proposition 4.2. O

Letp; = (s1,71) andps = (s2, m2) be two plane permutations. Thepandp are said
to be equivalent if for some permutatians, = wo sy ow ™! andm; = womy ow ™1,

Lemma 4.5. (Chen and Reidys [3]jor two equivalent plane permutatiops = (s1,71)
andps = (s2,m2), we have
|Exc(p1)| = |Exc(p2)]-

Letp; = (s1,71) andps = (s2,72) be two equivalent plane permutations. Then
|AEz(p1)| = [AEz(p2)|-
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