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Abstract. A plane permutation is a pairp = (s, π) wheres is ann-cycle
andπ is an arbitrary permutation. In this paper, we study the properties
of p under two instances; whenπ = s andπ = s−1. We also define the
diagonal of the derived plane permutation and establish that it coincides
with the diagonal of the underlying plane permutation.
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1. INTRODUCTION

A plane permutation is represented in a two line notation where the top line lists the el-
ements of the cycles and the bottom line lists the corresponding images of the elements on
the top line. Chen [4] described a plane permutation as a pair of ann-cycle and an arbitrary
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permutation which gives rise to three other permutations; the uppers, the verticalπ and the
diagonalDp. He studied the properties ofp under some permutation statistics (exceedance
and anti exceedance) and found that if the cardinality of the exceedance sets of two plane
permutationsp1 andp2 are equal, thenp1 andp2 are said to be equivalent. Recently, Chen
[4] applied the theory of plane permutations in the study of genome arrangements and graph
embeddings.

The derived plane permutation also gives rise to three distinct permutations: the horizon-
tal permutation(sh), the vertical permutation(πh) and the diagonal permutation(Dph). In
this work, we investigate the structure ofp whenπ = s andπ = s−1 on a finite set[n]. We
study the exceedance and anti-exceedance sets in the two instances above and show some
inclusion relation on the sets. Furthermore, we prove that the diagonal plane permutation
is equal to the diagonal derived plane permutation.

2. PRELIMINARIES

In this section, we give some relevant definitions as they relate to the work.

Definition 2.1. LetA = [n] andf : A −→ A be a bijection such thata1, a2, . . . , an ∈ A.
If

f(a1) = a2, f(a2) = a3, . . . , f(an) = a1,

thenf is called ann-cycle, written as(a1a2 . . . an).

Definition 2.2. (Chen and Reidys [3])A plane permutation is a pairp = (s, π) of an
n-cycles = (si)n−1

n=o and an arbitrary permutationπ such thatp is represented in the form;

p =
(

s0 s1 s2 . . . sn−1

π(s0) π(s1) π(s2) . . . π(sn−1)

)

Definition 2.3. (Chen and Reidys [3])The diagonal of a plane permutation is defined as
Dp = s ◦ π−1.

Definition 2.4. (Chen and Reidys [3])A derived plane permutation ofp is defined as a
pair ph = (sh, πh) of an n-cyclesh obtained by transposing the blocks[si, . . . , sj ] and
[sk, . . . , sl] for sequenceh = (i, j, k, l) such that1 ≤ i ≤ j < k ≤ l ≤ n− 1 in s of p and
πh = D−1

p sh.

We state here that ann-cycles(or sh) induces a partial order<s (or <sh) on s(or sh)
wherex <s y (or x <sh y) if x appears beforey in s(or sh) from left to right.

Definition 2.5. An elementsi is an exceedance ofp if si <s π(si) otherwisesi is an anti-
exceedance. Similarly, an elementsh

i is an exceedance ofph if sh
i <sh πh(sh

i ) otherwise
sh

i is an anti-exceedance. The exceedance and anti-exceedance ofp are denoted asExc(p)
andAEx(p) respectively.

3. DIAGONAL PLANE PERMUTATIONS

We begin this section by stating some results on diagonal plane permutations when
π = s.
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Lemma 3.1. (Chen and Reidys [3]). For a plane permutationp = (s, π), we have

|Exc(p)| = |AEx(Dp)| − 1.

Proposition 3.2. Let p = (s, π) be a plane permutation such thatπ = s. ThenDp is the
identity permutatione.

Proof. The proof follows from Definition 2.3. ¤
Proposition 3.3. Let p = (s, π) be a plane permutation such thatπ = s. The following
hold:

(1) Exc(Dp) = ∅
(2) AEx(Dp) = {s0, s1 . . . sn−1}.

Proof. The proof follows from Proposition 3.2. ¤
Lemma 3.4. Letp = (s, π) be a plane permutation on[n] such thatπ = s. Then

(1) Exc(p) = {s0, s1, . . . , sn−2}.
(2) AEx(p) = {sn−1}

Proof. Supposes = π = (s0s1 . . . sn−1) then by construction ofp, we havesi <s π(si)
for all 0 ≤ i ≤ n− 2 andsn−1 >s π(sn−1). This implies:

(1) The elements of the exceedence set ofp are thesi for all 0 ≤ i < n − 1, that is,
Exc(p) = {s0, s1, . . . , sn−2} and thus|Exc(p)| = n− 1.

(2) Sincesn−1 is the only element not inExc(p) thenAEx(p) is a singleton ofsn−1.
This completes the proof.

¤
Proposition 3.5. Let p = (s, π) be a plane permutation on such thatπ = s. Thens0 =
π(sn−1) andsi = π(si−1), for all 1 ≤ i ≤ n− 1.

Proof. The construction ofp whenπ = s, is

p =
(

s0 s1 s2 . . . sn−1

s1 s2 s3 . . . s0

)
.

Fromp above, it is obvious thats0 = π(sn−1) andsi = π(si−1) for all 1 ≤ i ≤ n−1. ¤
The next result shows the inclusion relation of exceedence and anti-exceedence sets of a
plane permutation and its diagonal.

Lemma 3.6. For a plane permutationp = (s, π) such thatπ = s, then the following hold:

(1) Exc(Dp) ⊆ AEx(p) ⊆ AEx(Dp)
(2) Exc(Dp) ⊆ Exc(p) ⊆ AEx(Dp)
(3) AEx(Dp) \ Exc(p) = AEx(p)
(4) AEx(Dp) \AEx(p) = Exc(p).

In what follows, we state the results when the second instance of our assumption is consid-
ered.

Proposition 3.7. Letp = (s, π) such thatπ = s−1. Thensn−1 = π(s0) andsi = π(si+1)
, ∀ 0 ≤ i ≤ n− 2.
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Proof. By construction

p =
(

s0 s1 . . . sn−3 sn−2 sn−1

sn−1 s0 . . . sn−4 sn−3 sn−2

)
.

It follows from p above thatsn−1 = π(s0) for all 0 ≤ i ≤ n− 2 andsi = π(si+1). ¤

For a plane permutationp = (s, π) on [n] such thatπ = s−1, the following hold:

(1) Exc(p) = {s0}
(2) AEx(p) = {s1, s2, . . . , sn−1}.

Proof. Supposeπ = s−1, this implies thatπ = (sn−1sn−2 . . . s1s0) and

p =
(

s0 s1 . . . sn−3 sn−2 sn−1

sn−1 s0 . . . sn−4 sn−3 sn−2

)
.

Also, we haves0 <s π(s0) andsi >s π(si) for all 1 ≤ i ≤ n− 1. Thus:

(1) s0 is the only member of the exceedance set ofp. Sincesi <s π(s0) this shows
thatExc(p) = {s0}.

(2) The anti-exceedance set ofp are all si such that1 ≤ i ≤ n − 1. Therefore
AEx(p) = {s1, s2, . . . , sn−1}. Clearly, |AExc(p)| = n − 1. Hence, the result
holds.

¤

Proposition 3.8. Letp = (s, π) be a plane permutation such thatπ = s−1. Then

Dp =

{
(s0s2 . . . sn−2), (s1s3 . . . sn−1), if n is even;

(s0s2 . . . sn−1s1s3 . . . sn−2), if n is odd.

Proposition 3.9. Supposep = (s, π) on [n] such thatπ = s−1, then

(1) Exc(Dp) = {s0, s1, . . . , sn−3}.
(2) AEx(Dp) = {sn−2, sn−1}.

Proof. By Proposition 3.9, whenn is even or odd,si <s π(si) for 0 ≤ i < n− 2. So:

(1) si forms the exceedance set ofDp for all 0 ≤ i < n− 2 sincesi <s π(si). Hence
Exc(Dp) = {s0, s1, . . . , sn−3}.

(2) Sincesn−2, sn−1 are not inExc(Dp), then it is obvious that they are inAEx(Dp).
¤

Lemma 3.10. Supposep = (s, π) such thatπ = s−1. The following hold:

(1) Exc(p) ⊆ Exc(Dp)
(2) AEx(Dp) ⊆ AEx(p)
(3) (Exc(Dp) \ Exc(p)) ∪AEx(Dp) = AEx(p)
(4) AEx(p) \AEx(Dp) = Exc(Dp) \ Exc(p).

Proof. The proofs of (1) and (2) are trivial consequences of Corollary 3.8 and Proposition
3.10.

(3). Given
(Exc(Dp) \ Exc(p)) ∪AEx(Dp) = AEx(p)
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(Exc(Dp) \ Exc(p)) ∪AEx(Dp) = (Exc(Dp) ∩ (Exc(p))c) ∪AEx(Dp)
= (Exc(Dp) ∩AEx(p)] ∪AEx(Dp)
= ({s0, . . . , sn−3} ∩ {s1, s2, . . . , sn−1}) ∪ {sn−2, sn−1}
= AEx(p).

(4). Also, given

AEx(p) \AEx(Dp) = Exc(Dp) \ Exc(p)

then

AEx(p) \AEx(Dp) = AEx(p) ∩ (AEx(Dp))c

= AEx(p) ∩ Exc(Dp)
= Exc(Dp) ∩AEx(p)
= Exc(Dp) \ Exc(p).

¤

The next lemma gives the inclusion relations of the exceedance and anti-exceedance sets
on a plane permutation and its diagonal when the two instances of our assumptions are
involved.

Lemma 3.11. Letp = (s, π). The following hold:

(1) (Exc(p)π=s−1) ⊆ (Exc(p)π=s)
(2) (AEx(p)π=s) ⊆ (AEx(p)π=s−1)
(3) (Exc(Dp)π=s) ⊆ (Exc(Dp)π=s−1)
(4) (AEx(Dp)π=s−1) ⊆ (AEx(Dp)π=s)
(5) (Exc(p)π=s−1) ∪ (AEx(p)π=s) = {s0, sn−1}
(6) (Exc(p)π=s) ∪ (AEx(p)π=s−1) = (AEx(Dp)π=s).

Proof. The proofs of (1),(2),(5) and (6) follow from Corollary 3.8 and Lemma 3.5. Also,
the proofs of (3) and (4) follow Propositions 3.3 and 3.10. ¤

4. DIAGONAL DERIVED PLANE PERMUTATIONS

Given a derived plane permutationph = (sh, πh), then-cyclesh obtained by transpos-
ing the blocks[si . . . sj ] and[sk . . . sl] in then-cycles of p is defined by

sh = (s0s1 . . . si−1sk . . . slsj+1 . . . sk−1si . . . sjsl+1 . . . ).

For the special case ofj + 1 = k, sh is given by

sh = (s0s1 . . . si−1sk . . . slsi . . . sjsl+1).

The derived plane permutationph = (sh, πh) is represented as:

ph =
(

. . . si−1 sk . . . sl sj+1 . . . sk−1 si . . . sj sl+1 . . .
. . . π(sk−1) π(sk) . . . π(sj) π(sj+1) . . . π(si−1) π(si) . . . π(sl) π(sl+1)) . . .

)
.

We build on the settings of the diagonal of plane permutation for its version of the
derived plane permutation.
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The diagonal of a derived plane permutation is defined as

Dph = sh ◦ (πh)−1.

Proposition 4.1. Letp = (s, π) andph = (sh, πh). Then

|Exc(p)|+ |Exc(ph)| ≤ 2n− 2.

Proof. In everyn−cycle there exists at least one anti-exceedance, which implies that the
exceedance is bounded byn− 1.

Case I:Suppose then−cycle ofp andph have exactly one anti-exceedance. Then we have
exactlyn− 1 exceedance forp andph, so

|Exc(p)|+ |Exc(ph)| = 2n− 2.

Case II: Suppose then−cycle ofp andph have more than one anti-exceedance, this implies
that exceedance ofp andph will be strictly less than2n− 2.

Combining these two cases we have

|Exc(p)|+ |Exc(ph)| ≤ 2n− 2.

¤

Proposition 4.2. Letp = (s, π) andph = (sh, πh). Then

Dph = Dp.

Proof. Let sh = esh wheree is an identity permutation. Then

sh = Dp ◦D−1
p ◦ sh

= Dp ◦ (D−1
p ◦ sh)

= Dp ◦ πh

sh ◦ (πh)−1 = Dp ◦ πh ◦ (πh)−1

Dph = Dp ◦ (πh ◦ (πh)−1)
= Dp

∴ Dph = Dp.

¤

Proposition 4.3. Letp = (s, π) andph = (sh, πh). Then

|Exc(ph)| = |AEx(Dp)| − 1.

Proof. Let ph be a derived plane permutation. Supposesh
i is an exceedance ofph, then

πh(sh
i ) is an anti-exceedance ofDph , andπh(sh

i ) ≥sh Dph(πh(sh
i )) for 0 ≤ i < n− 1, so

|Exc(ph)| = |AEx(Dph)|.
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Considering the last element of the cycle,sh
n−1 andπh(sh

n−1) are anti-exceedances ofph

andDph respectively. So the anti-exceedance ofDph increases by 1. Therefore

|Exc(ph)| = |AEx(Dph)| − 1.

¤
Lemma 4.4. Letp = (sh, πh) andph = (sh, πh). Then

|Exc(ph)| = |AEx(Dp)| − 1.

Proof. The proof follows from Proposition 4.2. ¤
Let p1 = (s1, π1) andp2 = (s2, π2) be two plane permutations. Thenp1 andp2 are said

to be equivalent if for some permutationω, s1 = ω ◦ s2 ◦ ω−1 andπ1 = ω ◦ π2 ◦ ω−1.

Lemma 4.5. (Chen and Reidys [3])For two equivalent plane permutationsp1 = (s1, π1)
andp2 = (s2, π2), we have

|Exc(p1)| = |Exc(p2)|.
Let p1 = (s1, π1) andp2 = (s2, π2) be two equivalent plane permutations. Then

|AEx(p1)| = |AEx(p2)|.
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