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Abstract. Generalized sensitivity functions describe the effects of the
changes in the true values of a parameter over its estimates. In this pa-
per, we define the off-diagonal generalized sensitivity functions which de-
scribe the effects of the changes in the true values of one parameter over
the estimates of the other parameter. Their relations with the estimates
of the parameters and the correlation amongst the parameters have been
developed theoretically and verified with the help of the logistic growth
population model. Changes in the parameter estimates are reflected in
the changes in their generalized and off-diagonal generalized sensitivity
functions.
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1. INTRODUCTION

The idea of the Generalized Sensitivity Functions (GSFs) was given by Carl Cobelli
and Karl Thomaseth [13] in 1999. The GSFs describe the effects of the changes in the
parameter estimates due to the changes in the true values of the parameters. F. Kappel et
al., used the GSFs in studying the cardiovascular model [4]. The GSFs essentially pro-
vide two types of information. First, they show the correlation between parameters with
respect to the measurements. Oscillatory and monotonic behavior of the GSFs indicates
a strong correlation between the parameters. A more or less monotonic increase of the
GSFs from 0 to 1 indicate little correlation between parameters. Second, the GSFs provide
information carried by the measurements at different times for the parameters. If the GSFs
increase monotonically, then those measurements taken in that time interval where they
essentially increase from 0 to 1, provide all the information on the parameter whereas the
measurements taken outside that interval are more or less irrelevant.
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Keck et al., used the GSFs to study the size-structured population models and extended
their idea to the Partial Differential Equations(PDEs) [7]. Troparevsky et al., [15] identified
the regions on the head having the highest electrostatic potential during Electroencephalog-
raphy (EEG). Banks et al., used them to study the nonlinear delay differential equations [3].
F. Kappel and M. Munir [6] developed the idea of the GSFs for a multiple output system.
Their idea can be developed for the optimal control problems like the one as in [1].

The importance of the off-diagonal elements of the Generalized Sensitivity Matrix(GSM)
was realized during the studies of the GSFs. These are called the Off-Diagonal Generalized
Sensitivity Functions(OD-GSFs) because of being the off-diagonal elements of the GSM;
the diagonal elements of which are called the GSFs. The OD-GSFs primarily give the in-
formation of the changes of the parameters estimates due to the changes in the values of
the other parameters. We develop the theory of OD-GSFs in the context of the nonlinear
least square parameter estimation problem in Section 2. Moreover, we derive the relations
connecting the GSFs and OD-GSFs with the parameter estimates and the correlation co-
efficients and then enlist some important properties of the OD-GSFs in comparison to the
GSFs’ using the logistic growth population model in this section. In Section 3, we describe
the numerical scheme for our problem. Section 4 gives the detail of the major results of the
association of the GSFs and OD-GSFs with the parameter estimates. In Section 5, we dis-
cuss the correlation amongst different parameters and the condition number of the Fisher
Information Matrix (FIM). Concluding remarks are given in Section 6.

2. GENERALIZED AND OFF-DIAGONAL GENERALIZED SENSITIVITY FUNCTIONS

For a single output system, the output of the model is described [4] as

y(t) = f(t, θ), 0 ≤ t ≤ T, (2. 1)

θ = (θ1, ..., θp)
T is a vector of model parameters belonging to the open set U ⊂ Rp, called

the feasible or the admissible set of parameters and f is a sufficiently smooth function.
We want to estimate θ in the context of the non-linear least square inverse problem.

For this purpose, we can take the measurements from the system; however for our own
convenience, we take the measurements as the values of the model output for a given value
of θ denoted by θ0 called the nominal or the true parameter plus some noise. The procedure
is important with regards to the theoretical validation of the model to any data. We adopt
this approach and assume that there exists a unique θ0 ∈ U such that at the times 0 ≤ t1 <
... < tM ≤ T, the measurements corresponding to the model outputs y(tk), k = 1, ...,M,
are assumed as ξk = f(tk, θ0) + εk, k = 1, ...,M. Here θ0 is the true or the nominal
parameter vector of the system, εk is the measurement noise assumed to be a representation
of some random noise process εk for measurement ξk which are themselves the realizations
of the random measurement process Ξk(t, θ0) = fk(t, θ0) + εk at tk. The errors εk are
assumed to satisfy that E(εk) = 0, k = 1, ...,M , εk’s are identically and independently
distributed(i.i.d) and that Var(εk) = σ2

k, a constant, k = 1, ...,M . This is to be noted that
the measurements ξk’s have also the same distribution as that of εk’s with the same variance
V ar(Ξk) = σ2

k, but with different mean E(Ξk) = f(tk, θ0), k = 1, ...,M .
We introduce the vector notations; ξ = (ξ1, ..., ξM )T, F (θ) = (f(t1, θ), ..., f(tM , θ))

T

and ε = (ε1, ..., εM )T in RM for our convenience.
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In order to measure the deviations between the model outputs and the measurements,
we introduce the following weighted non-linear least square cost functional:

Q(ξ, θ) = (ξ − F (θ))TΣ−1(ξ − F (θ)), ξ ∈ RM , θ ∈ Rp, (2. 2)
where Σ = diag

(
σ2

1 , ..., σ
2
M

)
. The introduction of Σ in Eqn. (2. 2 ) signifies that the

measurements with large error have less weight than the measurements with less errors in
the least-square process.

We assume that we have a unique local identifiability [12] in U , i.e., for any nominal
parameter vector θ0 the functional Q(ξ, θ) has a unique local minimizer θ̂ = θ̂(θ0). This
leads to

∇θQ(ξ, θ)
∣∣
θ=θ̂(θ0)

= 0, (2. 3)

∇2
θθQ(ξ, θ)

∣∣
θ=θ̂(θ0)

> 0. (2. 4)

In view of our assumption on the unique local identifiability, the estimate θ̂(θ) has to
satisfy the first order necessary optimal condition for any nominal parameter vector θ ∈ U
i.e.,

∇θQ
(
ξ(θ), θ̂(θ)

)
= 0, (2. 5)

Here as per our assumption ξ = ξ(θ) for any nominal parameter θ, so new mean of
any measurement ξ is f(., θ)instead of f(., θ0). Differentiating this with respect to ξ and
denoting θ̂(θ) by ϑ onward, we get

∇2
θξQ

(
ξ(θ), θ̂(θ)

) ∂ξ
∂θ

+∇2
ϑϑQ

(
ξ(θ), θ̂(θ)

) ∂θ̂
∂θ
≡ 0. (2. 6)

We get from Eqn.(2. 2 )

∇ϑQ (ξ(θ), ϑ)
∣∣
ϑ=θ̂(θ)

= −2
(
ξ(θ)− F

(
θ̂(θ)

))T
Σ−1∇ϑF

(
θ̂(θ)

)
. (2. 7)

and

∇2
ξϑQ (ξ(θ), ϑ)

∣∣
ϑ=θ̂(θ)

= −2
(
∇ϑF

(
θ̂(θ)

))T
Σ−1. (2. 8)

Moreover,

∂ξ

∂θ
=

∂

∂θ
(F (θ) + ε) = ∇θF (θ). (2. 9)

We again get from Eqn. (2. 7 )

∇2
ϑϑQ (ξ(θ), ϑ)

∣∣
ϑ=θ̂(θ)

= −2

[
∇2
ϑϑF

(
θ̂(θ)

)T
Σ−1

(
ξ(θ)− F

(
θ̂(θ)

))
−
(
∇ϑF θ̂(θ)

)T
Σ−1∇ϑF

(
θ̂(θ)

)]
(2. 10)
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Here we make an important assumption frequently used in the treatment of the non-
linear least square parameter estimation that ∇2

ϑϑF
(
θ̂(θ)

)
≈ 0. This makes the first term

on the right side in the above equation zero as non-linear model can be transformed into
linear one [9]. So we get,

∇2
ϑϑQ (ξ(θ), ϑ)

∣∣
ϑ=θ̂(θ)

≈ 2
(
∇ϑF

(
θ̂(θ)

))T
Σ−1∇ϑF

(
θ̂(θ)

)
(2. 11)

Using the values from the Equations (2. 8 ), (2. 9 ) and (2. 11 ) in Equation(2. 6 ), we
obtain

−
(
∇ϑF

(
θ̂(θ)

))T
Σ−1∇θF (θ) +

(
∇ϑF

(
θ̂(θ)

))T
Σ−1∇ϑF

(
θ̂(θ)

)(∂θ̂
∂θ

)
≈ 0

(2. 12)
Now we assume that parameter estimates are unbiased i.e. E(Θ̂(θ)) = 0 and that(
∇ϑF

(
Θ̂(θ)

))T
Σ−1∇ϑF

(
Θ̂(θ)

)
and ∂Θ̂

∂θ are approximately independent. It is to be

noted that θ̂(θ) is a realization of the random process Θ̂(θ). Since

E
(
∇ϑF

(
Θ̂(θ)

))T
Σ−1∇θF (Θ) ≈

(
∇ϑF

(
θ̂(θ)

))T
Σ−1∇θF (θ)

and as

(
∇ϑF

(
θ̂(θ)

))T
Σ−1∇θF (θ) =

M∑
k=1

1

σ2
k

∇θf(tk, θ)
T∇θf(tk, θ),

therefore by taking

F(θ) =

M∑
k=1

1

σ2
k

∇θf(tk, θ)
T∇θf(tk, θ), (2. 13)

being invertible and called the Fisher Information Matrix for the parameter estimation prob-
lem and taking the expected values of Equation (2) and using the above assumption, we get

E

(
∂Θ̂

∂θ

)
≈ (F(θ))−1F(θ) (2. 14)

or

E

(
∂Θ̂(θ)

∂θ

)
≈ Ip×p. (2. 15)

Now if we assume that only measurements up to a sample times tk vary with θ and the
measurements taken at later times are fixed to their values corresponding to the nominal
parameter vector θ0, we obtain the generalized sensitivity matrix(GSM) as

G(tk, θ) =

(
∂θ̂(θ)

∂θ

)
k

= (F(θ))−1Fk(θ), k = 1, ...,M. (2. 16)
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where

Fk(θ) =

k∑
j=1

1

σ2
j

∇θf(tj , θ)
T∇θf(tj , θ). (2. 17)

The generalized sensitivity functions for the parameter component θi, i = 1, ..., p, is the
i-th element in the main diagonal of the matrix G as function of tk,

gθi(tk, θ) = (G(tk, θ))i,i, k = 1, ...,M. (2. 18)

The off-diagonal elements (i, j)-th of this matrix G, are defined as the off-diagonal gener-
alized sensitivity functions of the parameter component θi with respect to the component
θj [10] as

gθi|θj (tk, θ) = (G(tk, θ))i,j , k = 1, ...,M, i, j = 1, ..., p. (2. 19)

2.1. Parameter Estimates. We have initially developed the idea of the OD-GSFs in the
previous section. Next, we want to explore the relation between the OD-GSFs and the
parameter estimates of a parameter, so by using Taylor’s series approximation up to second
term in the neighbourhood of θ0, we get the approximation of the parameter estimate θ̂(θ)

θ̂(θ) = θ̂(θ0) +
∂θ̂(θ)

∂θ
(θ − θ0)

This gives

θ̂(θ)− θ̂(θ0) =
∂θ̂(θ)

∂θ
(θ − θ0)

Replacing θ−θ0 by ∆θ and dividing both sides by the Euclidean norm-‖∆θ‖2 (however,
we can take any norm). Taking limit as ‖∆(θ)‖ tends to 0 on both sides, we get

lim
‖∆θ‖2→0

θ̂(θ)− θ̂(θ0)

‖∆θ‖2
= lim
‖∆θ‖2→0

∂θ̂(θ)

∂θ

∆θ

‖∆θ‖2
or

d

dτ

(
θ̂(θ0; ∆θ)

)
=
∂θ̂(θ)

∂θ
ψ (2. 20)

where
d

dτ

(
θ̂(θ0; ∆θ)

)
= lim
‖∆θ‖2→0

θ̂(θ)− θ̂(θ0)

‖∆θ‖2
,

τ = ‖∆θ‖2 and ψ = lim‖∆θ‖2→0
∆θ
‖∆θ‖2 . Here ψ is of unit magnitude. The term on the

left of the above Equation (2. 20 ) quantifies the changes in the parameter estimate θ̂ due
to the changes in the value of the parameter θ, so does the term on the right-side. But
this term contains ∂θ̂(θ)

∂θ - a realization of the random variable ∂Θ̂(θ)
∂θ ; the expected value of

which is GSM. Since the diagonal elements of this matrix are the GSFs and the off-diagonal
elements are OD-GSFs, so any change in the parameter estimates θ̂ will bring a change in
the GSFs and OD-GSFs.
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2.2. Correlation Matrix. In order to explore the relation of the OD-GSFs with the cor-
relation, we again use the Taylor’s series expansion for F (θ) in the neighborhood of θ0 as
follows [10].

F (θ) = F (θ0) +
∂F (θ0)

∂θ
(θ − θ0) + (θ − θ0)T ∂

2F (θ0)

∂θ2
(θ − θ0) + h.o.t.

Considering only the first order linear approximation for F (θ), we get

F (θ) ≈ F (θ0) +
∂F (θ0)

∂θ
(θ − θ0).

Putting this approximation for F (θ) in Equation (2. 2 ) ( We take Q = Q(θ) as Q =
Q(ξ, θ) and ξ = ξ(θ) and therefore Q = Q(θ) ), we have

Q(θ) ≈

ξ − F (θ0)︸ ︷︷ ︸
ε

− ∂F (θ0)

∂θ
(θ − θ0)

T

Σ−1

ξ − F (θ0)︸ ︷︷ ︸
ε

− ∂F (θ0)

∂θ
(θ − θ0)

 ,

=

(
ε− ∂F (θ0)

∂θ
(θ − θ0)

)T

Σ−1

(
ε− ∂F (θ0)

∂θ
(θ − θ0)

)
.

Differentiating with respect to θ, we get

∂Q(θ)

∂θ
≈ ∂

∂θ

[(
ε− ∂F (θ0)

∂θ
(θ − θ0)

)T

Σ−1

(
ε− ∂F (θ0)

∂θ
(θ − θ0)

)]
.

After successive differentiation, we get

0 =
∂Q(θ)

∂θ
|θ=θ̂(θ0) ≈ −2

(
∂F (θ0)

∂θ

)T

Σ−1

(
ε− ∂F (θ0)

∂θ

(
θ̂(θ0)− θ0

))
,

or (
∂F (θ0)

∂θ

)T

Σ−1ε−
(
∂F (θ0)

∂θ

)T

Σ−1

(
∂F (θ0)

∂θ

(
θ̂(θ0)− θ0

))
≈ 0.

or

θ̂(θ0)− θ0 ≈

((
∂F (θ0)

∂θ

)T

Σ−1 ∂F (θ0)

∂θ

)−1(
∂F (θ0)

∂θ

)T

Σ−1ε, (2. 21)

Now since

Var(Θ̂(θ0)) = E
((

Θ̂(θ0)− E
(

Θ̂(θ0)
))(

Θ̂(θ0)− E
(

Θ̂(θ0)
))T

)
, (2. 22)

so taking the Equation (2. 21 ) for the random variable and placing it in Equation (2. 22 ),
we get after making the use of the assumption that the parameter estimates are unbiased,
after a little simplification:

Var
(

Θ̂(θ0)
)
≈

((
∂F (θ0)

∂θ

)T

Σ−1 ∂F (θ0)

∂θ

)−1

, (2. 23)
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or

Var
(

Θ̂(θ0)
)
≈ (F(θ0))

−1

called the dispersion or the variance-covariance matrix of the estimates Θ̂(θ0). The right
hand side of this matrix is the inverse of the Fisher Information Matrix given by Equa-
tion (2. 13 ). From here, it is evident that the GSFs and OD-GSFs give us the information
about the correlation between the parameters. This relation is depicted by the oscillations
amongst them. The correlation matrix is obtained by dividing the (i, j)th element of the
Covariance Matrix (2. 23 ) by the square root of the product of the ith and jth elements
of its main diagonal (standard deviations) [12]. As Σ is unknown in Equation (2. 23 ), it is
usually estimated, as in [12], by

Σ ≈ 1

M − p
Q
(
θ̂(θ0)

)
. (2. 24)

The Standard Errors of Estimates (SEEs) of θ̂(θ0) are then given by

SEEs
(
θ̂(θ0)

)
= diag

(√
Σ
)

(2. 25)

2.3. Properties of the OD-GSFs in comparison to the GSFs. In contrast to the properties
of the generalized sensitivity functions [13], we here describe the main properties of the
OD-GSFs.

(1) The OD-GSFs denoted by gθi|θj (tk, θ) of the parameter component θi with respect
to θj , are defined at the time points tk, k = 1, ...,M , i = 1, ..., p.

(2) The OD-GSFs are defined for a model to have minimum two parameters.
(3) There is a transition of the OD-GSFs; gθi|θj (tk, θ) from 0 to 0 as is shown in the

Figure( 1) unlike the GSFs which have transition from 0 to 1 as is evident in the
Figure( 2). So we define gθi|θj (tk, θ) = 0 for t < t1 and gθi|θj (tk, θ) = 0 for
t ≥ tM ,

(4) The identification procedure is not only unbiased, but also efficient i.e., the covari-
ance of the estimates Cov(θ̂) equals the Cramer −Rao(Lower)bound [4]:

Cov(θ̂) = J (θ̂)−1 (2. 26)

(5) The OG-GSFs are, in general, either convex or concave for k = 1, ...,M . In
the intervals where the OD-GSFs of θi with respect to θj viz., gθi|θj (tk, θ) have
higher slope, the measurements have more information about θ̂i with respect to θj ,
though the magnitude of the change is not so large. However, the OD-GSFs first
increase/decrease from 0, then attain their maximum/minimum values and then
again decrease/increase and at the end they attain value 0. This is called forced to
0 artifact as is visible in Figures (1, 3, 4 and 5). Off-course, the second increase
or decrease is due to the correlation amongst the parameters. In the case where
the parameters are strongly correlated, there are considerable oscillations in the
OD-GSFs. On the other hand, the GSFs when drawn for a single parameter are
monotonically increasing as is shown in the first three panels of the Figure( 2).
These show oscillations due to the correlation when drawn combined for two or
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FIGURE 1. Off-diagonal Generalized Sensitivity Functions of a with re-
spect to b (upper-left), b with respect to a (upper-right), b with respect
to x0 (lower-left) and x0 with respect to b(lower-right) for the Logistic
Growth Population Model

more than two parameters as is depicted from the last panel of the Figure(2). How-
ever, this figure shows that the information contents given by the measurements
for the parameter a are spread over whole the interval [0, 16] i.e., the data taken
from this interval contains all the information about a. The data taken from the
beginning of the interval to almost time instant 5 contains no information about
the parameter b, whereas the data taken from the later part of [0, 16], loosely from
[12, 16] contains no information about x0. The high degree of correlation is re-
flected by the oscillations amongst them. The GSFs are also bound to force to 1
artifact. See Figures(2, 3, 4 and 5).

3. NUMERICAL IMPLEMENTATION

We explain the above results with the help of the logistic growth population model
described by the first order non-linear ordinary differential equation [8]:
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FIGURE 2. Generalized Generalized Sensitivity functions of a (upper-
left), b’s(upper-right), x0’s(lower-left) and combined for three parame-
ters viz., a,b and x0(lower-right) for the Logistic Growth Population
Model

dx

dt
= ax− bx2,

x(0) = x0.
(3. 27)

The parameter vector is θ = (a, b, x0). In accordance with our theoretical develop-
ment of the GSFs and OD-GSFs, we use the Matlab solver ode45 to solve the Equa-
tion (3. 27 ) with nominal parameter θ0 = [0.7, 0.04, 0.1] [2] in the time interval [0, 16]
dividing it into n = 25 equal sub-intervals. We use the numerical solution as model output
{yi, i = 1, ..., n}. We created the simulated data set {ξi, i = 1, ..., n}, by adding a noise
having normal distribution with mean 0 and various standard deviations σ to the numerical
solution. We use three sets of data for our results; first with a small standard deviations
σ = 0.0005, second with medium standard σ = 0.005 and the third with a reasonable
large standard deviations σ = 0.05. The optimization routine solvopt [5] is used to find
the parameter estimates θ̂ from the cost functional Q(θ) as given in Equation (2. 2 ) with
various standard deviations. We find the standard error of estimates by Equation(2. 25 ).
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FIGURE 3. Generalized and the off-diagonal generalized sensitivity
functions for the selected parameters of the logistic growth population
model.

4. SIMULATION RESULTS

4.1. Generalized versus Off-diagonal Generalized Sensitivity Functions. We draw the
GSFs and the OD-GSFs in comparison for the numerical scheme given above using Equa-
tion (2. 18 ) and Equation (2. 19 ) respectively by taking two parameters at a time. The
comparison also indicates the amplitude of the effect of the changes in true value of one
parameter over its estimates and over the estimates of other parameter. The results are
shown in Figures(3), (4) and (5). We are primarily interested in exploring the relation
between the GSFs and OD-GSFs and the estimates of the parameters. Since the GSFs
respectively the OD-GSFs quantify the effects of the changes in the true value of one pa-
rameter over its estimates and the estimates of the others, therefore, in order to get some
insight in this regard, we estimate the parameters by making changes (perturbation) in the
true value θ0i

, i = 1, 2, 3, of one of them and keeping the other two fixed; we give per-
turbations in two different ways- first by changing the initial guess in a fixed proportion
and second by changing the initial guess randomly and then observing their effects over the
estimates θ̂i(θ0), i = 1, 2, 3,.

4.2. Perturbing a, keeping b and x0 fixed. We change the initial value of the parameter a
in two different ways; first by changing the value in a fixed proportion and second randomly.
Estimates of parameters, in this case using three data with different standard deviations, are
given in Tables(1, 2). When we perturb initial value of a in a fixed proportion, we see that
the estimate of b as compared to estimates of a and x0 are more accurate; see Table(1).
Changing a randomly, we see the same trend in the parameters; see Table(2). The standard
errors of b too in both the cases are less and more stable. These facts indicates that the
changes in estimates of a, b and x0 are not due to errors. On the other hand, we see that
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FIGURE 4. Generalized and the off-diagonal generalized sensitivity
functions for the selected parameters of the logistic growth population
model.
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FIGURE 5. Generalized and the off-diagonal generalized sensitivity
functions for the selected parameters of the logistic growth population
model.

the OD-GSFs of b with respect to a denoted by gb/a(tk, θ0) in Figure(3) have less slope or
are more close to a straight line indicating that the estimates of b do not change much with
changes in true value of a, whereas the effect of the changes of the true value of a on the
estimates of a and x0 is more enormous. This change is reflected more in the GSFs of a as
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θ0 θ̂ SEEs
Panel A: σ = 0.0005

(0.84, 0.04, 0.1) (0.70004060, 0.04000338, 0.09996607) (6.9689e-5, 4.5643e-6, 4.9612e-5)
(0.77, 0.04, 0.1) (0.70004060, 0.04000338, 0.09996607) (6.9682e-5, 4.5638e-6, 4.9607e-5)
(0.7, 0.04, 0.1) (0.70004061, 0.04000338, 0.09996607) (6.9678e-5, 4.5636e-6, 4.9604e-5)

(0.63, 0.04, 0.1) (0.70004062, 0.040003383, 0.09996606) (6.9687e-5, 4.5642e-6, 4.9610e-5)
(0.56, 0.04, 0.1) (0.70004063, 0.04000338, 0.09996605) (6.9681e-5, 4.5638e-6, 4.9606e-5)

Panel B: σ = 0.005
(0.84, 0.04, 0.1) (0.70040631, 0.04003384, 0.09966097) (3.0203e-4, 1.9784e-5, 2.1437e-4)
(0.77, 0.04, 0.1) (0.70040621, 0.04003384, 0.09966123) (3.0199e-4, 1.9782e-5, 2.1435e-4)
(0.7, 0.04, 0.1) (0.70040669, 0.04003387, 0.09966079) (3.0202e-4, 1.9783e-5, 2.1437e-4)

(0.63, 0.04, 0.1) (0.70040678, 0.04003387, 0.09966070) (3.0202e-4, 1.9784e-5, 2.1437e-4)
(0.56, 0.04, 0.1) (0.70040675, 0.04003387, 0.09966077) (3.0201e-4, 1.9783e-5, 2.1436e-4)

Panel C: σ = 0.05
(0.84, 0.04, 0.1) (0.70410159, 0.04034150, 0.09663266) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.77, 0.04, 0.1) (0.70410226, 0.04034153, 0.09663244) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.7, 0.04, 0.1) (0.70410640, 0.04034182, 0.09662866) (3.0156e-3, 1.9784e-4, 2.0771e-3)

(0.63, 0.04, 0.1) (0.70410683, 0.04034185, 0.09662962) (3.0156e-3, 1.9783e-4, 2.0771e-3)
(0.56, 0.04, 0.1) (0.70410057, 0.04034145, 0.09663333) (3.0156e-3, 1.9783e-4, 2.0772e-3)

TABLE 1. Initial and optimized parameters together with their respective
SEEs with noise having normal distribution with zero mean and different
standard deviations; changing a in a fixed proportion and keeping other
fixed.

in Figure(3) and the OD-GSFs of x with respect to a as in Figure (5). So, we can say that
the linear nature of the OD-GSFs of a parameter indicates that its estimates do not change
with the changes in true value of the corresponding parameters.

4.3. Perturbing b, keeping a and x0 fixed. We give perturbation to b; first changing
its value in a fixed proportion and then randomly. From the three data set with different
standard deviations, we find all the three estimates given in Tables(3 and 4). When we
perturb initial value of b in a fixed proportion, we see that the estimate of b as compared to
estimates of a and x0 are more accurate i.e., correct to more decimal places. These results
are given in Table(3). Changing b randomly, we see the same trend in the estimates of
parameters in Table(4). The standard errors of b in both the cases are less and more stable.
These facts indicates that the changes in estimates of a, b and x0 are not dependent on the
errors. In this case, the OD-GSFs of awith respect to b denoted by ga/b(tk, θ0) in Figure(3)
has more slope than the OD-GSF of x0 with respect to b denoted by gx0/b(tk, θ0) shown
in Figure(4) indicates that the changes in b more affect the estimates of a than estimates of
x0. However, changes in b least affect the estimates of b.

4.4. Perturbing x0, keeping a and b fixed. Proceeding analogously, we perturb the initial
condition x0 and keep a and b constant; our results are given in Tables(5 and 6). Changing
x0’s value in a fixed proportion for three different data sets, estimates along with their stan-
dard errors are given in Table(5). We see almost no change in the estimates of b indicating
that changes in x0 do not affect the estimates of b. Changing x0 randomly, we see the same
trend in the parameters estimates in Table(6). The standard errors of b in both the cases
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θ0 θ̂ SEEs
Panel A: σ = 0.0005

(1.9, 0.04, 0.1) (0.70004063, 0.04000338, 0.09996604) (6.9682e-5, 4.5639e-6, 4.9607e-5)
(1.3, 0.04, 0.1) (0.70004063, 0.04000338, 0.09996605) (6.9683e-5, 4.5639e-6, 4.9607e-5)
(0.7, 0.04, 0.1) (0.70004061, 0.04000338, 0.09996607) (6.9678e-5, 4.5636e-6, 4.9604e-5)
(0.3, 0.04, 0.1) (0.70004064, 0.04000338, 0.09996604) (6.9681e-5, 4.5638e-6, 4.9606e-5)
(0.09, 0.04, 1.1) (0.70004062, 0.04000338, 0.09996606) (6.9684e-5, 4.5640e-6, 4.9608e-5)

Panel B: σ = 0.005
(1.9, 0.04, 0.1) (0.70040689, 0.04003388, 0.09966068) (3.0200e-4, 1.9783e-5, 2.1436e-4)
(1.3, 0.04, 0.1) (0.70040671, 0.04003387, 0.09966075) (3.0201e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.04, 0.1) (0.70040669, 0.04003387, 0.09966079) (3.0202e-4, 1.9783e-5, 2.1437e-4)
(0.3, 0.04, 0.1) (0.70040647, 0.04003385, 0.09966090) (3.0202e-4, 1.9784e-5, 2.1437e-4)
(0.09, 0.04, 1.1) (0.70040669, 0.04003387, 0.09966086) (3.0200e-4, 1.9782e-5, 2.1435e-4)

Panel C: σ = 0.05
(1.9, 0.04, 0.1) (0.70410367, 0.04034166, 0.09663123) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(1.3, 0.04, 0.1) (0.70410489, 0.04034169, 0.09663010) (3.0156e-3, 1.9783e-4, 2.0771e-3)
(0.7, 0.04, 0.1) (0.70410640, 0.04034182, 0.09662866) (3.0156e-3, 1.9784e-4, 2.0771e-3)
(0.3, 0.04, 0.1) (0.70409962, 0.04034137, 0.09663355) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.09, 0.04, 1.1) (0.70410242, 0.04034154, 0.09663164) (3.0156e-3, 1.9783e-4, 2.0772e-3)

TABLE 2. Initial and optimized parameters together with their respective
SEEs with noise having normal distribution with zero mean and different
standard deviations; changing a randomly and keeping other fixed.

θ0 θ̂ SEEs
Panel A: σ = 0.0005

(0.7, 0.048, 0.1) (0.70004056, 0.04000337, 0.09996610) (6.9683e-5, 4.5639e-6, 4.9607e-5)
(0.7, 0.044, 0.1) (0.70004062, 0.04000338, 0.09996606) (6.9684e-5, 4.5640e-6, 4.9608e-5)
(0.7, 0.04, 0.1) (0.70004064, 0.04000338, 0.09996605) (6.9675e-5, 4.5634e-6, 4.9601e-5)
(0.7, 0.036, 0.1) (0.70004067, 0.04000338, 0.09996603) (6.9672e-5, 4.5632e-6, 4.9600e-5)
(0.7, 0.032, 0.1) (0.70004057, 0.04000338, 0.09996610) (6.9685e-5, 4.5640e-6, 4.9609e-5)

Panel B: σ = 0.005
(0.7, 0.048, 0.1) (0.70040657, 0.04003386, 0.09966091) (3.0199e-4, 1.9782e-5, 2.1435e-4)
(0.7, 0.044, 0.1) (0.70040678, 0.04003387, 0.09966074) (3.0201e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.04, 0.1) (0.70040669, 0.04003387, 0.09966079) (3.0202e-4, 1.9783e-5, 2.1437e-4)
(0.7, 0.036, 0.1) (0.70040663, 0.04003386, 0.09966080) (3.0201e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.028, 0.1) (0.70040724, 0.04003391, 0.09966036) (3.0204e-4, 1.9785e-5, 2.1438e-4)

Panel C: σ = 0.05
(0.7, 0.048, 0.1) (0.70409, 0.040341, 0.096634) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.7, 0.044, 0.1) (0.70410, 0.040341, 0.096631) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.7, 0.04, 0.1) (0.70410, 0.040341, 0.096628) (3.0156e-3, 1.9784e-4, 2.0771e-3)
(0.7, 0.036, 0.1) (0.70410, 0.040341, 0.096631) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.7, 0.032, 0.1) (0.70410, 0.040341, 0.096633) (3.0156e-3, 1.9783e-4, 2.0772e-3)

TABLE 3. Initial and optimized parameters together with their respective
SEEs with noise having normal distribution with zero mean and different
standard deviations; changing b in a fixed proportion and keeping other
fixed.
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θ0 θ̂ SEEs
Panel A: σ = 0.0005

(0.7, 0.1, 0.1) (0.70004057, 0.04000338, 0.09996609) (6.9686e-5, 4.5641e-6, 4.9610e-5)
(0.7, 0.09, 0.1) (0.70004061, 0.04000338, 0.09996606) (6.9683e-5, 4.5639e-6, 4.9607e-5)
(0.7, 0.04, 0.1) (0.70004064, 0.04000338, 0.09996605) (6.9675e-5, 4.5634e-6, 4.9601e-5)
(0.7, 0.009, 0.1) (0.70004063, 0.04000338, 0.09996605) (6.9683e-5, 4.5639e-6, 4.9608e-5)
(0.7, 0.004, 0.1) (0.70004061, 0.04000338, 0.09996606) (6.9690e-5, 4.5644e-6, 4.9612e-5)

Panel B: σ = 0.005
(0.7, 0.1, 0.1) (0.70040663, 0.04003386, 0.09966076) (3.0203e-4, 1.9784e-5, 2.1438e-4)

(0.7, 0.09, 0.1) (0.70040678, 0.04003387, 0.09966071) (3.0201e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.04, 0.1) (0.70040669, 0.04003387, 0.09966079) (3.0202e-4, 1.9783e-5, 2.1437e-4)
(0.7, 0.009, 0.1) (0.70040658, 0.04003386, 0.09966087) (3.0201e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.004, 0.1) (0.70040699, 0.04003389, 0.09966052) (3.0203e-4, 1.9785e-5, 2.1438e-4)

Panel C: σ = 0.05
(0.7, 0.1, 0.1) (0.704105,0.040341, 0.096629) (3.0156e-3, 1.9783e-4, 2.0771e-3)

(0.7, 0.09, 0.1) (0.704106,0.040341, 0.096629) (3.0156e-3, 1.9783e-4, 2.0771e-3)
(0.7, 0.04, 0.1) (0.704106, 0.040341, 0.096628) (3.0156e-3, 1.9784e-4, 2.0771e-3)
(0.7, 0.009, 0.1) (0.704102, 0.040341, 0.096632) (3.0156e-3, 1.9783e-4, 2.0772e-3)
(0.7, 0.004, 0.1) (0.704102, 0.040341, 0.096632) (3.0156e-3, 1.9783e-4, 2.0772e-3)

TABLE 4. Initial and optimized parameters together with their respective
SEEs with noise having normal distribution with zero mean and different
standard deviations; changing b randomly and keeping other fixed.

are less and more stable as compared to others. These facts indicate that the changes in
estimates of a, b and x0 are not due to errors.

In this case, the OD-GSF of b with respect to x0 denoted by gb/x0
(tk, θ0) in Figure(4) is

almost straight line signifying that changes in true value of x0 do not change the parameter
estimates of b. That is, x0 least affects the estimates of b as compared to a’s and x0’s which
is very common to be found in many other models.

5. DISCUSSION

The importance of the GSFs being the diagonal elements of the GSM given by Equa-
tion (2. 16 ) in relation to the estimates of the parameters has now been fully realized.
The off-diagonal elements of this matrix have been defined as the OD-GSFs. An effort
has been made to explore the relation of these functions with the parameter estimates first
time. However, some important points are needed to be discussed and clarified here which
supplement our earlier results.

5.1. Condition Number of the FIM. The Condition number of the Fisher Information
Matrix given by Eqn.(2. 13 ) is the measure to know how much the results given by the gen-
eralized and the off-diagonal sensitivity functions of the parameters are reliable. Large con-
dition numbers indicate that the matrix is close to singularity or is ill-conditioned, whereas
the small and moderate condition numbers indicate that the matrix is well-conditioned and
that the results are reliable. Condition number of the FIM namely F(θ0) in the region
[0, 16] is 13485 which is considered moderate one in the context of the inverse problem.
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θ0 θ̂ SEEs
Panel A: σ = 0.0005

(0.7, 0.04, 0.12) (0.70004062, 0.04000338, 0.09996606) (6.9679e-5, 4.5637e-6, 4.9605e-5)
(0.7, 0.04, 0.11) (0.70004064, 0.04000338, 0.09996605) (6.9685e-5, 4.5641e-6, 4.9609e-5)
(0.7, 0.04, 0.1) (0.70004061, 0.04000338, 0.09996607) (6.9678e-5, 4.5636e-6, 4.9604e-5)

(0.7, 0.04, 0.09) (0.70004064, 0.04000338, 0.09996604) (6.9680e-5, 4.5637e-6, 4.9605e-5)
(0.7, 0.04, 0.08) (0.70004062, 0.04000338, 0.09996605) (6.9686e-5, 4.5641e-6, 4.9610e-5)

Panel B: σ = 0.005
(0.7, 0.04, 0.12) (0.7004067, 0.0400338, 0.0996607) (3.0202e-4, 1.9784e-5, 2.1437e-4)
(0.7, 0.04, 0.11) (0.7004067, 0.0400338, 0.0996607) (3.0202e-4, 1.9784e-5, 2.1437e-4)
(0.7, 0.04, 0.1) (0.7004066, 0.0400338, 0.0996607) (3.0202e-4, 1.9783e-5, 2.1437e-4)

(0.7, 0.04, 0.09) (0.7004065, 0.0400338, 0.0996609) (3.0200e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.04, 0.08) (0.7004069, 0.0400338, 0.0996606) (3.0200e-4, 1.9783e-5, 2.1436e-4)

Panel C: σ = 0.05
(0.7, 0.04, 0.12) (0.704102, 0.040341, 0.096631) (0.00301564, 0.00019783, 0.00207721)
(0.7, 0.04, 0.11) (0.704102, 0.040341, 0.096631) (0.00301564, 0.00019783, 0.00207721)
(0.7, 0.04, 0.1) (0.704106, 0.040341, 0.096628) (0.00301569, 0.00019784, 0.00207717)

(0.7, 0.04, 0.09) (0.704102, 0.040341, 0.096631) (0.00301566, 0.00019783, 0.00207721)
(0.7, 0.04, 0.08) (0.704101, 0.040341, 0.096633) (0.00301562, 0.00019783, 0.00207722)

TABLE 5. Initial and optimized parameters together with their respective
SEEs with noise having normal distribution with zero mean and different
standard deviations; changing x0 in a fixed proportion and keeping other
fixed.

θ0 θ̂ SEEs
Panel A: σ = 0.0005

(0.7, 0.04, 0.006) (0.70004059, 0.04000338, 0.09996608) (6.9692e-5, 4.5645e-6, 4.9614e-5)
(0.7, 0.04, 0.07) (0.70004064, 0.04000338, 0.09996605) (6.9675e-5, 4.5634e-6, 4.9601e-5)
(0.7, 0.04, 0.1) (0.70004061, 0.04000338, 0.09996607) (6.9678e-5, 4.5636e-6, 4.9604e-5)
(0.7, 0.04, 0.9) (0.70004062, 0.04000338, 0.09996606) (6.9685e-5, 4.5641e-6, 4.9609e-5)
(0.7, 0.04, 1.5) (0.70004065, 0.04000338, 0.09996604) (6.9680e-5, 4.5637e-6, 4.9606e-5)

Panel B: σ = 0.005
(0.7, 0.04, 0.006) (0.7004068, 0.0400338, 0.9966068) (3.0200e-4, 1.9783e-5, 2.1436e-4)
(0.7, 0.04, 0.07) (0.7004067, 0.0400338, 0.0996607) (3.0202e-4, 1.9784e-5, 2.1437e-4)
(0.7, 0.04, 0.1) (0.7004066, 0.0400338, 0.0996607) (3.0202e-4, 1.9783e-5, 2.1437e-4)
(0.7, 0.04, 0.9) (0.7004064, 0.0400338, 0.0996610) (3.0200e-4, 1.9782e-5, 2.1436e-4)
(0.7, 0.04, 1.5) (0.7004065, 0.0400338, 0.0996608) (3.0202e-4, 1.9784e-5, 2.1437e-4)

Panel C: σ = 0.05
(0.7, 0.04, 0.006) (0.707691, 0.040518, 0.095220) (4.8420e-3, 3.6395e-4, 3.0837e-3)
(0.7, 0.04, 0.07) (0.707686, 0.040518, 0.095223) (4.8419e-3, 3.6395e-4, 3.0838e-3)
(0.7, 0.04, 0.1) (0.707686, 0.040518, 0.095223) (4.8419e-3, 3.6395e-4, 3.0838e-3)
(0.7, 0.04, 0.9) (0.707687, 0.040518, 0.095222) (4.8419e-3, 3.6395e-4, 3.0838e-3)
(0.7, 0.04, 1.5) (0.707688, 0.040518, 0.095221) (4.8420e-3, 3.6395e-4, 3.0838e-3)

TABLE 6. Initial and optimized parameters together with their respective
SEEs with noise having normal distribution with zero mean and different
standard deviations; changing x0 randomly and keeping other fixed.

5.2. Correlation. Correlations amongst the parameters is reflected by the oscillations in
the GSFs and OD-GSFs of the corresponding parameters [14]. The information contents
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given by the measurements for three parameters are highly correlated in the case of the
logistic growth population model as corr

(
â, b̂
)

= 0.9977, corr (â, x̂0) = 0.9909 and

corr
(
b̂, x̂0

)
= 0.9977, which are reflected only by the oscillations in their GSFs and OD-

GSFs. However, there can be a good-fit to the data in the presence of high correlation [11].

6. CONCLUSION

The generalized and off-diagonal generalized sensitivity functions have a well-defined
relation with the parameter estimates and the correlation coefficients. The OD-GSFs de-
scribe the effects of the changes in the true values of one parameter over the estimates of
other parameters whereas the GSFs quantify the effects of the changes in true value of the
parameters over its estimate. This relation have been exhibited with the help of an exam-
ple. High correlation amongst the parameters is shown in the oscillations of the GSFs and
OD-GSFs.

The numerical results of parameter estimates given in Tables(1) to Table(6) show that the
OD-GSFs of a parameter with respect to another parameter are close to straight line when
the changes in one parameter do not effect the estimates of other parameters. This change is
reflected more when the change in one parameter affects its estimates or other parameters’
estimates more. We displayed the GSFs and OD-GSFs by taking two parameters at a time;
however we also got the similar results by taking all the three parameters together which
are not given here.

Change in one parameter brings enormous change in the other parameters in several dy-
namical systems; in order to study these systems, the study of the off-diagonal generalized
sensitivity functions is as important as that of the generalized sensitivity functions.

We have used the non-linear Least Square method to develop the idea of the OD-GSFs,
but the maximum-likelihood estimation method may be used to develop it. However, both
the methods coincide as the assumed distribution of the measurement process is normal.
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[9] P. Mäkilä and J. R. Partington, On linear models for nonlinear systems, Automatica, 39, No. 1 (2003) 1–13.
[10] M. Munir, Generalized Sensitivity Functions in Physiological Modeling, PhD thesis, University of Graz,

Graz, 2010.
[11] R. J. Ritchie and T. Prvan, Current statistical methods for estimating the km and vmax of michaelis-menten

kinetics, Biochemical Education 24, No. 4 (1996) 196–206.
[12] G. A. F. Seber and C. J. Wild, Nonlinear Regression, J. Wiley & Sons, New York, 1989.
[13] K. Thomaseth and C. Cobelli, Generalized sensitivity functions in physiological system identification, Annals

of biomedical engineering 27, No. 5 (1999) 607–616.
[14] K. Thomaseth and C. Cobelli, Analysis of information content of pharmacokinetic data using generalized

sensitivity functions, Engineering in Medicine and Biology Society 2000. Proceedings of the 22nd Annual
International Conference of the IEEE, 1, (2000) 435–437.

[15] M. I. Troparevsky, D. Rubio and N. Saintier, Sensitivity analysis for the eeg forward problem, Frontiers in
computational neuroscience 4, (2010).


