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Abstract. A multigrid solver for the generalized Stokes equations with
coarsening by a factor of three is presented. Finite difference approxima-
tions are used on staggered grids and a distributive Gauss-Seidel smooth-
ing scheme is employed on these grids. Numerical experiments are per-
formed to validate the effectiveness and efficiency of the proposed multi-
grid staggered grid framework.
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1. INTRODUCTION

The generalized Stokes equations as well as the need of their (numerical) solution usu-
ally appear in incompressible fluid dynamics. In particular, in the numerical investigation
(simulation) of fluid flow problems such as time-dependent Stokes or Navier-Stokes equa-
tions, we also need to solve a generalized Stokes problem at each, respectively, linear or
nonlinear iteration step. The Stokes system and its solution procedures has also been stud-
ied in some applications (mechanics problems regarding structures) such as plasticity, beam
and shell.

For the positive definite linear system (in connection with the elliptic systems) that arises
from the discretization (of finite differences or finite elements), multigrid algorithms have
been used as one of the most efficient schemes, e.g., see [3, 12, 13, 25]. On the other hand
[1, 10, 22, 24, 26], for the saddle point problems that appears in the solution procedures of
Stokes or Navier-Stokes equations, the smoothing step is not an easy task, i.e., the resulting
matrices after discretization are not positive definite and thus the well known procedure for
the smoothing cannot be applied in this case (in a standard way). Solving Stokes equation
with multigrid has a long history. In most of the cases, two methods are used. The first
method is known as the distributed (Gauss-Seidel) iteration [4, 25], i.e., decoupled smooth-
ing on the transformed system. The second method refers to an approximate decoupling of
the system, see [17].
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In this paper, we extend the work [4, 6, 7] to the generalized Stokes equations and de-
velop a multigrid solver using coarsening by a factor-of-three strategy. In particular, the
scope of this paper is more on the numerical efficiency of the proposed multigrid tech-
nique. Adopting a coarsening by the factor of three strategy on staggered grids has the po-
tential advantage of simplifying the intergrid transfer operators, coarsening more quickly
and ultimately reducing the number of levels and communication steps in a parallel im-
plementation. The iteration counts we have observed in this paper show robust results in
grid size h, α > 0, and ν > 0 (viscosity or size of the diffusion term). For α = 0, the
generalized Stokes equations becomes the standard Stokes problem. For this case, various
multigrid solvers are available in literature, for example, see [2, 5, 26] and the papers cited
in [24]. For robust convergence behavior when α > 0, the construction of multigrid al-
gorithm is more involved, see [15]. This paper aims at to construct an efficient multigrid
scheme on staggered grids for solving the generalized Stokes problems, which appears
in time-dependent Stokes flow problems, when α > 0 (which correspond to small time-
steps). Here, we focus on the development of the coarsening-by-three multigrid algorithm,
and leave a rigorous analysis of its convergence for future work.

The paper is organized as follows. The generalized Stokes system in a bounded polyg-
onal domain Ω ⊂ R2 is discussed in the next section. Discretization on staggered grids
using finite differences is presented in Section 3. In Section 4, the proposed full multigrid
scheme is presented with a distributive Gauss-Seidel relaxation scheme. Results of numer-
ical experiments are presented in Section 5, and at the end conclusions are given in the last
section.

2. THE GENERALIZED STOKES EQUATIONS

In this paper, we consider the following generalized Stokes equations in a bounded
domain Ω ⊂ R2 with a Lipschitz-continuous boundary Γ = ∂Ω: Find u ∈ H1

0(Ω) (the
velocity vector) and p ∈ L2

0(Ω) (the pressure field) satisfying

αu− ν4u +∇p = f in Ω (2. 1)
−∇ · u = 0 in Ω (2. 2)

u = 0 on Γ, (2. 3)

where the source term f ∈ L2(Ω) represents the force, α ≥ 0, and viscosity ν > 0 are
given. Moreover, when α = 0, we have the standard Stokes problem. The parameter α ≥ 0
is a quantity, proportional to the inverse of the time-step, that appears in an auxiliary prob-
lem for implicit time-stepping approaches to solve nonstationary (time-dependent) Stokes
flow problems. For existence of a unique solution, we further required

∫
Ω
p dx = 0.

Here and in the following, L2(Ω) andH1(Ω) denote the standard Lebesque and Sobolev
spaces with ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω), respectively, as associated standard norms. The usual
inner product associated with L2(Ω) will be denoted by (·, ·). Moreover, we have the space
L2

0(Ω), which is the space of functions in L2(Ω) with mean value 0, i.e.,

L2
0(Ω) =

{
φ ∈ L2(Ω) :

∫
Ω

φdx = 0

}
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and H1
0(Ω), the space in H1(Ω) vanishing on the boundary, i.e.,

H1
0(Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
.

The weak solution (u, p) ∈ H1
0(Ω)× L2

0(Ω) of ( 2. 1 )-( 2. 3 ) is the solution of

a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω)

b(u, q) = 0 ∀ q ∈ L2
0(Ω),

where a : H1
0(Ω)×H1

0(Ω)→ R and b : H1
0(Ω)×L2

0(Ω) are the bilinear forms defined as

a(u,v) :=

2∑
j=1

∫
Ω

∇uj · ∇vj

b(v, p) := −
∫

Ω

p∇ · v

For f ∈ H−1(Ω) the problem has a unique solution [11]. Moreover, if Ω is a convex
polygon and f ∈ L2(Ω), then u ∈ H2(Ω), p ∈ H1(Ω) [14] and there existsC = C(Ω) > 0
satisfying

‖u‖H2(Ω) + ‖∇ p‖L2(Ω) ≤ C‖f‖L2(Ω).

3. DISCRETIZATION

The chosen scheme (resulting from finite difference or finite elements discretization),
the discretization of ( 2. 1 )-( 2. 3 ) ultimately gives a linear system, i.e.,

A =

(
A BT

B −C

)
where (the block matrix) A is the (symmetric positive definite) discrete operator α − ν4
acting on each velocity components (u and v respectively). Moreover,BT andB represents
the discrete gradient, respectively, the discrete divergence; the term C is needed to avoid
spurious solutions by some discretization schemes. We refer [23] and [8], respectively, for
more details about (finite difference and finite element) discretization.

In the following, we present the discretization of the generalized Stokes equations using
finite difference approximations on staggered grids. It is well known that the given finite
difference scheme (or MAC scheme) is naturally stable with C = 0; for example see
[19]. Moreover, in our case of finite differences (and later for distributive Gauss-Seidel
relaxation scheme, c.f. [4]), we have C = αh2 ∆h a scaled discrete Laplacian acting on
pressure unknowns.

First, we consider a sequence of grids {Ωh}h>0, which is defined as follows

Ωh = {x ∈ R2 : xi = i h, yj = j h, i, j ∈ Z} ∩ Ω.

Here, we consider Ω as a rectangular domain. The values of grid size h are chosen such that
the grid lines coincides with the boundaries of Ω. The variables (velocity vector), on the
staggered grids, are placed on (horizontal or vertical) centers of cell faces and (the pressure
variable) on cell centers. We use Ωs

h, s ∈ {ev, eh, c} to denote theses grid points, e.g., by
Ωev

h we mean grid points defined on center of cell edge-vertical.
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Next, the discrete L2-scalar product, for grid functions uh and vh, defined on Ωs
h, with

associated norm ‖uh‖L2
h(Ωs

h) = (uh, uh)
1/2

L2
h(Ωs

h)
is given by

(uh, vh)L2
h(Ωs

h) = h2
∑
x∈Ωs

h

uh(x) vh(x).

Moreover, we denote the (discrete) space L2
h(Ωs

h) of grid points uh defined on Ωs
h, and

endowed with ‖uh‖L2
h(Ωs

h), as norm; by Uh, Vh and Ph we mean the space of the grid
points uh, vh and ph, respectively.

Here, the (velocity) variable u is defined at center of faces (horizontal Ωev
h or vertical

Ωeh
h ), and the (pressure) variable p is defined at cell centers Ωc

h; see Figure 1. Therefore,
we can write the discrete Stokes equations as follows

Qhuh
j + ∂hj p

h = fhj , at centers of j-faces
2∑

j=1

∂hj uh
j = 0, at cell centers, (j = 1, 2)

where Qh = α − ν∆h is some finite difference approximation of Q = α − ν∆, and
∆h is the usual 5-point difference approximation; uh

1 = uh,uh
2 = vh, ∂h1 = ∂hx , and

∂h2 = ∂hy . However, near a boundary, ∆h uh
j (x) may involve an exterior (so-called ghost

points) value. This value is defined by quadratic extrapolation, see [4].
Next, for the given step size h in the 2D space domain Ω, we consider the grid points, in

a lexicographic order including the boundaries, i.e., the vertices coordinate xi = (i− 1)h
and yj = (j − 1)h; 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny . The equations are discretized on a squared
staggered grid, see Fig. 1. Thus p is located at the interior point pi+1/2,j+1/2 (i.e., the
discrete point p(xi + h/2, yj + h/2))); ui,j is located at ((i− 1)h, (j− 1/2)h) and vi,j at
((i− 1/2)h, (j − 1)h). Therefore, by using second-order central differences, we get

αui,j+1/2 − (
ui−1,j+1/2 − 2ui,j+1/2 + ui+1,j+1/2

h2

+
ui,j−1/2 − 2ui,j+1/2 + ui,j+3/2

h2
) +

pi+1/2,j+1/2 − pi−1/2,j+1/2

h
= fi,j+1/2,(3. 4)

α vi+1/2,j − (
vi−1/2,j − 2vi+1/2,j + vi+3/2,j

h2

+
vi+1/2,j−1 − 2vi+1/2,j + vi+1/2,j+1

h2
) +

pi+1/2,j+1/2 − pi+1/2,j−1/2

h
= gi+1/2,j ,(3. 5)

ui+1,j+1/2 − ui,j+1/2

h
+
vi+1/2,j+1 − vi+1/2,j

h
= 0, (3. 6)

where the first momentum equation ( 3. 4 ) is centered (relaxed) at (internal cell) edge-
vertical Ωev

h , the second momentum equation ( 3. 5 ) at (internal cell) edge-horizontal Ωeh
h ,

and the continuity equation ( 3. 6 ) at (internal cell centers) Ωc
h.

Summarizing, equation ( 3. 4 )-( 3. 6 ) constitute the discrete Stokes system with the
following boundary conditions

ui,j+1/2 = 0, (i = 1, Nx + 1, j = 1, · · · , Ny)

vi+1/2,j = 0, (j = 1, Ny + 1, i = 1, · · · , Nx). (3. 7)
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FIGURE 1. Coarsest staggered grid for the Stokes system.

4. A FULL MULTIGRID FRAMEWORK

In the following, a full multigrid method, on staggered grid, with distributive smoothing
scheme to solve the discrete Stokes system ( 3. 4 )-( 3. 7 ) is presented. The coarsest
staggered grid is shown in Figure 1.

As we know that multigrid scheme uses different discretization grids and such grids are
usually obtained from a coarse grid, e.g., by halving the mesh (coarsest grid) [21], which
gives hierarchy of grids that are non-nested and therefore additional efforts are required
in construction of intergrid transfer operators; see [4, 16]. Keeping this fact in mind, we
note that when (tripling) a coarsening by a factor-of-three to the mesh size is used (on
the coarsest grid), a nested sequence of grids has been obtained, c.f. [6, 7]. It is also
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worth noting that by using factor-of-three coarsening the use of intergrid transfer operators
(Prolongation and Restriction operators) have been simplified in the (solution procedures)
multigrid algorithms, see Fig. 2. Therefor, in the following we use coarsening by a factor-
of-three strategy which is explained as follows:

A sequence of nested grids (or levels) Ωk is considered with mesh size hxk = hx1/3
(k−1)

and hyk = hy1/3
(k−1), where k = 1, . . . , L, and k = L denotes the finest level. Moreover,

at the coarsest mesh, we use hx1 = hy1 = 1/2 as the mesh sizes. Here, we also remark
that in this way, a variable Xk−1

IJ at the grid point (I, J) on the coarse grid Ωk−1 has the
same spatial placement (location) as the variable Xk

ij at the grid point (i, j) on the fine grid
Ωk as follows; see Figure 2

• uk−1
I,J+1/2←→ uki,j+1/2 ( i = 3I − 2, j = 3J − 1);

• vk−1
I+1/2,J ←→ vki+1/2,j ( i = 3I − 1, j = 3J − 2);

• pk−1
I+1/2,J+1/2←→ pki+1/2,j+1/2 ( i = 3I − 1, j = 3J − 1).

4.1. A smoothing scheme and intergrid transfer operators . In the following, we il-
lustrate the (distributed Gauss-Seidel) smoothing scheme as well as the intergrid transfer
operators.

Following [4], we note that the momentum equations ( 2. 1 ) are elliptic but the con-
tinuity equation ( 2. 2 ) is not elliptic, i.e., it is only a part of an elliptic (Stokes) system.
Therefore, the momentum equations can be relaxed by a classical Gauss-Seidel scheme
but for the continuity equation we need to relax it by a distributive relaxation, which is
explained as follows:

Let (uh, vh, ph) be the current approximation to the discretized system ( 3. 4 )-( 3. 6
). First we relax the residuals of the momentum equations ( 3. 4 )-( 3. 5 ), by a pointwise
Gauss-Seidel scheme, at all the interior points where uh and vh is defined. Then, we relax
the continuity equation ( 3. 6 ) by distributive Gauss-Siedel (DGS) scheme, c.f. [4]. It is
done as follows: let x = (i+ 1/2, j + 1/2) be the current cell center and let

rhp = 0− ∂hxuh − ∂hy vh

be the residual (just before relaxing there). The relaxation step at current cell center is made
up of the following nine changes

uhj ← uhj − δph∂hj χh
x,

ph ← ph + δphQ
hχh

x,
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FIGURE 2. Illustration of coarsening by a factor-of-three strategy on
staggered grids for the state variables. Bold lines represent the coarse-
and the finer lines the fine-grid, respectively.

where χh
x is the characteristic function of the cell center x, i.e.,

ui,j+1/2 ← ui,j+1/2 + δp,

vi+1/2,j ← vi+1/2,j + δp,

ui,j−1/2 ← ui,j−1/2 − δp,
vi−1/2,j ← vi−1/2,j − δp,

pi+1/2,j+1/2 ← pi+1/2,j+1/2 +
4ν

h
δp + αhδp,

pi+3/2,j+1/2 ← pi+3/2,j+1/2 −
ν

h
δp,

pi+1/2,j+3/2 ← pi+1/2,j+3/2 −
ν

h
δp,

pi−1/2,j+1/2 ← pi−1/2,j+1/2 −
ν

h
δp,

pi+1/2,j−1/2 ← pi+1/2,j−1/2 −
ν

h
δp,
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where

δp =
4

h
rhp .

Above changes and δp are such that, after changing, rhp vanishes. The pressure changes are
such that the momentum equations residuals

rhj = fhj − αuj + ν∆huh
j − ∂hj ph, (j = 1, 2) (4. 8)

at all points are preserved, at least in the approximate sense.
Near the boundary it is not possible to precisely preserve rhj while relaxing the continuity

equation. It is enough to relax rhp so that the changes introduced to rhj do not cause later
significant feed back (changes), in rhp , when the momentum equations are relaxed. Due
to the boundary conditions, boundary feed-back changes, near the boundary, are partly
absorbed. Therefore, such feed-back schemes are easy to design. For example, because
of boundary conditions, in the case where one of the updates at the boundaries are not
allowed, we need to modify δp as

δp =
h

4− d
rhp ,

where d = 1, when one of the u or v is not updated, and (at corner) d = 2, i.e., where u as
well as v (simultaneously) are not updated during the iterative step, see [4].

Next, we discuss the prolongation and restriction (intergird transfer) operators. As we
discussed that in coarsening by a factor of a three we obtain a nested hierarchy of grids.
Moreover, this strategy also makes the implementation of the bilinear interpolation easy.
Therefore, we use bilinear interpolation, e.g., consider Uk of uk : Ωev

k → R, for k =
1, . . . , L. We define a prolongation operator (among two grids Ωk and Ωk−1), Ikk−1 :

Uk−1 → Uk such that on each discretized rectangular partition, Ikk−1 is consistent with the
bilinear finite elements.

Note that in coarsening by factor of three, the spatial placement of the coarse-grid points
are on the same placement as of the fine-grid points; see Figure 2. Therefore, we use
straight injection operator Ik−1

k : Uk → Uk−1 (as the restriction operator) for transfer of
variables (residuals and functions) form fine grids to coarse grids. Here, we remark that it is
not necessary to use the straight injection operator as a restriction operator, one can use full
or half weighting. We use straight injection because it is natural choice in the coarsening
by a factor-of-three strategy.

4.2. The multigrid algorithms . To introduce our approach, we discuss the full approxi-
mation scheme (FAS) and the full multigrid method (FMG). The FAS scheme is a natural
choice in the treatment of the boundary value problems (BVPs), whereas FMG scheme
allows to improve the computational complexity of the FAS scheme. The FMG scheme is
obtained combining a nested iteration strategy with the FAS scheme that we discuss next.

Next, we consider the discretized generalized Stokes system ( 3. 4 )-( 3. 7 ) and write
this in compact form given by

Ak(Xk) = Fk. (4. 9)

at the discretization level k for Xk = (uk, vk, pk).
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Furthermore, we denote X(l)
k = Sk (X

(l−1)
k , Fk), the smoothing scheme given in Sec-

tion 4.1. For the purpose of completeness, the FAS cycle for solving Ak(Xk) = Fk (FMG
algorithm for solving AL(XL) = FL) is summarized as follows:

Algorithm 1: FAS(m1,m2).

(1) Solve Ak(Xk) = Fk exactly, if k = 1.
(2) Pre-smoothing: X(l)

k = Sk(X
(l−1)
k , Fk), (l = 1, . . . ,m1);

(3) Compute the residual: rk = Fk −Ak(X
(m1)
k );

(4) Restriction of residuals: rk−1 = Ik−1
k rk;

(5) Set Xk−1 = Ik−1
k X

(m1)
k ;

(6) Set Fk−1 = rk−1 +Ak−1(Xk−1)
(7) Call FAS (m times) to solve Ak−1(Xk−1) = Fk−1;
(8) Correction: X(m1+1)

k = X
(m1)
k + Ikk−1(Xk−1 − Ik−1

k X
(m1)
k );

(9) Post-smoothing: X(l)
k = Sk(X

(l−1)
k , Fk), (l = m1 + 2, . . . ,m1 +m2 + 1);

Note that at each working level, we can perform m two-grid iterations. We have a V -cycle
if m = 1 and for m = 2 we have a W -cycle; for more details see [21].

In the full multigrid method, first we solve the problem on the coarsest grid iteratively or
by direct method until the reduction in algebraic error is bellow the discretization error, and
then the problem is interpolated to the next finer level. Afterwords some multigrid cycles
(V- or W-cycle) are performed, and the resulting solution is interpolated to the next finer
level. This process is repeated until the solution has been obtained on the desired finest
level.

A description of the full multigrid (FMG) method is given in the following algorithm.
Algorithm 2: FMG for solving AL(XL) = FL.

(1) For l = K < L set initial approximation ul.
(2) If l < L then interpolate to the next finer working level: X̃l+1 = I l+1

l Xl;
(3) Apply FAS to solve Al+1(Xl+1) = Fl+1, starting with X̃l+1;
(4) Set l := l + 1; If l < L go to step 2; else stop.

5. NUMERICAL EXPERIMENTS

In the following, we present the numerical investigation of the proposed full multigrid
scheme for solving the generalized Stokes problem (with finite difference approximations
on staggered grids). We consider a unit square domain Ω = (0, 1)2 with uniform grid size
h (of each rectangular partition of the domain Ω) for all the presented numerical examples.
Our implementation is executed in Matlab 8.5.0 (R2015a) on a laptop i7 with 1.86GHz and
4GB RAM.

5.1. Example 1. We consider the generalized Stokes problem ( 2. 1 )-( 2. 3 ) and take

f(x, y) := −ν
(
4y(y − 1)(2y − 1)

(
(x− 1)2 + 4x(x− 1) + x2

))
− 12x2(x− 1)2(2y − 1) + α

(
2x2(x− 1)2y(y − 1)(2y − 1)

)
,

g(x, y) := ν
(
4x(x− 1)(2x− 1)

(
(y − 1)2 + 4y(y − 1)

))
+ 12y2(y − 1)2(2x− 1)

− α
(
2y2(y − 1)2x(x− 1)(2x− 1)

)
+ 1,
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that gives

u(x, y) = 2x2(x− 1)2y(y − 1)(2y − 1),

v(x, y) = −2y2(y − 1)2x(x− 1)(2x− 1),

p(x, y) = y + C,

where C = − 1
2 is a constant (satisfying the condition

∫
Ω
p dx = 0 to make the problem

well-posed).
We apply the proposed FMG scheme to solve this problem numerically, where the

smoothing consist of relaxing the momentum equations by Gauss-Seidel and the conti-
nuity equation by a distributive relaxation [4], respectively; see Section 4.1. We employ
W -cycles with 2-pre and 2-post smoothing steps (unless stated otherwise) and stop the iter-
ations (relaxation process) when the discrete L2-norm of the residuals is less then the given
tolerance, i.e., when

max
{
‖rhi ‖L2 : i ∈ {u, v, p}

}
< tol = 10−6.

TABLE 1. L2-norm of errors and convergence history for Example 1;
ν = 1, tol = 10−6

Nx ×Ny ‖uh − ue
h‖L2 ‖ph − phe‖L2 Itr CPU

α = 0
18× 18 2.1556e− 5 6.6252e− 5 3 0.48
54× 54 2.0638e− 6 6.3650e− 6 3 3.82
162× 162 2.1771e− 7 6.6452e− 7 3 31.96

α = 10
18× 18 1.8658e− 5 8.5632e− 5 3 0.48
54× 54 1.7895e− 6 8.3279e− 6 3 3.85
162× 162 1.8899e− 7 8.7485e− 7 3 36.49

α = 102

18× 18 1.0437e− 5 2.1000e− 4 4 0.58
54× 54 1.0289e− 6 2.1354e− 5 3 3.55
162× 162 1.1004e− 7 2.2868e− 6 3 33.44

α = 105

18× 18 6.3172e− 6 8.9327e− 2 3 0.40
54× 54 7.0418e− 7 9.8894e− 3 3 3.52
162× 162 7.8355e− 8 1.1032e− 3 3 31.51

The number of iterations (W-cycles) and the CPU time, in seconds, taken for different
mesh sizes is given in Table 1. The discrete L2-norm of the absolute errors are also reported
in Table 1. This demonstrate the second-order accuracy for the generalized Stokes equa-
tions and efficiency of the proposed multigrid staggered grid framework. That is, when the
mesh is refined by a factor of 3, the norm of the errors have been reduced by a factor 32.
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TABLE 2. Iteration history for Example 1, for different values of α and ν

Nx ×Ny Itr CPU
α = 10, ν = 10−1

18× 18 3 0.71
54× 54 2 3.12
162× 162 2 24.26

α = 105, ν = 10−1

18× 18 2 0.47
54× 54 2 2.97
162× 162 1 13.60

α = 10, ν = 10−3

18× 18 2 0.53
54× 54 2 3.09
162× 162 2 23.67

α = 105, ν = 10−3

18× 18 2 0.48
54× 54 2 2.91
162× 162 2 13.50

α = 10, ν = 10−5

18× 18 2 0.54
54× 54 2 2.87
162× 162 2 13.78

α = 105, ν = 10−5

18× 18 2 0.48
54× 54 2 2.98
162× 162 1 13.50

Next, we set tol = 10−10 to make a comparison with the results given by Table 2 −
3 in [9], where a multigrid solution with (equationwise) Gauss-Seidel smoother for the
discrete Stokes equations is presented. With this tol, we report iteration count (W-cycles),
average convergence factor (ρi = ‖rhi ‖newL2 /‖rhi ‖oldL2 : i ∈ {u, v, p}) with ν = 1 in Table
3. Although we cannot make an exact comparison between the numerical results of our
proposed multigrid scheme with [9] (as it uses coarsening by a factor of 2 and h−1 = 256,
while we use coarsening by a factor of 3 and h−1 = 128 etc). We can at least see that the
proposed solver performs better in respect of iteration count and show robust results in grid
size h and α ≥ 0.
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TABLE 3. Iteration counts and convergence factors for Example 1; ν =
1, tol = 10−10

Nx ×Ny Cycle(m1,m2) Itr ρ
α = 0
128× 128 W (1, 1) 8 0.051
384× 384 W (1, 1) 7 0.050

α = 0
128× 128 W (2, 2) 5 0.019
384× 384 W (2, 2) 5 0.018

α = 105

128× 128 W (1, 1) 11 0.154
384× 384 W (1, 1) 10 0.101

α = 105

128× 128 W (2, 2) 6 0.043
384× 384 W (2, 2) 6 0.040

5.2. Example 2. Next, we consider the generalized Stokes equations ( 2. 1 )-( 2. 3 ) and
take an exact solution as follows

u(x, y) = (1− cos(2πx))sin(2πy),

v(x, y) = (cos(2πy)− 1)sin(2πx),

p(x, y) =
1

3
x3 − 1

12
.

The values of the force term, f(x, y) and g(x, y), can be computed accordingly. We apply
the proposed multigrid method (FMG) to solve this problem numerically, and employ W -
cycles with 2-pre and 2-post smoothing steps. We use the same stopping criterion, i.e., we
stop the iterations when the discrete L2-norm of the residuals satisfy

max
{
‖rhi ‖L2 : i ∈ {u, v, p}

}
< tol = 10−6.

The discrete L2-norm of errors and convergence history for α = 0, 101, 102, 105 with
ν = 1 are reported in Table 4. This demonstrate the second-order accuracy of the proposed
multigrid solver, i.e., the norm of the errors reduces by of a factor 32 whenever the mesh
is refined by a factor of 3. Furthermore, iteration counts with CPU time (seconds) are also
given in Table 4.

6. CONCLUSIONS

A multigrid scheme for generalized Stokes equations with coarsening by a factor of three
was investigated. On staggered grids, finite differences were used to discretize the Stokes
system and a distributive Gauss-Seidel smoothing scheme was employed. One advantage
of the proposed multigrid solver is the fact that a nested hierarchy of staggered grids is
obtained when coarsening by a factor of three is used. Moreover, this strategy simplify the
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TABLE 4. L2-norm of errors and convergence history for Example 2;
ν = 1, tol = 10−6

Nx ×Ny ‖uh − ue
h‖L2 ‖ph − phe‖L2 Itr CPU

α = 0
18× 18 8.8866e− 3 6.1028e− 3 5 0.83
54× 54 9.3299e− 4 2.3406e− 4 4 4.80
162× 162 1.0689e− 4 8.8626e− 6 4 42.32

α = 10
18× 18 6.4841e− 3 3.5608e− 3 5 0.73
54× 54 7.8397e− 4 1.2295e− 4 4 4.84
162× 162 8.9779e− 5 3.2755e− 5 4 46.89

α = 102

18× 18 2.7774e− 3 2.5421e− 3 5 0.70
54× 54 3.2379e− 4 1.0898e− 3 4 4.75
162× 162 3.6875e− 5 1.5243e− 4 4 41.44

α = 105

18× 18 9.9099e− 6 1.5524e− 2 5 0.60
54× 54 1.6923e− 6 1.5534e− 3 4 4.52
162× 162 1.8732e− 7 4.8356e− 5 4 40.41

intergrid transfer operators, i.e., the use of bilinear interpolation and restriction operator
becomes easier. The iteration counts we have observed in this paper show better and robust
results in grid size h, α > 0, as compared to the recent work [9]. Promising numerical
results indicate the feasibility and effectiveness of our proposed solution strategies to solve
the time-dependent Stokes and/or Navier-Stokes equations [20] (and other related problems
e.g., see [18]), which is our ongoing research work.
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