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On the Monogenity of Cyclic Sextic Fields of Composite Conductor

Mushtaq Ahmad
National University of Computer& Emerging Sciences, Peshawar Campus

the Islamic Republic of Pakistan.
Email: p097001@nu.edu.pk

Abdul Hameed
National University of Sciences and Technology (NUST), Islamabad.

the Islamic Republic of Pakistan
Email: hameed.lamp@mcs.edu.pk

Nadia Khan
National University of Computer& Emerging Sciences, Lahore Campus.

the Islamic Republic of Pakistan.
Email: p109958@nu.edu.pk

Toru NAKAHARA

University of Peshawar, Khyber Pakhtunkhuwa.
the Islamic Republic of Pakistan
Email: toru.nakahara@nu.edu.pk

Received: 24 July, 2017 / Accepted: 20 December, 2017 / Published online: 10 April, 2018

Abstract. The aim of this paper is to determine the monogenity of the
family of cyclic sextic composite fieldsK · k over the fieldQ of rational
numbers, whereK is a cyclic cubic field of prime conductorp andk a qua-
dratic field with the field discriminantdk such that(p, dk) = 1. Examples
of our theorems are compared with the experiments by PARI/GP.
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1. INTRODUCTION

Let L be an algebraic number field over the fieldQ of rational numbers of the extension
degree[L : Q] = n. Let ZL be the ring of integers inL. ThenZL has an integral basis
{αj}15j5n such thatZL = Z · α1 + · · · + Z · αn as aZ-module of rankn, whereZ
denotes the ring of rational integers. We call it Dedekind-Hasse’s problem to determine
monogenity of a number fieldL. [5, 13, 17].
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Definition. If there exists an integerξ in a fieldL such that

ZL = Z · 1 + Z · ξ + · · ·+ Z · ξn−1 = Z[ξ],

then the ringZL is said to have a power integral basis or the fieldL is monogenic.

Let k be a quadratic fieldQ(ω) with ω = 1+
√

5
2 andK the simplest cubic fieldQ(η)

introduced by D. Shanks with a rootη of a cubic equationx3 = ax2 +(a+3)x+1, where
the discriminantdK(η) of a numberη is defined by
((η − ησ)(η − ησ2

)(ησ − ησ2
))2 with a non-trivial Galois actionσ of K/Q, which is

equal to(a2 + 3a + 9)2, specifically72 for a = −1 [14]. ThenZk = Z[ω], ZK = Z[η]
and the composite sextic fieldK · k are monogenic. On the other hand, for the sextic
field L′ = K · k′ with the Eisenstein fieldk′ = Q(e

2πi
3 ), the monogenity could not be

prolonged intoL′, namely there does not exist an integerξ in L′ such that the module index
[ZL : Z[ξ]] = 1.
In this paper, we consider a generalization of the monogenity for the family of cyclic sextic
composite fields by a cyclic cubic field of prime conductorp and a quadratic field of the
field discriminantq with (p, q) = 1.

2. THEOREMS

We claim Theorem 2.1 and Theorem 2.3.

Theorem 2.1. Let L be a cyclic sextic composite fieldK · k, whereK is a cyclic cubic
fieldK of prime conductorp andk a quadratic field of the field discriminantdk such that
(p, dk) = 1. Then
(1) For a fixed quadratic fieldk, there exist at most finitely many monogenic sextic cyclic
fieldsL.
(2) For a fixed cyclic cubic fieldK, there exist at most finitely many monogenic sextic cyclic
fieldsL.

The proof of this theorem is based on the evaluation modulo the ramified prime ideals in
K andk for the identity (2.1) of the sum of three products of two partial differents

(ξ − ξσ)(ξ − ξσ)τ − (ξ − ξτ )(ξ − ξτ )σ − (ξ − ξστ )(ξ − ξστ )τ = 0. (2. 1)

of a candidate numberξ of a power integral basisZL = Z[ξ] [12]. This involves the
followings.

Theorem 2.2[18]. LetL be a cyclic sextic fieldK ·k+
5 , whereK is a simplest cubic field of

prime conductorp andk+
5 the maximal real subfield of conductor5. Then only two sextic

cyclic fieldsk+
7 · k+

5 andk+
9 · k+

5 are monogenic.

This has been proved in [9].
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Theorem 2.3.LetL be a cyclic sextic composite fieldK · k4, whereK is a simplest cubic
field of prime conductorp andk4 the Gauß field of conductor4. Then only two sextic cyclic
fieldsk+

7 · k4 andk+
9 · k4 are monogenic.

Proof of Theorem2.1. LetG(K) =< σ > andG(k) =< τ > . Then it holds thatZL =
ZK · Zk, whereZK = Z[1, η, ησ ] = Z[η, ησ, ησ2

] holds, whereη denotes the Gauß
period

∑
ρ∈HK

ζρ of length(p−1)/6 for the Galois groupHK corresponding to the cubic

subfieldK for a primitivepth rootζ of unity andZk = Z[1, ω] with ω = dk+
√

dk

2 . From
(p, dk) = 1, we may assume that the ringZL has a power integral basisZ[ξ] for an integer
ξ such that

ξ = α + βω with α, β ∈ ZK .

Since it holds thatNL/K(ξ − ξτ ) = NL/K(α + βω − α − βωτ ) = β2dk, β should be a
unit in K sinceβ is an integer. Thus it holds that(γ−γσj)2 ≡ 0(modP) for γ ∈ ZK with
γ = aη+bησ+cησ2

, a, b, c ∈ Z andP∩K = P, whereP andP denote the ramified prime
ideal inkp andK respectively [10]. Then it is deduced thatNL((ξ−ξσ)(ξ−ξσ

2
)(ξ−ξτ ))

= ±p2 · p2 · d3
k. We consider the fundamental relation (2.1) for the partial factorsξ− ξρ of

the differentdL(ξ).
(1) Since the three products in (2.1) are invariant by the actionτ , each of them belongs to
ZK . By ξ − ξσ =

∑2
j=0 aj(ησj − ησj+1

) ≡ 0(modP) and hence

(ξ − ξσ)(ξ − ξσ)τ ≡ 0(modP2), ξ − ξτ ∼= √
dk and(ξ − ξστ )(ξ − ξστ )τ should be a

unit in K by the assumptionZL = Z[ξ]. Here forα, β ∈ ZF and an idealA in a fieldF,
α ∼= β or α ∼= A means that both sides are equal to each other as ideals. Taking the norm
from the cubic fieldK

NK((ξ − ξσ)(ξ − ξσ)τ − (ξ − ξτ )(ξ − ξτ )σ) = NK((ξ − ξστ )(ξ − ξστ )τ ), (2. 2)

it follows that
d3

k ≡ ε(modp) and henced6
k ≡ ±1(modp) (2. 3)

for a unitε in k. Then for a fixed quadratic subfieldk, from (2.3) there exist at most finitely
many monogenic sextic fieldsL = K · k.
(2) Moreover by (2.2) it holds that

p ≡ δ(moddk) and hencep2 ≡ ±1(moddk) (2. 4)

for a unit δ in k. Then for a fixed cubic fieldK of conductorp, from (2.4) there exist at
most finitely many such monogenic sextic fieldsL. ¤

Remark 2.1. Let k be the Gauß field andβ be a number α
ατ with an integerα in k \

{±1,±i,±1± i}. ThenNk(β) = 1, butβ is nota unit.

Proof of Theorem2.3. By the formula (2.3) it follows that−64 ≡ ±1 or±i (modp). Since
p is the conductor of a simplest cubic field, it deduces thatp = 7, 9 or 13.

The case ofK = k+
7 of conductor7. Put ξ = ηi andξst = ξ − ξσ

sτ t

. Then it holds
thatξs0 = (η − ησs

)i ∼= P andξs1 = ηi − ησs

(−i) = (η + ησs

)i (1 5 s 5 2). Since
the Gauß periodη = ζ7 + ζ−1

7 with p = 7 satisfiesf(x) = x3 + x2 − p−1
3 x − cp+3p−1

27

with 4p = c2 + 27d2, c ≡ 1(mod 3), c > 0, for ηj = ησj NK(η0 + η1) = NK(η0)



70 Mushtaq Ahmad, Abdul Hameed, Nadia Khan and Toru Nakahara

+
∑

05j52 ηjηj+1(ηj + ηj+1) +NK(η1) = 2NK(η0) + (−3NK(η0)) = −1 [DK]. Then
η0 + ηj are units inK for 1 5 j 5 2.

The case ofK = k+
9 = Q(η). The Gauß periodη = ζ9+ζ−1

9 satisfiesx3−3x+1 = 0. Put
ξ = ηi. Thenξj0

∼= P andξj1 = (η + ηj)i. Then byNK(η + ησ) = −NK(η0) = −(−1)
η0 + ηj are units inK. On the other hand, it holds thatη − ησ = ζ + ζ−1 − (ζ2 + ζ−2)
= (1− ζ)ζ−2(ζ3 − 1) ∼= PP3, dL(ηi) ∼= (η − ησ)(ησ − η)σ

2
)(η − ητ ) ∼= P8(2i), and

hencedL/k(ηi) ∼= P24(2i)3 ∼= 34(−23). Therefore it is deuced thatdL
∼= (34)2(−23)2

∼= d
[L:K]
K · d[L:k]

k = dL. Thus the sextic fieldk4 · k+
9 is monogenic.

The case ofK = Q(η) of conductorp = 13 with the Gauß periodη =
∑

ρ∈Gal(K/Q) ζρ,

whereη satisfiesx3 + x2 − 4x + 1 = 0. Assume thatZL = Z[ξ] for a suitable integer
ξ = α+βi in L with α, β ∈ ZK . Then byξ− ξσ ≡ 0(moddK) andξ− ξτ ≡ 0(moddk),
ξ − ξστ should be a unit inL. However for the partial factorξστ = ξ − ξστ = α + βi−
(ασ+βσ(−i)), it should be deduced thatNL/K(ξστ ) = (α−ασ)2+(β+βσ)2 = E with
a unitE in K. Putπσ = α−ασ andβσ = β+βσ. Then1 = NK(E) = NK(NL/K(ξστ ))
= (π2

σ + β2
στ )(π2

σ + β2
στ )σ (π2

σ + β2
στ )σ

2 = 23
√

(πσβσ)(πσβσ)σ(πσβσ)σ2

= 23
√

NK(πσ)NK(βσ) > 23 because ofπσ ≡ 0(modP). This is a contradiction. Then
the sextic fieldk4 ·K is non-monogenic. ¤

Remark 2.2.On the family of cyclic sextic fieldsL of prime power conductor, it is proved
that there does not exist any monogenic fieldL except for the three fields, the7th cyclo-
tomic field,9th one and the maximal real subfield of13th one [8].

3. EXAMPLES COMPARING EXPERIMENTS DUE TOPARI/GP

Among several softwares for Mathematics, PARI/GP is an important tool to work in Num-
ber Theory and related areas [4]. It is a free software implemented by Université Bordeaux,
France and can be used through MS Windows and Linux. Recently, (ex) PhD scholars in
Pakistan have completed their main papers on Algebraic Number Theory [2, 6, 18, 15]. In
the initial stage of their research and to verify the validity of claims, PARI/GP is making
an indispensable role. Here we would show a prospective experiment, by which a new
theorem will be developed and the related future work is proposed.

Let K the simplest cubic fieldQ(η) introduced by D. Shanks with a rootη of a cubic
equationx3 = ax2 +(a+3)x+1, where the discriminantdK(η) of a numberη is defined
by ((η− ησ)(η− ησ2

)(ησ − ησ2
))2, which is equal to(a2 + 3a + 9)2, specifically72 for

a = −1 [14]. ThenZk = Z[ω] andZK = Z[η] hold.

Example 3.1.In Theorem 2.2, letL be the composite abelian sextic extension fieldK · k,
whereK is the simplest cubic fieldQ(η) of conductor7 with the Gauß periodη and
k is a quadratic fieldQ(ω) with ω = 1+

√
5

2 . Then the monogenity of the subfieldK
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is lifted up toL. The sextic fieldL is generated byξ = ηω, which satisfies(ξ/ω)3 =
−(ξ/ω)2 + 2(ξ/ω) + 1 namely{

(ξ3−2ξ−1)2

−ξ2
+2ξ+2

}2

− ξ3−2ξ−1

−ξ2
+2ξ+2

− 1 = 0 by ξ3− 2ξ− 1 = ω(−ξ2 +2ξ +2) for ω = 1+
√

5
2 .

We examine the fact for the sextic fieldL.

\\ Then PARI/GP gives a power integral basis
gp> nfbasis((xˆ3-2 * x-1)ˆ2-(xˆ3-2 * x-1) * (-xˆ2+2 * x+2)-(-xˆ2+2 * x+2)ˆ2)
%1=[1,x,xˆ2,xˆ3,xˆ4,xˆ5],
\\ the field discriminant d_{L} of the sectic field L
gp> nfdisc((xˆ3-2 * x-1)ˆ2-(xˆ3-2 * x-1) * (-xˆ2+2 * x+2)-(-xˆ2+2 * x+2)ˆ2)
%2=300125 \\ and the prime number decomposition of d_{L}
gp> factor(300125)
%3=[5 3], [7 4] \\ namely
d_{L}=5ˆ3\cdot 7ˆ4=d_{k}ˆ{[L:k]}\cdot d_{K}ˆ{[L:K]}
with d_{k}=5 and d_{K}=7ˆ2.

Since the fieldsK andk are linearly disjoint, that isK ∩ k = Q by gcd(dK , dk) = 1.
the ringZL of the composite fieldL coincides withZK · Zk = Z[1, η, η2] · Z[1, ω] =
Z[1, η, η2, ω, ηω, η2ω]. Thus forξ = ηω the representation matrixA of {1, ξ, ξ2, ξ3, ξ4, ξ5}
with respect to{1, η, η2, ω, ηω, η2ω} is equal to0

BBBBBB@

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 1
1 2 −1 2 4 −2
−2 −2 6 −3 −3 9
9 15 12 15 −25 −20

1
CCCCCCA

which is equivalent to 0
BBBBBB@

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 1
0 2 0 2 0 −1
0 −2 0 −3 0 3
0 15 0 15 0 −8

1
CCCCCCA

and hence whose determinant is equal to 1, namely the matrix A belongs toSL6(Z).
Then our result and the output of PARI/GP coincide with each other.

Example 3.2.In Theorem 2.3, letL′′ be the composite fieldK·k4 of the simplest cubic field
K = Q(η) of conductor7 and the Gauss fieldk4 = Q(i). Then the ring of integers inL′′ is
generated byξ = ηi. Also PARI/GP gives a power integral basis byξ3 +2ξ = −i(ξ2 +1).
gp> nfbasis((xˆ3+2 * x)ˆ2+(xˆ2+1)ˆ2)
%1=[1,x,xˆ2,xˆ3,xˆ4,xˆ5],
\\ the field discriminant d_{Lˆ{\prime}} of
the sextic field Lˆ{\prime\prime}
%% the sectic field Lˆ{\prime}
gp> nfdisc((xˆ3-2 * x-1)ˆ2-(xˆ3-2 * x-1) * (-xˆ2+2 * x+2)-(-xˆ2+2 * x+2)ˆ2)
%2=300125 \\ and the prime number decomposition of d_{L}
gp> factor(-153664)
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%3=[5 3], [7 4] \\ namely
d_{Lˆ{\prime\prime}}=(-4)ˆ3\cdot 7ˆ4
=d_{k}ˆ{[Lˆ{\prime\prime}:k]}\cdot d_{K}ˆ{[Lˆ{\prime\prime}:K]}
with d_{k}=-4 and d_{K}=7ˆ2.

Using the same notation as in the proof of Theorem 2.3, from
dL′′(ηi) = (ηi− ησi)(ηi− ησ2

i)(ηi− η(−i)) (ηi− ησ(−i)) (−1)(ηi− ησ(−i))σ
2
, it is

deduced thatdL′′ ∼= P·P·2i. In fact, forf(x) = x3+x2−2x−1 = (x−η)(x−ησ)(x−ησ2
)

it holds that(−2/2)η(−η − ησ)(η − ησ2
) = (2/2)(η − 1)(η + 1) ∼= 1 by f(−η) =

η3 +η2 +2η−1 = 2(η2−1), because off(1) = −1 andf(−1) = 1. Thus each of the4th
factor(ηi − ησ(−i)) and the5th (−1)(ηi − ησ(−i))σ

2
of dL′′(ηi) is a unit inL′′. Then

our result coincides with the output of PARI/GP.

Based on the experiments, we propose future works.

• Characterize whether there exists a monogenic composite abelian fieldL = K · F of
degree[L : Q] = 12 or does not, whereK is a cyclic cubic field of prime conductorp and
F a biquadratic fieldQ(

√
dq,

√
d`) with (p, dq · d`) = 1 Heredq andd` with (dq, d`) =

1 denote the field discriminants of quadratic fieldsQ(
√

dq) and Q(
√

d`), respectively
[12, 8, 1].

• Applying the monogenic property of an algebraic number field, investigate
an excellent code in the Coding Theory [16].
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