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Abstract. A Graph G = (V (G), E(G)) is the set of points calledver-
ticesor(nodes) and the lines connecting these points are callededges. The
number of vertices in a graph is called itsorder and the number of edges
is called itssize, usually denoted as|V (G)| = n (or p) and|E(G)| = m (
or q) respectively.
A graphG with p nodes andq lines admits the edge magic total labeling
if there exists a one-one, onto mapψ : V (G) ∪ E(G) → {1, p + q} =
{1, 2, 3, . . . , p + q}
s.t weight of every edge is some same constant (say )k, such numberk is
called the magic constant. If a graphG has an edge magic total labeling
ψ : V (G) → {1, 2, 3, . . . , p} thenψ is calledsuper edge magic total(
SEMT) labeling. For graphG, SEMD is the number of isolated vertices
whose union withG makes the resulting graph SEMT.µs(G), is the min-
imum non-negative integern such thatG∪nK1 SEMD will be+∞ if no
isolated vertex do this job. In this work SEMT labeling and deficiencies
are determined for forests formed by two sided generalized combs, stars,
combs and banana trees.

AMS (MOS) Subject Classification Codes: 05C78
Key Words: SEMT graph, SEMD, banana tree, two sided generalized comb.

1. DEFINITIONS, NOTATIONS AND RESULTS

In this paper graphs under discussion are simple and without directed lines. In a graphG,
V (G) andE(G) both are finite sets of vertices and edges respectively. All basic definitions
related to graph theory are present in [6, 22]. There are many types of labeling such as
graceful labeling, odd graceful labeling, prime magic labeling, anti-magic labeling. The
labeling which is discussed in this paper is SEMT labeling. First time SEMT assigning
rule was put forward in [8] and the following Conjecture was proposed by authors:
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Conjecture 1.1. [8] Every tree is SEMT.

Labeling scheme means assigning the labels to the elements of graphs. If labels are
assigned only to its vertices then it is called avertex labeling, if graph elements to be
assigned labels are only edges then it is called theedge labelingand if elements are both
vertices and edges then this assigning rule is named astotal labelingof graphG. GraphG is
then calledvertex labeled, edge labeled, total labeled graph respectively [4]. Ifτ : E(G) →
{1, q} is an edge labeling, whereq denotes the size ofG. Then we can put forward notion
of vertex weight[4]. Vertex weight of some vertexx of G is given by

∑
τ(xy) such that

xy ∈ E(G). Similarly, having assigning ruleψ : V (G) ∪E(G) → {1, p + q}, whereG is
of orderp [4]. The notions ofvertex and edge weightsdo appear, where weight of vertexx
is ψ(x) +

∑
xy∈E(G)

ψ(xy) and weight of edge (say)q = xy is given by sum of its label and

sum of labels of its incident vertices.
A labelingψ is calledVMT labelingsuch thatψ : V (G) ∪ E(G) → {1, 2, 3, . . . p + q}
s.t. ψ(x) + ψ(xy) = k i.e. the weight of every vertex in a graph is same [7]. If a graphG
has a total magic labelingψ assigning vertices the smallest possible labels thenψ is called
SVMT( super vertex magic total)labeling. A graphG with p vertices andq edges admits
anEMT labelingif there exist a one-one, onto mapψ : V (G) ∪ E(G) → {1, p + q} s.t.
weight of every edge in a graph is same (say )k, thenk is called the magic constant. If a
graphG has a edge magic total labelingψ giving smallest labels to vertices thenψ is called
SEMT( super edge magic total)labeling. Super magic labeling of complete graphs is given
in [21].

Conjecture 1.2. [20] Every Tree is EMT.

Theorem 1.3. [8] k odd, is the necessary and sufficient condition for a cycleCk to be
SEMT.

Formulation of all results in this work is based on Lemma1 [11], which gives us neces-
sary and sufficient condition for a graph to be SEMT. The SEMD of a graphG, deficiency
of super edge magic mapdenoted byµs(G), is given as

µs(G) =
{

min(M(G)) ; M(G) 6= φ
∞ ;M(G) = φ

whereM(G) = {n ≥ 0 : G ∪ nK1is a SEMT}.
Super edge magic deficiencies of many graphs are provided in [10].

Definition 1.4. A path is a tree denoted byPn with n vertices andn − 1 edges. Its set of
vertices and edges are given by{xi; i = 1, n} and{xixi+1; i = 1, n− 1} [23]. In a star
number of vertices is at least3 and in general a star of orderα is given byK1,α−1 with
vertex and edge sets given as{yi; i = 1, α}, {y1yi; i = 2, α} respectively. Acomb is a
tree which is obtained by adding the new end verticesy1, y2, y3 . . . yn−1 with the vertices
x2, x3, . . . xn of a path. So the new edges of a comb obtained are{xi+1yi; 1 ≤ i ≤ n− 1}
and it is denoted byCbn [5].
Let {K1,mρ ; ρ = 1, k} is a collection of disjoint stars with set of verticesV (K1,mj ) =
{cj , ajρ; ρ = 1, mj} and deg(cj) = mj ; 1 ≤ j ≤ k. A tree in which we add a vertex
a and make it adjacent toaρ1; 1 ≤ ρ ≤ k is called abanana treeand it is denoted by
BT (m1,m2, . . .mk) [13].
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Definition 1.5. Graph G obtained from the pathPs+1 : x0,1, x1,1, . . . , xs,1, s ≥ 2 by
addingti with 1 ≤ i ≤ s new pathsxi,2, xi,3, . . . , xi,ti

of lengthsti−2, whereti ≥ 2, 1 ≤
i ≤ s and new edgesxi,1xi,2 for 1 ≤ i ≤ s and this is denoted byCbs(t1, t2, . . . , ts)
and termed asgeneralized comb. If t1 = t2 = t3 = . . . ts = t then generalized comb
becomes abalanced generalized comband we write it asCbs (t, t, t, . . . , t)︸ ︷︷ ︸

s−times

. In this paper

Cbs (t, t, t, . . . , t)︸ ︷︷ ︸
s−times

will be denoted shortly asCbs(t, t, t, . . . , t). Cbs(2, 2, . . . , 2) is referred

as acomband it is denoted byCbs [16]. A two sided generalized comb, derived fromn
paths{xi,1, xi,2, . . . , xi,m; 1 ≤ i ≤ n, n ≥ 2} of lengthm, wherem is odd by adding one
new vertexx0, m+1

2
andn new edges{xi, m+1

2
xi+1, m+1

2
; 0 ≤ i ≤ n − 1}. It is denoted by

Cb2
n,m [15].

In [14] it is proved that two sided generalized combCb2
n,m is SEMT. k-TEPC labeling

for some families of convex polytopes for k = 3 was studied in [3]. [18] provides super
totient labeling for several classes of graphs such as friendship graphs, wheel graphs, com-
plete graphs and complete bipartite graphs. In [9],Rα, Mα, χα, ABC, GA, ABC4 and
GA5 indices ofL(S(CNCk[n])) were calculated. Existence of a super edge magic total
(SEMT) labeling of some particular subclasses of the disjoint union of subdivided stars is
provided in [2]. Super edge-magic deficiencies of acyclic graphs for instance disjoint union
of shrub graph with star, disjoint union of the shrub graph with two stars and disjoint union
of the shrub graph with path was investigated in [17]. [24] provides dimension and depth of
monomial edge ideals of line and cycle graphs. Z. Raza [19] determined the abstract struc-
ture of the critical group of the grapĥW2n for n ≥ 2, defined by removing the alternate
spokes of a wheel graph with2n rim vertices. S. Ahmad [1] proved that subdivided ladder
admits magic evaluation having type(1, 1, 1). He also proved that such a subdivision ad-
mits consecutive magic evaluation having type (1,1,0). In [12] authors carried the analysis
of GCS segment by determining its aesthetic value using the log curvature graph (LCG).

Theorem 1.6. [14] For n ≥ 2 ,m ≥ 3, the graphG ∼= Cb2
n,m is a super edge magic total.

For graphG ∼= Cb2
n,m with |V (G)| = mn + 1 and|E(G)| = mn, where

{xi,j ; i = 1, n, j = 1,m}∪{x0, m+1
2
} and{xi,jxi,j+1; i = 1, n, j = 1,m}∪{xi, m+1

2
xi+1, m+1

2
;

i = 1, n− 1} respectively. It is proved thatG is SEMT for this labeling
ψ : V (G) → {1, 2, . . . , mn + 1} defined in [14] as follows:
For m−1

2 is odd
ψ(x0, m+1

2
) = m+5

4 ,

and forj ≡ 1(mod2)

ψ(x1,j) =





j+1
2 ; 1 ≤ j ≤ m−1

2

j+3
2 ; m+3

2 ≤ j ≤ m
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ψ(xi,j) =





m(i−1)+j+3
2 ; i odd,j odd

mi−j+4
2 ; i even,j even

dmn
2 e+ m(i−1)+j+2

2 ; i odd,j even

dmn
2 e+ im−j+3

2 ; i even,j odd

The set of edge weights given by the labelingψ consists of the followingmn consecutive
integers{dmn

2 e+ 3, dmn
2 e+ 4, . . . , d 3mn

2 e+ 2}.
For m−1

2 is even
ψ(x0, m+1

2
) = m+3

4 ,

andj ≡ 0(mod 2)

ψ(x1,j) =





j
2 ; 2 ≤ j ≤ m−1

2

j+2
2 ; m+3

2 ≤ j ≤ m− 1

ψ(xi,j) =





mi−j+3
2 ; i even,j odd

m(i−1)+j+2
2 ; i odd,j even

bmn
2 c+ m(i−1)+j+3

2 ; i odd,j odd

bmn
2 c+ mi−j+4

2 ; i even,j even

The set of edge weights given by the labelingψ consists of the followingmn consecutive
integers{bmn

2 c+ 3, bmn
2 c+ 4, . . . , b 3mn

2 c+ 2}.

2. SEMT ASSIGNMENT AND SEMD OF DISJOINT UNIONS OF TWO SIDED

GENERALIZED COMBS, STARS AND COMBS

Theorem 2.1. For n ≥ 2, m ≡ 1(mod 2) andm ≥ 3, we have
(a) Cb2

n,m ∪K1,α is super edge magic total.
(b) µs(Cb2

n,m ∪K1,α−1) ≤ 1, whereα ≥ 2 and is given by

α =





2 + m(n
2 − 1) + bm−1

4 c+ 2bm−2
4 c ; n ≡ 0(mod 2)

3 + m(n−3
2 ) + 2bm−2

4 c+ 3bm−1
4 c ; n ≡ 1(mod 2)

Proof. (a): Consider the graphG ∼= Cb2
n,m ∪ K1,α, whereV (K1,α) = {yq : 1 ≤ q ≤

α + 1} andE(K1,α) = {y1yq; 2 ≤ q ≤ α + 1}. Let v = |V (G)| ande = |E(G)|, so we
havev = mn + α + 2 ande = mn + α.
Case1. For m−1

2 ≡ 1(mod 2).
Consider the mapτ from V (Cb2

n,m) to {1, 2, . . . , mn + 1} defined as follows:
For1 ≤ i ≤ n, 1 ≤ j ≤ m
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FIGURE 1. Cb2
4,5 ∪K1,8

τ(xi,j) =





m(i−1)
2 + j

2 ; i odd, j even

(
mi
2

)− j−1
2 ; i even,j odd

Now consider the labelingψ : V (G) → {1, 2, . . . , v} given by:
For1 ≤ q ≤ α + 1

ψ(yq) =




bmn

2 c+ 1 ; q = 1

mn + q ; 2 ≤ q ≤ α + 1

Let A = bmn
2 c+ 1, B = mn + α + 1

τ(xi,j) =





A + m( i−1
2 ) + j+1

2 ; i odd,j odd

A + mi
2 − j

2 + 1 ; i even,j even

τ(xm+1
2 ,0) = B + 1 = mn + α + 2.

Edge weights forG is finite sequence of consecutive numbers starting withω + 1, ending
atω + e, whereω = bmn

2 c+ 2.

Case2. For m−1
2 ≡ 0(mod 2)

τ(xi,j) =





m( i−1
2 ) + (j+1)

2 ; i odd,j odd

mi
2 − j

2 + 1 ; i even,j even

ψ(yq) =




dmn

2 e+ 1 ; q = 1

mn + q ; 2 ≤ q ≤ α + 1



136 Salma Kanwal and Isma Kanwal

Let A = dmn
2 e+ 1, B = mn + α + 1

τ(xi,j) =





A + mi
2 − j−1

2 ; i even,j odd

A + m( i−1
2 ) + j

2 ; i odd,j even

τ(xm+1
2 ,0) = B + 1 = mn + α + 2.

Edge weights forG is arithmetic sequence with ( common difference)d = 1, first term
a = ω +1 and number of termsn = e, whereω = dmn

2 e+2. Therefore by Lemma1 [11],
ψ gives desired labeling ofG with magic sumc = v + e + s, with s = ω + 1.
(b): Let G1

∼= Cb2
n,m ∪ K1,α−1 ∪ K1 with V (G1) = V (Cb2

n,m) ∪ V (K1,α−1) ∪ {z}
and V (K1,α−1) = {yq; 1 ≤ q ≤ α} and E(K1,α−1) = {y1yq; 2 ≤ q ≤ α}. Let v́ =
|V (G1)| = mn + α + 2 andé = |E(G1)| = mn + α− 1.
Consider the maṕψ with domainV (G1) and co domain{1, 2, . . . , v́}, the mappingψ at
hand, in(a). Consider the assigning ruléψ given as:

τ(xi,j) = ψ́(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m.
For1 ≤ q ≤ α

ψ́(yq) =





bmn
2 c+ 1 ; q = 1, m−1

2 ≡ 1(mod 2)

dmn
2 e+ 1 ; q = 1, m−1

2 ≡ 0(mod 2)

mn + q ; 2 ≤ q ≤ α

Á =




bmn

2 c+ 1 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ 1 ; m−1

2 ≡ 0(mod 2)

B́ = mn + α
ψ́(z) = B́ + 1 = mn + α + 1, ψ́(xm+1

2 ,0) = B́ + 2 = mn + α + 2.

Edge weights forG1 is finite sequence of consecutive numbers starting withώ + 1 ending
at ώ + e, where

ώ =




bmn

2 c+ 2 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ 2 ; m−1

2 ≡ 0(mod 2)

Therefore by Lemma1 [11], ψ́ gives desired mapping ofG1. ¤

Theorem 2.2. Considern ≥ 2, m odd,m ≥ 3,
(a) Cb2

n,m ∪ Cbβ is super edge magic total.
(b) µs(Cb2

n,m ∪ Cbβ−1) ≤ 1 whereβ ≥ 2 is given by

β =





2 + m(n
2 − 1) + bm−1

4 c+ 2bm−2
4 c ; n ≡ 0(mod 2)

3 + m(n−3
2 ) + 2bm−2

4 c+ 3bm−1
4 c ; n ≡ 1(mod 2)

Proof. (a): Consider the graphG ∼= Cb2
n,m ∪ Cbβ , whereV (Cbβ) = {xr; 0 ≤ r ≤ β} ∪

{ys; 1 ≤ s ≤ β} andE(Cbβ) = {xrxr+1; 0 ≤ r ≤ β − 1} ∪ {xrys; 1 ≤ r ≤ β}. Let v =
|V (G)| ande = |E(G)|, so we getv = mn+2β +2 ande = mn+2β. Consider mapping
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η with domainV (G) and range{1, 2, . . . , v}, with the mappingτ at hand introduced in
Theorem 2.1, consider mappingη given by:

η(xi,j) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m
For0 ≤ r ≤ β, 1 ≤ s ≤ β,

η(x0) =




bmn

2 c+ 1 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ 1 ; m−1

2 ≡ 0(mod 2)

η(xr) =





η(x0) + r ; r ≡ 0(mod 2)

mn + β + r + 1 ; r ≡ 1(mod 2)
and

η(ys) =
{

mn + β + s + 1 ; s ≡ 0(mod 2)
η(x0) + s ; s ≡ 1(mod 2)

Using the labelingτ defined in Theorem 2.1 with the following values ofA andB

A =




bmn

2 c+ β + 1 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ β + 1 ; m−1

2 ≡ 0(mod 2)

B = mn + 2β + 1, η(xm+1
2 ,0) = B + 1 = mn + 2β + 2.

Edge weights forG is an Arithmetic sequence withd = 1, a = ω + 1 andn = e, where

ω =




bmn

2 c+ β + 2 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ β + 2 ; m−1

2 ≡ 0(mod 2)

Therefore by Lemma1 [11], η gives desired labeling ofG with magic sumc = v + e + s,
with s = ω + 1.
(b): Let G1

∼= Cb2
n,m ∪ Cbβ−1 ∪ K1 , whereV (Cbβ−1) = {xr; 0 ≤ r ≤ β − 1} ∪

{ys; 1 ≤ s ≤ β − 1}, V (K1) = {z} andE(Cbβ−1) = {xrxr+1; 0 ≤ r ≤ β − 2} ∪
{xrys; 1 ≤ r ≤ β − 1}. Let v́ = |V (G1)| andé = |E(G1)|, so we get́v = mn + 2β + 1
and
é = mn + 2(β − 1). Consider the labelinǵη : V (G1) → {1, 2, . . . , v́}, with labelingτ
defined in Theorem 2.1, now we define the labelingή as follows:

ή(xi,j) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m.
For0 ≤ r ≤ β − 1, 1 ≤ s ≤ β − 1

ή(x0) = η(x0),

ή(xr) =
{

ή(x0) + r = η(xr) ; r ≡ 0(mod 2)
mn + β + r = η(xr)− 1 ; r ≡ 1(mod 2)

ή(ys) =
{

mn + β + s = η(ys)− 1 ; s ≡ 0(mod 2)
ή(x0) + s = η(ys) ; s ≡ 1(mod 2)

Using labelingτ in Theorem 2.1 with the following values ofA andB

A =




bmn

2 c+ β ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ β ; m−1

2 ≡ 0(mod 2)
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FIGURE 2. Cb2
4,7 ∪ Cb11 ∪K1

B = mn + 2(β − 1) + 1,
ή(z) = B + 1 andή(xm+1

2 ,0) = B + 2.
The set of edge weights of graphG1 is given as{ώ + 1, ώ + 2, ..., ώ + é}, where

ώ =




bmn

2 c+ β + 1 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ β + 1 ; m−1

2 ≡ 0(mod 2)

Therefore by Lemma1 [11], ή gives desired labeling ofG1. ¤

3. SEMT ASSIGNMENT AND SEMD OF DISJOINT UNIONS OF TWO SIDED

GENERALIZED COMBS, BANANA TREES AND BALANCED GENERALIZED COMBS

Theorem 3.1. For n ≥ 2, m ≡ 1(mod 2), m ≥ 3, n1 ≥ 1 andn2 ≥ 2
(a) Cb2

n,m ∪BT (n1, n2) is super edge magic total.
(b)(i) µs(Cb2

n,m ∪BT (n1 − 1, n2)) ≤ 1.

(ii)µs(Cb2
n,m ∪BT (n1, n2 − 1)) ≤ 1 with
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n1 + n2 =





2 + m(n
2 − 1) + bm−1

4 c+ 2bm−2
4 c ; n ≡ 0(mod 2)

3 + m(n−3
2 ) + 2bm−2

4 c+ 3bm−1
4 c ; n ≡ 1(mod 2)

Proof. (a): Consider the graphG ∼= Cb2
n,m ∪BT (n1, n2),

whereV (BT (n1, n2)) = {a1`; 1 ≤ l ≤ n1} ∪ {a2t; 1 ≤ t ≤ n2} ∪ {c1, c2} ∪ {a} and
E(BT (n1, n2)) = {aa11} ∪ {aa21} ∪ {c1a1`; 1 ≤ l ≤ n1} ∪ {c2a2t; 1 ≤ t ≤ n2}. Let
v = |V (G)| ande = |E(G)|, so we getv = mn + (n1 + n2) + 4 ande = v − 2 =
mn + (n1 + n2) + 2.
With mappingτ at hand from Theorem 2.1, consider mappingϑ fromV (G) to{1, 2, . . . , v}
given by

ϑ(xi,j) = τ(xi,j) ; 1 ≤ i ≤ n , 1 ≤ j ≤ m,

ϑ(a) =




bmn

2 c+ 1 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ 1 ; m−1

2 ≡ 0(mod 2)

ϑ(c1) = ϑ(a) + 1, ϑ(c2) = ϑ(a) + 2

ϑ(a1`) =
{

mn + 4 ; ` = 1
mn + n1 − ` + 5 ; 2 ≤ ` ≤ n1

and

ϑ(a2t) =





mn + n1 + 4 ; t = 2
mn + n1 + 5 ; t = 1
mn + (n1 + n2)− t + 6 ; 3 ≤ t ≤ n2

Considering mapτ defined in Theorem 2.1 with the following values ofA andB
A = ϑ(a) + 2, B = mn + (n1 + n2) + 3
ϑ(xm+1

2 ,0) = B + 1.

Edge weights forG induced byϑ is a sequence of consecutive integers starting withω + 1
and ending atω + (e− 1), where

ω =




bmn

2 c+ 4 ; m−1
2 ≡ 1(mod 2)

dmn
2 e+ 4 ; m−1

2 ≡ 0(mod 2)

Therefore by Lemma1 [11], ϑ gives desired SEMT mapping ofG.
(b) Case(i): Consider the graphG1

∼= Cb2
n,m ∪BT (n1 − 1, n2) ∪K1 where

V (BT (n1 − 1, n2)) = {a1`; 1 ≤ ` ≤ n1−1}∪{a2t; 1 ≤ t ≤ n2}∪{c1, c2}∪{a}∪{z} and
E(BT (n1 − 1, n2)) = {aa11}∪{aa21}∪{c1a1`; 1 ≤ l ≤ n1−1}∪{c2a2t; 1 ≤ t ≤ n2}.
Let v́ = |V (G1)|, é = |E(G1)|, so we get́v = mn + (n1 + n2) + 4 andé = v − 3
= mn + (n1 + n2) + 1.
Utilizing the mapping introduced in Theorem 2.1, consider mappingϑ́ from V (G1) to
{1, 2, . . . , v́} given by

ϑ(xi,j) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m,

ϑ́(a1`) =
{

mn + 4 ; ` = 1
mn + (n1 − 1)− ` + 5 ; 2 ≤ ` ≤ n1 − 1
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FIGURE 3. Cb2
4,3 ∪BT (1, 4)

ϑ́(a2t) =





mn + (n1 − 1) + 4 ; t = 2
mn + (n1 − 1) + 5 ; t = 1
mn + (n1 + n2 − 1)− t + 6 ; 3 ≤ t ≤ n2

Case(ii): Consider the graphG1
∼= Cb2

n,m ∪BT (n1, n2 − 1) ∪K1, where
V (BT (n1, n2 − 1)) = {a1`; 1 ≤ ` ≤ n1}∪{a2t; 1 ≤ t ≤ n2−1}∪{c1, c2}∪{a}∪{z} and
E(BT (n1, n2 − 1)) = {aa11}∪{aa21}∪{c1a1`; 1 ≤ ` ≤ n1}∪{c2a2t; 1 ≤ t ≤ n2−1}.
Let v́ = |V (G1)|, é = |E(G1)|, so we get́v = mn + (n1 + n2) + 4, é = v − 3 =
mn + (n1 + n2) + 1.
With τ introduced in Theorem 2.1, now we put forward the mappingϑ́ from V (G1) to
{1, 2, . . . , v́} defined as

ϑ́(xi,j) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m,

ϑ́(a1`) = ϑ(a1`),

ϑ́(a2t) =





mn + n1 + 4 ; t = 2
mn + n1 + 5 ; t = 1
mn + (n1 + n2 − 1)− t + 6 ; 3 ≤ t ≤ n2 − 1

ϑ́(z) = ϑ(xm+1
2

, 0)− 1, ϑ́(xm+1
2 ,0) = ϑ(xm+1

2
, 0).

Therefore by Lemma1 [11], ϑ́ gives desired labeling ofG1 giving same edge weight́c for
all edges, wheréc = v́ + é + s with s = ώ + 1. ¤

Theorem 3.2. For n ≥ 1, m ≥ 3 andm ≡ 1(mod 2),
(a)(i) Cb2

n,m ∪ Cbd (
α

d
,
α

d
,
α

d
. . .

α

d
)

︸ ︷︷ ︸
d−times

is super edge magic total, where1 ≤ d ≤ α and

d | α.

(ii) Cb2
n,m ∪ Cbd́ (

α− 1

d́
,
α− 1

d́
,
α− 1

d́
. . .

α− 1

d́
)

︸ ︷︷ ︸
d́−times

is super edge magic total, where1 ≤

d́ ≤ α− 1 and d́ | α− 1.

(b)(i) µs(Cb2
n,m ∪ Cbt (

α− 2
t

,
α− 2

t
,
α− 2

t
. . .

α− 2
t

)
︸ ︷︷ ︸

t−times

) ≤ 1 where1 ≤ t ≤ α − 1 and
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t | α− 1.

(ii) µs(Cb2
n,m ∪ Cbt́ (

α− 3
t́

,
α− 3

t́
,
α− 3

t́
. . .

α− 3
t́

)
︸ ︷︷ ︸

t́−times

) ≤ 1 where1 ≤ t́ ≤ α − 3 and

t́ | α− 3.
Where

α =





mn + m− 6bm
4 c − 3 ; n ≡ 0(mod 2), m−1

2 ≡ 0(mod 2)
mn + m− 6bm

4 c − 2 ; n ≡ 1(mod 2), m−1
2 ≡ 0(mod 2)

mn + m− 5bm+1
4 c − bm−2

4 c ; n ≡ 0(mod 2), m−1
2 ≡ 1(mod 2)

mn + m− 5bm+1
4 c − m+1

4 ; n ≡ 1(mod 2), m−1
2 ≡ 1(mod 2)

Proof. (a): Consider the graphG ∼= Cb2
n,m ∪ Cbk(`, `, `, . . . , `); k, ` ≥ 2, where

V (Cbk(`, `, `, . . . , `)) = {yr,s; 1 ≤ r ≤ k, 1 ≤ s ≤ `}∪{y0,1} andE(Cbk(`, `, `, . . . , `))
= {yr,syr,s+1; 1 ≤ r ≤ k, 1 ≤ s ≤ ` − 1} ∪ {yr,1yr+1,1; 0 ≤ r ≤ k − 1}, also we have
G1

∼= Cb2
n,m ∪ Cbk(`, `, `, . . . , `) ∪ {z}. Let v = |V (G)|, e = |E(G)|, v́ = |V (G1)|

and é = |E(G1)|. We getv = mn + `k + 2, e = mn + `k, v́ = mn + k` + 3 and
é = e. Keep in mind labeling ofτ already defined Theorem 2.1, now we define the labeling
χ : V (Cbk(`, `, `, . . . , `)) → {1, 2, . . . , `k + 1}.
For m−1

2 ≡ 1(mod 2),
Forn ≡ 1(mod 2),

χ(yr,s) =





τ(xn,m−1) + `( r−1
2 ) + s

2 + 1 ; r ≡ 1(mod 2), s ≡ 0(mod 2)
τ(xn,m−1) + `r

2 − ( s−3
2 ) ; r ≡ 0(mod 2), s ≡ 1(mod 2)

τ(xn,m) + `( r−1
2 ) + ( s−1

2 ) + 1 ; r ≡ 1(mod 2), s ≡ 1(mod 2)
τ(xn,m) + `r

2 − ( s
2 ) + 1 ; r ≡ 0(mod 2), s ≡ 0(mod 2)

τ(xn,m−1) + 1 ; r = 0, s = 1

Forn ≡ 0(mod 2)

χ(yr,s) =





τ(xn,1) + `( r−1
2 ) + s

2 + 1 ; r ≡ 1(mod 2), s ≡ 0(mod 2)
τ(xn,1) + `r

2 − ( s−3
2 ) ; r ≡ 0(mod 2), s ≡ 1(mod 2)

τ(xn,2) + `( r−1
2 ) + ( s−1

2 ) + 1 ; r ≡ 1(mod 2), s ≡ 1(mod 2)
τ(xn,2) + `r

2 − ( s
2 ) + 1 ; r ≡ 0(mod 2), s ≡ 0(mod 2)

τ(xn,1) + 1 ; r = 0, s = 1

For m−1
2 ≡ 0(mod 2),

Forn ≡ 1(mod 2),

χ(yr,s) =





τ(xn,m) + `( r−1
2 ) + s

2 + 1 ; r ≡ 1(mod 2), s ≡ 0(mod 2)
τ(xn,m) + `r

2 − ( s−3
2 ) ; r ≡ 0(mod 2), s ≡ 1(mod 2)

τ(xn,m−1) + `( r−1
2 ) + ( s−1

2 ) + 1 ; r ≡ 1(mod 2), s ≡ 1(mod 2)
τ(xn,m−1) + `r

2 − ( s
2 ) + 1 ; r ≡ 0(mod 2), s ≡ 0(mod 2)

τ(xn,m) + 1 ; r = 0, s = 1
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Forn ≡ 0(mod 2)

χ(yr,s) =





τ(xn,2) + `( r−1
2 ) + s

2 + 1 ; r ≡ 1(mod 2), s ≡ 0(mod 2)
τ(xn,2) + `r

2 − ( s−3
2 ) ; r ≡ 0(mod 2), s ≡ 1(mod 2)

τ(xn,1) + `( r−1
2 ) + ( s−1

2 ) + 1 ; r ≡ 1(mod 2), s ≡ 1(mod 2)
τ(xn,1) + `r

2 − ( s
2 ) + 1 ; r ≡ 0(mod 2), s ≡ 0(mod 2)

τ(xn,2) + 1 ; r = 0, s = 1

Utilizing the mappingτ introduced in Theorem 2.1(a) with A andB as follows:
For (a)(i), (b)(i)
Fork ≡ 1(mod 2) putA = χ(yk,`) andB = χ(yk,`−1)
Fork ≡ 0(mod 2) putA = χ(yk,1) and

B =
{

χ(yk,2) ; ` 6= 1
χ(yk−1,`) ; ` = 1

For (a)(ii), (b)(ii) put

A =
{

χ(yk,`−1) ; ` 6= 1
χ(yk−1,`) ; ` = 1

andB = χ(yk,`).
For (a)(i), (a)(ii),
we have mappingϕ from V (G) to {1, 2, 3, . . . , v} given by:

ϕ(yr,s) = χ(yr,s), ϕ(y0,1) = χ(y0,1).
Case.1. For m−1

2 ≡ 1(mod 2).
With the mappingτ at hand of case.1 from Theorem 2.1,m−1

2 ≡ 1(mod 2) with the above
mentioned values ofA, B.

ϕ(xi,j,) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m
ϕ(x0, m+1

2
) = B + 1

Case.2. For m−1
2 ≡ 0(mod 2).

We will take mappingτ of case.2 from Theorem 2.1,m−1
2 ≡ 0(mod 2) with the above

mentioned values ofA, B.
ϕ(xi,j,) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m

ϕ(x0, m+1
2

) = B + 1
For (b)(i), (b)(ii).
We have assigning maṕϕ from V (G1) to {1, 2, 3, . . . , v́} given by:

ϕ́(yr,s) = χ(yr,s); 1 ≤ r ≤ k, 1 ≤ s ≤ `
ϕ́(y0,1) = χ(y0,1)

Case.1 For m−1
2 ≡ 1(mod 2).

Considering the labelingτ of case.1 from Theorem 2.1,m−1
2 ≡ 1(mod 2) with the above

mentioned values ofA andB.
ϕ́(xi,j,) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m

ϕ́(x0, m+1
2

) = B + 2
Case.2 For m−1

2 ≡ 0(mod 2).
Considering labelingτ of Case.2 from Theorem 2.1,m−1

2 ≡ 0(mod 2) with the above
mentioned values ofA andB.
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ϕ́(xi,j,) = τ(xi,j); 1 ≤ i ≤ n, 1 ≤ j ≤ m
ϕ́(x0, m+1

2
) = B + 2 andϕ́(z) = B + 1.

Set of edge weights of graphsG andG1 are the sets of consecutive integerss.t
For (a)(i) {ω + 1, ω + 2, . . . ω + e}
For (a)(ii), (b)(i) {ω, ω + 1, . . . ω + e− 1}
For (a)(ii) {ω − 1, ω, . . . ω + e− 2}, with

ω =





mn + m− 5bm
4 c ; n ≡ 0(mod 2), m−1

2 ≡ 0(mod 2)
mn + m− 4bm

4 c − bm−2
4 c ; n ≡ 1(mod 2), m−1

2 ≡ 0(mod 2)
mn + m + 2bm

2 c − bm−2
4 c ; n ≡ 0(mod 2), m−1

2 ≡ 1(mod 2)
mn + m− 2bm

2 c − m+1
4 ; n ≡ 1(mod 2), m−1

2 ≡ 1(mod 2)
Therefore by Lemma1 [11], ϕ andϕ́ give desired mappings ofG andG1 with all edges
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FIGURE 4. Cb2
4,3 ∪ Cb2(4, 4) ∪K1

having same weightc with c = v + e + s andć = v́ + é + s, with

s =





ω + 1 for (a)(i)
ω for(a)(ii),(b)(i)
ω − 1 for(b)(ii)

¤
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