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Abstract. A GraphG = (V(G), E(G)) is the set of points calleder-
ticesor(nodes) and the lines connecting these points are cadlges The
number of vertices in a graph is called @sler and the number of edges
is called itssize usually denoted a3/ (G)| = n (or p) and|E(G)| = m (

or g) respectively.

A graphG with p nodes and; lines admits the edge magic total labeling
if there exists a one-one, onto map: V(G) U E(G) — {1,p+q} =
{1,2,3,....p+q}

s.t weight of every edge is some same constant (sasuch numbek is
called the magic constant. If a graphhas an edge magic total labeling
v V(G) — {1,2,3,...,p} theny is calledsuper edge magic total
SEMT) labeling. For grapldz, SEMDis the number of isolated vertices
whose union withG makes the resulting graph SEMT, (G), is the min-
imum non-negative integer such thatG UnK; SEMD will be +oc0o if no
isolated vertex do this job. In this work SEMT labeling and deficiencies
are determined for forests formed by two sided generalized combs, stars,
combs and banana trees.

AMS (MOS) Subject Classification Codes: 05C78
Key Words: SEMT graph, SEMD, banana tree, two sided generalized comb.

1. DEFINITIONS, NOTATIONS AND RESULTS

In this paper graphs under discussion are simple and without directed lines. In &fraph
V(G) andE(G) both are finite sets of vertices and edges respectively. All basic definitions
related to graph theory are present in [6, 22]. There are many types of labeling such as
graceful labeling, odd graceful labeling, prime magic labeling, anti-magic labeling. The
labeling which is discussed in this paper is SEMT labeling. First time SEMT assigning
rule was put forward in [8] and the following Conjecture was proposed by authors:
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Conjecture 1.1. [8] Every tree is SEMT.

Labeling scheme means assigning the labels to the elements of graphs. If labels are
assigned only to its vertices then it is calledriertex labeling if graph elements to be
assigned labels are only edges then it is callede¢lge labelingand if elements are both
vertices and edges then this assigning rule is nameataldabelingof graphG. GraphG is
then calledrertex labelededge labelegtotal labeled graph respectively [4].4f: E(G) —
{1, ¢} is an edge labeling, wheredenotes the size @¥. Then we can put forward notion
of vertex weigh{4]. Vertex weight of some vertex of G is given by 7(xy) such that
xzy € E(G). Similarly, having assigning rul¢ : V(G) U E(G) — {1,p + ¢}, whereG is
of orderp [4]. The notions ofvertex and edge weighto appear, where weight of vertex
isyY(z)+ . (zy)and weight of edge (say)= xy is given by sum of its label and

zyeE(G
sum of labels é)f )its incident vertices.
A labeling ¢ is calledVMT labelingsuch that) : V(G) U E(G) — {1,2,3,...p + ¢}
s.t.¢(z) + ¢¥(xy) = k i.e. the weight of every vertex in a graph is same [7]. If a gréph
has a total magic labeling assigning vertices the smallest possible labels thencalled
SVMT( super vertex magic totdgbeling. A graphGG with p vertices and; edges admits
an EMT labelingif there exist a one-one, onto map: V(G) U E(G) — {1,p + ¢} s.t.
weight of every edge in a graph is same (sa&y dhenk is called the magic constant. If a
graphG has a edge magic total labeligggiving smallest labels to vertices théris called
SEMT( super edge magic totddbeling. Super magic labeling of complete graphs is given
in [21].

Conjecture 1.2. [20] Every Tree is EMT.

Theorem 1.3. [8] k odd, is the necessary and sufficient condition for a cy¢leto be
SEMT.

Formulation of all results in this work is based on Lemirfa 1], which gives us neces-
sary and sufficient condition for a graph to be SEMT. The SEMD of a géaptleficiency
of super edge magic mafenoted by (G), is given as

_ | min(M(G)) s M(G)# ¢
m@={ % M(G) =6
whereM (G) = {n > 0: GUnkK,is a SEMT.
Super edge magic deficiencies of many graphs are provided in [10].

Definition 1.4. A path is a tree denoted b¥, with n vertices andh — 1 edges. Its set of
vertices and edges are given by;;i = 1,n} and{z;xz;11;¢ = 1,n — 1} [23]. In astar
number of vertices is at lea8tand in general a star of ordet is given byK; ,_; with
vertex and edge sets given fig;i = 1,a}, {y19:;¢ = 2,a} respectively. Acombis a
tree which is obtained by adding the new end vertige$-, s . . . y.—1 With the vertices
x9,T3,. .. 2, Of a path. So the new edges of a comb obtained are y;;1 <i <n-—1}
and it is denoted by'b,, [5].

Let {K1,m,;p = 1,k} is a collection of disjoint stars with set of vertice§ K ,,,;) =
{¢j,ap;p = 1,m;} anddeg(c;) = m;;1 < j < k. A tree in which we add a vertex
a and make it adjacent ta,1;1 < p < kis called abanana tre@nd it is denoted by
BT(my,ma,...my) [13].
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Definition 1.5. Graph G obtained from the pattP,; : z91,211,...,251, s > 2 by

addingt; with1 <i < snew pathsc; 2,z 3, ..., %; ¢, Of lengths; —2, wheret; > 2, 1 <

i < s and new edges; 1z;2 for 1 < i < s and this is denoted b@'b,(t1,12,. .., ts)

and termed ageneralized comblf t; = t; = t3 = ...t, = t then generalized comb

becomes &alanced generalized coralnd we write it asC'b; (¢, ¢, ¢, ...,t). In this paper
~————

2V

s—times
Cbs (t,t,t,...,t) will be denoted shortly a€'b; (¢, t,t, .. .,t). Cbs(2,2,...,2)is referred
———
s—times

as acomband it is denoted by’'b, [16]. Atwo sided generalized comtderived fromn
paths{x; 1,2 2,...,%Tim;1 <i <n,n > 2} of lengthm, wherem is odd by adding one
new vertex:, »1 andn new edge§z; my1x;, | me1;0 <i <n —1}. Itis denoted by
cb; ,, [15].

In [14] it is proved that two sided generalized corﬁb%l,m is SEMT. k-TEPC labeling
for some families of convex polytopes for k = 3 was studied in [3]. [18] provides super
totient labeling for several classes of graphs such as friendship graphs, wheel graphs, com-
plete graphs and complete bipartite graphs. In 8], M., x., ABC, GA, ABC, and
G A5 indices of L(S(CNCy[n])) were calculated. Existence of a super edge magic total
(SEMT) labeling of some particular subclasses of the disjoint union of subdivided stars is
provided in [2]. Super edge-magic deficiencies of acyclic graphs for instance disjoint union
of shrub graph with star, disjoint union of the shrub graph with two stars and disjoint union
of the shrub graph with path was investigated in [17]. [24] provides dimension and depth of
monomial edge ideals of line and cycle graphs. Z. Raza [19] determined the abstract struc-
ture of the critical group of the grapﬁ/; for n > 2, defined by removing the alternate
spokes of a wheel graph wittn rim vertices. S. Ahmad [1] proved that subdivided ladder
admits magic evaluation having tyé, 1,1). He also proved that such a subdivision ad-
mits consecutive magic evaluation having type (1,1,0). In [12] authors carried the analysis
of GCS segment by determining its aesthetic value using the log curvature graph (LCG).

Theorem 1.6. [14] For n > 2 ,m > 3, the graphG = behm is a super edge magic total

For graphG = CbZ ,, with |V(G)| = mn + 1 and|E(G)| = mn, where
{zij;i=1,n,j= 17m}u{x07mT+1} and{z; jx; j11;i =1,n,j =1, m}U{xi,mT“%H,%?
i =1,n — 1} respectively. It is proved that is SEMT for this labeling
P :V(G) — {1,2,...,mn + 1} defined in [14] as follows:

For -1 is odd

1/’(3707”7“) =32,

and forj = 1(mod2)
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mli=+i+d ;i odd,j odd
migtd .1 even,j even
Y(xiy) =

[mn) 4 W ;i odd,;j even

[mn) 4 dnogtd .i even,j odd
The set of edge weights given by the labelingonsists of the followingnn consecutive
integers{[ 2] + 3, [Z2] 4+ 4,...,[322] + 2}
For -1 is even
1/’(»%,7"’7“) = mTH7
andj = 0(mod 2

, N
5 2<j < me
Y(x15) = ,
+2 . mi3 o
5o <i<m—1
mig+3 .1 even,j odd
m{—N+i+2 :i odd,j even
V(i) =

|| mOZUEIES Ly odd,j odd

|mn | W—TJH ;i even,j even

The set of edge weights given by the labelihgonsists of the followingnn consecutive
integers{| 22| + 3, | %] 4+4,..., [ 222 ] + 2}

2. SEMT ASSIGNMENT AND SEMD OF DISJOINT UNIONS OF TWO SIDED
GENERALIZED COMBS STARS AND COMBS

Theorem 2.1. For n > 2, m = 1(mod 2 andm > 3, we have
@) Cb?l,m U K1, is super edge magic total.
(b) 1s(CPZ ,, U K1 ,o-1) < 1, wherea > 2 and is given by

2+m(2 -1+ 22 +2|22|  ;n=0(mod2)
3+m(%53) 42|22 | + 3|2 ] s n=1(mod?2)

Proof. (a): Consider the graptiy = Cb; ,, U K1, whereV (K o) = {yg : 1
a+1}andE(Ki ) = {y1yqe; 2 < g < a+ 1}. Letv = |V(G)| ande = |E(G)|
havev = mn + a + 2 ande = mn + a.

Casel. For 1 = 1(mod 2).

Consider the map from V/(Cb? ) to {1,2,...,mn + 1} defined as follows:
Fori<i<n,1<j<m

<qg<
, SOwe
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FIGUREL. Cbi UKy

@4% ;1 0dd, j even
) = . 4
7(2i,5) (%) 7% ;1 even,j odd

Now consider the labeling : V(G) — {1,2,...,v} given by:
Fori<g<a+1
[ +1 g=1
V(yq) =
mn +q i2<g<a+l
LetA= "] +1,B=mn+a+1

A+m(5h) + 22 ;i odd,j odd
(i) = o
A+ 5 —241 ;i even,j even
T(Z‘%’O) =B+1l=mn+a+2.
Edge weights fo(Z is finite sequence of consecutive numbers starting with 1, ending
atw + e, wherew = | 72| + 2.
Case2. For -1 = 0(mod 2

m(i=L) + YD odd,j odd

(i) = o
-7 4+1 ;1 even,j even
[ +1 g=1
Y(yq) =
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LetA=[%2]+1,B=mn+a+1
A4 ot L .4 even,j odd
T(xi) =

A+m(5)+4  ;iodd,j even

7'(33%“70) =B+1l=mn+a+2.
Edge weights foiG is arithmetic sequence with ( common differende} 1, first term
a = w+ 1 and number of terms = e, wherew = [ 7| + 2. Therefore by Lemma [11],
1 gives desired labeling af with magic sunc = v + e + s, with s = w + 1.
(b) Let G = Cb%,m @] Kl,a—l U K, with V(Gl) = V(Cbgz,m) @] V(Klﬂ_l) U {Z}
and V(K o-1) = {yp;1 <g<a} andE(Kia-1) = {y1yg;2<¢<a}. Letd =
[V(G1)| =mn+a+2andé = |E(Gy)| = mn+ o — 1.
Consider the map> with domainV'(G;) and co domain(1,2,...,9}, the mapping) at
hand, in(a). Consider the assigning rulegiven as:

T(:Ciyj) = w/(xw), 1<i:<n,l1 S] <m.
Fori<¢g<a

’ s B =mn +/a ’
Y(z)=B+1l=mn+a+1,Y(@mnn ) =B+2=mn+a+2.
Edge weights for7; is finite sequence of consecutive numbers starting svith 1 ending

atw + e, where
{ |Z]+2 ;2 = 1(mod 2)
(A’J =

(2] +2 ;2L = 0(mod 2)
Therefore by Lemma [11], 1/) gives desired mapping @f;. |

Theorem 2.2. Considern > 2, m odd,m > 3,
(a) Cbi,m U Cbg is super edge magic total.
(b) 1s(CV3 ,,, U Cbs_1) < 1 whereg > 2 is given by

5 { 24+m(%2 -1+ 2] +2[272] 5 n=0(mod2)

3+m(%53) 4222 | + 3|22 ] n=1(mod2)

Proof. (a): Consider the grapty = Cb? ,, U Cbg, whereV (Cbg) = {z,;0 <r < } U
{ys;1 < s < B} andE(Cbg) = {z,2,11;0 <r < B -1} U{z,ys;1 <r < 8}. Letv =
|V (G)| ande = |E(G)|, so we geb = mn+ 23+ 2 ande = mn+ 2. Consider mapping
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n with domainV (G) and range{1,2, ..., v}, with the mappingr at hand introduced in
Theorem 2.1, consider mappingyiven by:

nN(ri;) =71(x;;);1<i<n,1<j<m
Foro<r<p,1<s<p,

|z +1 ;2 =1(mod 2)
n(zo) = {

(2] 415 2L = 0(mod2)

n(xo) +r ;7 = 0(mod 2)
n(ar) =

mn+08+r+1 ;r=1(mod?2)
and
mn+p+s+1 ;s=0(mod?2)
n(ys) = { n(xo) + s ;8 = 1(mod 2)
Using the labeling- defined in Theorem 2.1 with the following values.4fand B

{ |t +8+1 ;mT_lz (mod 2)
A=

(2] +6+1 ;2 = 0(mod 2)

B:mn+25+1,n(z%7o) =B+1=mn+28+2.
Edge weights fo(7 is an Arithmetic sequence with=1,a = w + 1 andn = e, where

{ [+ 62 et = 1(mod2)
w =

(2] 4+ 8+2 ;2 = 0(mod 2)
Therefore by Lemma [11], n gives desired labeling @ with magic sum: = v +¢e + s,
withs =w + 1.
(b): Let Gy = CbZ,, UCbg_1 UK, , whereV(Cbs_1) = {z,;0<r<p3-1} U
{ys;1<s<pB-1}, V(K1) ={z} andE(Cbg_1) = {zy2r41;0 <r < -2} U
{z;ys;1 <r < p—1}. Letd = |V(Gy)| andé = |E(G1)|, so we geth = mn + 26+ 1
and
é = mn + 2(8 — 1). Consider the labeling : V(G1) — {1,2,...,4}, with labelingr
defined in Theorem 2.1, now we define the labeljras follows:
ﬁ(acm-) = T("Ei’j); 1<i<n,1< ] < m.
Foro<r<pg-1,1<s<pg-1
11(wo) = n(zo),
ooy J i@o) = n(ay)
i(xr) = { mn+pB+r=n(z.)—1

0(mod 2)
1(mod?2)

ﬁ(y):{m”+5+8=n(ys)—1 ;5 = 0(mod 2)
’ 1(wo) + 5 =n(ys) ;s = 1(mod 2)
Using labelingr in Theorem 2.1 with the following values of and B

{ (] 45 mel = L(mod2)
A=

[ + 6 ;Tfl = 0(mod 2)
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FIGURE 2. Cbj , UCbyy UK,

B=mn+2(8-1)+1,
H(z)=B+1 andﬁ(me“,O) =B+ 2.
The set of edge weights of graph is given as{& + 1,4 + 2, ...,& + €}, where

|+ 6 +1 ;mTflzl(mon)
AL 55 = 0(mod2)

Therefore by Lemma [11], 7 gives desired labeling af;. |

3. SEMT ASSIGNMENT AND SEMD OF DISJOINT UNIONS OF TWO SIDED
GENERALIZED COMBS BANANA TREES AND BALANCED GENERALIZED COMBS

Theorem 3.1. Forn > 2, m = 1(mod2), m > 3,n; > 1 andny > 2
(a) Cb ,,, U BT (n1,n2) is super edge magic total.

(0)() 11(CB2 ,,, U BT (ny — 1,m5)) < 1.

(i) us (CD2 ,,, U BT (ny,m5 — 1)) < 1 with
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2+ m(g — 1)+ [ 2] +2[252] ;0= 0(mod2)
ny + ng =
3+m("5) +2[ 2 + 317 n=1(mod2)

Proof. (a): Consider the grapti = Cb2 ,, U BT (n1, n2),
WhereV(BT(nl,ng)) = {CLM;]. <l < ’Ill} U {agt;]. <t< TLQ} U {61,02} U {a} and
E(BT(nl,nz)) = {aau} @] {aagl} @] {Clau;l <l < nl} U {Czagt;l <t< ﬂg}. Let
v = |V(G)| ande = |E(G)|, so we getv = mn + (n; + ng) +4ande = v —2 =
mn + (ny + ng) + 2.
With mappingr at hand from Theorem 2.1, consider mappiffgom V (G) to {1, 2,...,v}
given by

19(.%17]):7'(%27]),].SZSTL,].S]Sm,

|22 +1 ;2L = 1(mod?2)
V(a) =
(2] 41 ;2L =0(mod 2)
Ier) =d(a) + 1, ¥(c2) = ¥(a) + 2
Iar) = mn + 4 =1
a1e) = mn+n,—£+5 ;2<0<m
and
mn+n; +4 it =
P az) =4 mn+ny+5 it=1
mn+ (ny+n2)—t+6 ;3<t<ng

Considering map defined in Theorem 2.1 with the following values 4fand B
A=9(a)+2, B=mn+ (n; +n2)+3
ﬂ(x%ﬁo) =B+ 1.
Edge weights for7 induced by is a sequence of consecutive integers starting with 1
and ending ab + (e — 1), where

{LmQ”JJer ;mT_l 1(mod 2)
w =

(2144325l = 0(mod2)

Therefore by Lemma [11], ¥ gives desired SEMT mapping 6f.
(b) Case(i): Consider the grapty; = Cb;, ,,, U BT (ny — 1,n) U K| where
V(BT(ny —1,n2)) ={a1n1 <L <nj—1}U{ag; 1 <t < ngtU{er, e tU{a}u{z} and
E(BT(ny —1,n2)) = {aa11 }U{aaz }U{c1a1¢;1 <1 <ny;—1}U{coag;1 <t < no}.
Letd = |V (G1)|, ¢ = |E(G1)|, sowe geth = mn + (ny +n2) +4andé =v — 3
=mn+ (n1 +ng) + 1.
Utilizing the mapping introduced in Theorem 2.1, consider mappirfgom V (G,) to
{1,2,...,9} given by

ﬂ(xi_j) = T(Z’iyj); 1<:<n,l1 S] <m,

ﬁ(a )= mn + 4 =1
)= mn+(n;—1)—£0+5 ;2<f<n;—1
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FIGURE 3. Cbj 3 U BT'(1,4)

mn+ (n; —1)+4 it=2

’

Hag) = ¢ mn+ (1 —1)+5 it=1
mn+ (ni+ne—1)—t+6 ;3<t<ngy

Case(ii): Consider the graptiy = Cb;, ,,, U BT (n1,nz — 1) U K1, where
V(BT (n1,n2 — 1)) ={a1n1 <€ <ni}U{az;1 <t <ng—1}U{c1, c2a}U{a}U{z} and
E(BT(TLl,TLQ - 1)) = {aau}u{aagl}u{clau;l S l é TLl}U{CQCLQt; 1 é t S n2—1}.
Letv = |V(Gy)|, é = |E(G1)], sowe geth = mn + (n1 +n2) +4,é = v —3 =
mn + (n1 + na) + 1.
With 7 introduced in Theorem 2.1, now we put forward the mappingom V(Gy) to
{1,2,...,90} defined as

'lé(.’ti,j) = T(Ziyj); 1<i:<n,l1 S] <m,
?§ alZ) = 19(6114),

mn+ni; +4 it =2

19,(a2t): mn+mny+5 t=1
mn+(ni+nyg—1)—t+6 ;3<t<ny—1

I(2) = H@mpr,0) = 1L, J(@mp o) = H@mpr,0).
Therefore by Lemma [11], ) gives desired labeling aff; giving same edge weigltfor

all edges, wheré = ¢ + é+ swith s = & + 1. a
Theorem 3.2. Forn > 1, m > 3 andm = 1(mod 2),
(a)(i) CVZ,, U Cby (%, %, % o %) is super edge magic total, whete< d < « and

—_

d—times

d|a.

-1 a-1 a-1 —1.. .
(ii) Cb2 ,, U def(a —, - , - ) is super edge magic total, whete<

’ d d d d
d—times

d<a—1andd|o—1.

b)(i) jua(CH2 UCbta_2,a_2,a_2 'a—2
om t t t

t—times

)) < lwherel <t < a-—1and
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t]a-—1.
-3 a-3 a—-3 -3 ,
(ii)us(CbZ,mUCbt'(at, ’af ,O‘t, ...O‘t, )) < 1wherel < { < a — 3 and
t—times
f]a—3.
Where
mn+m—6[%] -3 ;n = 0(mod?2), 51 = 0(mod 2)
N mn+m—6[%] -2 ;= 1(mod?2), 2L = 0(mod 2)
T ) ma+m -5 — [222] 0= 0(mod2), 25t = 1(mod 2)
mn +m — 5| | — mtl ;= 1(mod?2), %21 = 1(mod 2)

Proof. (a): Consider the graptv =2 Cv2 , U Cbi(¢,4,¢,...,0); k, £ > 2, where
V(Cbip(£,0,0,...,0) ={yrs;1 <r < k 1 <s <£}u{y0 1}andE(Cbk(€ 0,0,...,0)

= {ymyrsﬂ,l < r<kl<s< E_].}U{yrlyr+1 1;0<r <k-1}, alsowe have

Gy = CbZ,, U Ch(¢, 2, E ) U{z}. Letv = |[V(G)|, e = |E(G)|, v = |V(G1)]

andé = |E(G1)|. We getv =mn + Ltk +2,e =mn+ Lk, 0 =mn+ kl+ 3 and

é = e. Keep in mind labeling of already defined Theorem 2.1, now we define the labeling

X : V(Cop(£,0,¢,...,0)) — {1,2,... . lk+1}.

For -1 = 1(m0d2)

Forn = 1(mod 2),

T(@nm—1) + (55 +5+1 3 r=1(mod2),s = 0(mod2)
T(@nm—1) + & — (532) ;7 =0(mod?2),s = 1(mod?2)
X(Yrs) =& T(@nm) +(F) + (555 +1 57 =1(mod?2), s = 1(mod 2)
T(@pm) + £ —(5)+1 ;7= 0(mod?2),s = 0(mod?2)
T(Znm—1) +1 ir=0,s=1
Forn = 0(mod 2)
T(p1) +0(5)+ 5 +1 ;v = 1(mod?2),s = 0(mod 2)
T(xn,l)—i-%—(sj’) ; 1 =0(mod?2),s = 1(mod?2)
X(Yrs) = T(@n2) +0(5H) + (7)) +1 ;7 =1(mod2),s = 1(mod2)
T(xn,2)+%_(§)+1 ; 7 =0(mod?2),s = 0(mod?2)
7(Tp,1) + 1 ;r=0,s=1
For -1 = 0(mod 2),
Forn = 1(mod 2),
T(@nm) + (552 + 5+ 1 ;17 = 1(mod2),s = 0(mod 2)
T(xnm)"l‘ﬁ_(%) ;7= 0(mod?2),s = 1(mod 2)
X(Yrs) = T(@pm-1) +0(5) + (55 +1 5 r=1(mod2),s = 1(mod 2)
T (X, m— 1)+&—(§)+1 ;7 =0(mod?2),s = 0(mod2)
T(Trm) + ;r=0,s=1
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Forn = 0(mod 2)

T(@n2) +0(5F) + 5 +1 ;7= 1(mod2),s = 0(mod 2)
T(xn,z)-i-%—(sg?’) ;7 =0(mod?2),s = 1(mod 2)

X(Yr,s) = T(mn,l)-i-ﬁ(";l)-i-(s;l)—ﬁ-l ;1 =1(mod?2),s = 1(mod 2)
T(zna) + 2 = (5)+1 ; 7 =0(mod?2),s = 0(mod 2)
T(Zn,2) +1 ;r=0,s=1

Utilizing the mappingr introduced in Theorem 2.() with A and B as follows:
For (a)(i), (b)(7)

Fork = 1(mod2) put A = x(yx.¢) andB = x(Yr,¢—1)

Fork = 0(mod2) put A = x(yx,1) and

{ X(yr2)  l#1
X(Wr-1,) £=1

For (a)(id), (b)(ii) put

A X(Yre—1) L#1
X(Yk—1,0) =1
andB = x(yk,¢)-
For (a)(i), (a)(i2),
we have mapping from V' (G) to {1,2,3,...,v} given by:

©(Yr.s) = X(Yrs) ¢(Yo,1) = X(Y0,1)-
Case.l. For = L = 1(mod?2).

— = 1(mod 2) with the above

mentioned values ofl, B.
o(wij) =7(r5); 1 <i<n,1<j<m
® mo)m;l) =B+1

Case 2. For 21 = 0(mod 2).
We will take mapplngr of case2 from Theorem 2.1,’”7—1 = 0(mod 2) with the above
mentioned values ofl, B.
o(x;;)=7(;;);1<i<n,1<j<m
99(330,%) =B+1
For (b)(2), (b)(it).
We have assigning mapfrom V(G;) to {1,2,3,...,4} given by:
G(Yrs) = X(yrs)i 1 <r <k, 1< s <
¢(yo,1) = x(yo,1)
Case.l For 1 = 1(mod 2).
Considering the Iabelmg of casel from Theorem 2.1%-1 = 1(mod 2) with the above
mentioned values oft and B.
Glaig) =7(x;);1<i<n,1<ji<m
@(%,T"T“) =B+2

Case2 For 1 = 0(mod 2).
Considering Iabehng of Case2 from Theorem 2.12-1 = 0(mod2) with the above
mentioned values oft and B.
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Hlai ) =7(x;;);1<i<n,1<j<m
Sé(l'o’mT-l—l) = B+2andy(z) = B+ 1.
Set of edge weights of graplkisandG are the sets of consecutive integsits

For (a)(4) {w+lw+2,...w+e}
For (a)(it), (b)(7) {w,w+1,...w+e—1}
For (a) (i) {w—-1,w,...w+e— 2}, with
mn+m — 5% ] ;n = 0(mod2), =L = 0(mod 2)
) ma+m =412 - [222] jn=1(mod?2), 2L = 0(mod 2)
w= mn+m+2[2]— |22 ;n=0(mod2), 2L = 1(mod2)
mn+m—2[%|— mH ;n = 1(mod2), =L = 1(mod 2)
Therefore by Lemma [11], ¢ and give desired mappings @ andG; with all edges

43 39 37

32 i i

@ SRR ORI 4 )35
42 40 36

()

FIGURE 4. Cbj 3 U Chy(4,4) U K

33
34

having same weightwith ¢ = v + e + s andé = ¥ + é + s, with

w+1 for (a)(i)
s=¢{ w for(@)(ii),(b)(i)
w—1 for(b)(ii)
O
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