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Abstract. Given positive integersN andn, we define the Gauss factorial
Nn! as the product of all positive integers from 1 toN and coprime to
n. In this expository paper we begin with the classical theorem of Wil-
son, extending it in various different but related directions, mostly modulo
composite integers. Most of the results presented in this paper involve the
multiplicative orders, and in particular order 1, of certain Gauss factorials.
In the process we define two types of special primes, the Gauss and Jacobi
primes, and some of the results involve large-scale computations, includ-
ing factoring certain generalized Fermat numbers. The main tools in most
of the results are the well-known binomial coefficient theorems of Gauss
and Jacobi, along with other related congruences and their generalizations.
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1. INTRODUCTION

1.1. In this expository paper we present a variety of results around the common theme
of Gauss factorials, objects from elementary number theory that have long been known,
though not under this name. In a sequence of papers published over the last 10 years, we
showed that Gauss factorials, in spite of their very simple definition, have a remarkably rich
structure. On the one hand, they proved to be particularly useful in extending some known
deep theorems, while on the other hand they have led us to new and often unexpected
results.
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2 John B. Cosgrave and Karl Dilcher

We begin withWilson’s theorem, which, along with its converse by Lagrange, is one
of the most important and best-known results in the elementary theory of numbers:p is a
prime exactly when

(p− 1)! ≡ −1 (mod p). (1. 1)

An easy proof of Wilson’s theorem, which is given in most elementary number theory
books, relies on the fact that ifa ∈ N satisfies1 < a < p− 1, thena−1 is not equivalent to
a modulop.

For an odd primep we now write out(p − 1)! explicitly and use symmetry; we then
obtain

1 · 2 · . . . · p−1
2

p+1
2 · . . . · (p− 1) ≡ (

p−1
2

)
!(−1)

p−1
2

(
p−1
2

)
! (mod p), (1. 2)

and thus, with (1. 1 ),
(

p−1
2

)
!2 ≡ (−1)

p+1
2 (mod p). (1. 3)

According to [19, p. 275], this was first observed by Lagrange. Ifp ≡ 1 (mod 4), then the
right side of the congruence (1. 3 ) is−1; this implies

ordp

((
p−1
2

)
!
)

= 4 for p ≡ 1 (mod 4). (1. 4)

(Here and elsewhere in this paper, ordp(a) stands for the multiplicative order, modulop, of
the elementa.) On the other hand, whenp ≡ 3 (mod 4) the congruence (1. 3 ) implies

(
p−1
2

)
! ≡ ±1 (mod p). (1. 5)

It is a rather non-trivial matter to determine the sign on the right. In fact, given a prime
p ≡ 3 (mod 4) andp > 3, Mordell [30] proved

(
p−1
2

)
! ≡ −1 (mod p) if and only if h(−p) ≡ 1 (mod 4), (1. 6)

whereh(−p) denotes the class number ofQ(
√−p). In his paper [30], Mordell notes

that Chowla had independently discovered this result. A proof can also be found in [35,
Theorem 8], as well as in a book by Venkov, both in the translated edition [36, p. 9] of 1970
and in the original, published in Russian in 1937. No reference is given, so Venkov may
have been the first to prove the relationship (1. 6 ). With this result, the multiplicative order
of

(
p−1
2

)
! modulop is now completely determined:

Corollary 1.1. Letp > 2 be a prime. Then

ordp

((
p−1
2

)
!
)

=





4 if p ≡ 1 (mod 4),
2 if p ≡ 3 (mod 4), p > 3,

andh(−p) ≡ 1 (mod 4),
1 otherwise.

(1. 7)

1.2.The above results and observations lead to the natural question of whether there are
analogues forcompositemoduli. Indeed, we have a generalization of Wilson’s theorem,
first obtained by Gauss. Before stating it, we introduce some key notation:
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Let N andn be positive integers. We writeNn! for the product of all positive integers
up toN that are coprime ton, i.e.,

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j. (1. 8)

A similar notation was introduced in [22], a useful reference on congruences for factorials
and binomial coefficients. We callNn! a Gauss factorial. This terminology is related to
the following theorem of Gauss.

Theorem 1.2(Gauss). Given an integern ≥ 2, we have

(n− 1)n! ≡
{
−1 (mod n) for n = 2, 4, pα, or 2pα,

1 (mod n) otherwise,
(1. 9)

wherep > 2 is a prime andα ≥ 1 an integer.

This congruence is also known as the Gauss-Wilson Theorem. The first case of (1. 9 )
occurs if and only ifn has a primitive root. Numerous references can be found in [19, p. 65].
Although this result was first stated in the celebratedDisquisitiones Arithmeticae[21, §78]
and occurs in the well-known books [20,§38] and [23, p. 102], in general it is surprising
how little information on this topic can be found in the literature. The few published papers
on Theorem 1.2 include [25] and [33], where Theorem 1 was further extended. Also, the
congruence (1. 9 ) was used in [26] and in [1] to extend the well-knownWilson quotient
(see (3. 3 ) below) to composite moduli. At least once Theorem 1.2 was rediscovered; see
[32].

The Gauss-Wilson Theorem and the concept of Gauss factorial now make it possible to
extend (1. 7 ) to arbitrary composite (but odd) moduli.

Theorem 1.3. Given an odd integern ≥ 3, we assume thatp 6= q are odd primes andα,
β are positive integers. Then
(1) ordn

(
(n−1

2 )n!
)

= 4 whenn = pα andp ≡ 1 (mod 4);
(2) ordn

(
(n−1

2 )n!
)

= 2 when

(a) n = p2α−1, p ≡ 3 (mod 4), p > 3, andh(−p) ≡ 1 (mod 4), or
(b) n = p2α, p = 3, or p ≡ 3 (mod 4) andh(−p) 6≡ 1 (mod 4), or
(c) n = pαqβ andp or q ≡ 3 (mod 4),
(d) n = pαqβ , p ≡ q ≡ 1 (mod 4), andp is a quadratic nonresidue(mod q);

(3) ordn

(
(n−1

2 )n!
)

= 1 in all other cases.

This result was proved in [8], with some extensions and generalizations. We note in
passing that by the quadratic reciprocity law, the condition “p is a quadratic nonresidue
(mod q)” in part 2(d) means thatq is also a quadratic nonresidue(mod p).

Example 1.Let n = 3 · 5 · 7 = 105; then we compute

(
n− 1

2
)n! = 1 · 2 · 4 · 8 · 11 · 13 · 17 · · · 44 · 46 · 47 · 52 ≡ 1 (mod 105),

which is consistent with part (3) of Theorem 3.1.
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1.3. The questions and results mentioned above are the first instances of our general
long-term program that has the aim of studying, as completely as possible, the special
Gauss factorials (

n− 1
M

)

n

!, M ≥ 1, n ≡ 1 (mod M), (1. 10)

whereM is a positive integer. In particular we are interested in their multiplicative orders
(modn), but also, if possible, in their values (modn).

We now provide a brief summary, which can also be seen as a preview of some of what
follows in the remainder of this paper:

M = 1: This is just Theorem 1.2 (Gauss-Wilson).

M = 2: This is Theorem 1.3; the only possible orders are 1, 2, and 4.

M ≥ 3: The orders are generally unbounded. Various partial results are known; for in-
stance,

– If n hasthree or moredifferent prime factors≡ 1 (mod M), then(n−1
M )n! ≡ 1

(mod n).
– If n has two different prime factors≡ 1 (mod M), then the order of(n−1

M )n!
dividesM .

– If n hasoneprime factor≡ 1 (mod M): This is the most interesting case; we will
present three different instances of this in the present paper.

– If n hasnoprime factor≡ 1 (mod M): This case seems utterly intractable.

We conclude this introduction with two remarks related to the outline above:
1. Other partial products of the “full” product(n − 1)n! have also been studied by the

present authors [11].
2. There are some meaningful results also whenn 6≡ 1 (mod M); in this case we

considerbn−1
M cn!.

2. BINOMIAL COEFFICIENTCONGRUENCES

2.1. In this section we give a first application of Gauss factorials. Most of what follows
can be found in [9], with proofs.

One of the most remarkable results on binomial coefficients is a congruence due to
Gauss (1828). It relies on the celebrated theorem of Fermat which states thatp can be
represented as a sum of two squares exactly whenp ≡ 1 (mod 4), uniquely up to signs
and the order of the summands. Let us now fixp anda such that

p = a2 + b2, p ≡ 1 (mod 4), a ≡ 1 (mod 4). (2. 1)

We can now state Gauss’s theorem:

Theorem 2.1(Gauss). Let the primep and the integera be as in(2. 1 ). Then
(p−1

2
p−1
4

)
≡ 2a (mod p). (2. 2)

For a proof and generalizations of this result see, e.g., [5, p. 268]. Beukers [4] first
conjectured an extension to a congruence modulop2, and this was first proved in [6].
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Theorem 2.2(Chowla, Dwork, Evans). Letp, a be as in(2. 1 ). Then
(p−1

2
p−1
4

)
≡ (

1 + 1
2pqp(2)

)(
2a− p

2a

)
(mod p2). (2. 3)

Hereqp(m) is theFermat quotientwith basem (p - m), defined for primesp > 2 by

qp(m) :=
mp−1 − 1

p
. (2. 4)

Congruences such as (2. 3 ) have been very useful in large-scale computations to search for
Wilson primes; see [17] or [18].

Only a few years after Gauss proved his celebrated result, Jacobi proved the following
analogous theorem. We fix a primep > 2 and integersr, s so that

4p = r2 + 3s2, p ≡ 1 (mod 6), r ≡ 1 (mod 3), s ≡ 0 (mod 3). (2. 5)

The integerr is then uniquely determined. The following congruence, analogous to Gauss’s
Theorem 2.1, is due to Jacobi (1837); see [5, p. 291] for remarks and references.

Theorem 2.3(Jacobi). Withp, r as in(2. 5 ), we have

(2(p−1)
3

p−1
3

)
≡ −r (mod p). (2. 6)

In analogy to Theorems 2.1 and 2.2, this congruence has also been extended, by Evans
and independently by Yeung; see [5, p. 293] for remarks and references.

Theorem 2.4(Evans; Yeung). Withp, r as in(2. 5 ), we have

(2(p−1)
3

p−1
3

)
≡ −r +

p

r
(mod p2). (2. 7)

For the usefulness of this congruence, see again [17] or [18].

2.2. The point of the paper [9] was to show that Gauss factorials can be used to extend
the theorems of Gauss and Jacobi in a somewhat different direction from Theorems 2.2
and 2.4. But subsequently, as consequences we recover these two extensions, along with
modulop3 extensions.

More specifically, the following two results are obtained in [9].

Theorem 2.5. Letp anda be as in(2. 1 )and letα ≥ 2 be an integer. Then
(

pα−1
2

)
p
!

((
pα−1

4

)
p
!
)2 ≡ 2a− C0

p

2a
− C1

p2

8a3
− . . .− Cα−2

pα−1

(2a)2α−3
(mod pα), (2. 8)

whereCn := 1
n+1

(
2n
n

)
is thenth Catalan number.

The first few Catalan numbers are 1, 1, 2, 5, 14, and 42; they are all integers.
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Theorem 2.6. Letp andr be as in(2. 5 )and letα ≥ 2 be an integer. Then
(

2(pα−1)
3

)
p
!

((
pα−1

3

)
p
!
)2 ≡ −r + C0

p

r
+ C1

p2

r3
+ . . . + Cα−2

pα−1

r2α−3
(mod pα). (2. 9)

The proofs of these theorems are similar to each other, and involve some deep theorems
connecting thep-adic gamma function of Morita with Jacobi sums.

The left sides of (2. 8 ) and (2. 9 ) can be seen as analogous to binomial coefficients, and
in fact, forα = 1, both theorems reduce to the theorems of Gauss and Jacobi, respectively.
Furthermore, using evaluations modulop of certain finite sums of reciprocals, forα = 2
the two theorems above easily lead to Theorem 2.2 and 2.4, respectively. Finally, using
further congruences for sums of reciprocals, this time mainly modulop2, we obtain the
following two results:

Theorem 2.7. Withp, a as in(2. 1 ), we have
(p−1

2
p−1
4

)
≡

(
2a− p

2a
− p2

8a3

)

× (
1 + 1

2pqp(2) + 1
8p2

(
2Ep−3 − qp(2)2

))
(mod p3). (2. 10)

HereEn denotes thenth Euler number which can be defined by

2
et + e−t

=
∞∑

n=0

En

n!
tn (|t| < π).

The sequence of Euler numbers, forn ≥ 0, begins with 1, 0,−1, 0, 5, 0,−61, and we have
E2j+1 = 0 for j ≥ 0; they are all integers.

Theorem 2.8. Letp, r be as in(2. 5 ). Then
( 2(p−1)

3
p−1
3

)
≡

(
−r +

p

r
+

p2

r3

)(
1 +

1
6
p2Bp−2( 1

3 )
)

(mod p3). (2. 11)

HereBn(x) is thenth Bernoulli polynomial, defined by

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π).

As examples of the summation congruences that are used for deriving (2. 3 ) and (2. 10 )
from (2. 8 ), respectively (2. 7 ) and (2. 11 ) from (2. 9 ), we mention only

p−1
2∑

j=1

1
j
≡ −2qp(2) + pqp(2)2 (mod p2), (2. 12)

and forp ≡ 1 (mod 4),
∑

1≤j<k≤p−1
4

1
jk

≡ 9
2qp(2)2 − 2Ep−3 (mod p), (2. 13)
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both valid for primesp ≥ 5; see Lemmas 2 and 3 in [9]. Congruences of this type have a
long history that goes back to the 19th century, with important work by Glaisher and then
E. Lehmer [28]. More recent work on this is due to Sun [34], and a systematic treatment
can be found in [2]. Such congruences exist also for composite moduli; see, e.g., [12, 13]
and the references contained in these papers.

To conclude this section, we mention that an analogue to Gauss’s and to Jacobi’s theo-
rem is due to Hudson and Williams [24], and its “Catalan extension”, i.e., a result analogous
to Theorems 2.5 and 2.6, was obtained in [15]; see Theorems 3.4 and 3.5 below. Finally, a
systematic study of numerous congruences of the type of Gauss, Jacobi, and Hudson and
Williams can be found in [5]. By using the methods of [9], their corresponding “Catalan
extensions” were recently obtained in [3].

3. SEQUENCES OFMULTIPLICATIVE ORDERS

3.1. In our second application of Gauss factorials, we will consider certain sequences of
multiplicative orders. Most of the material in this section, expanded and with proofs, can
be found in [10] and [15].

GivenM ≥ 2 and a prime numberp ≡ 1 (mod M), our main objects of study will be
the orders

γ(M)
α (p) := ordpα

((
pα−1

M

)
pα

!
)

. (3. 1)

We typically fixM andp, and letα vary. Note that, clearly,(
pα−1

M

)
pα

! =
(

pα−1
M

)
p
!, α = 1, 2, 3, . . . ,

so from here on we will use the simpler form on the right.
We begin by consideringM = 4 andp = 5, the smallest possible prime. For greater

ease of notation we set, for now,γα := γ
(4)
α (p). Then obviously we haveγ1 = 1, and

computations using Maple [29] show thatγ2 = 10, γ3 = 25, γ4 = 250, γ5 = 625, and
γ6 = 6250. To further explore this pattern, we display the first few values ofγα in Table 1,
for the first five prime numbersp ≡ 1 (mod 4). The lower part of the table (using, for
simplicity, γ = γ1) shows quite clearly how, given a primep, the orderγα+1 appears to
depend on the previous orderγα.

α/p 5 13 17 29 37
1 1 12 16 7 18
2 10 156 272 406 333
3 25 2 028 4 624 5 887 24 642
4 250 26 364 78 608 341 446 455 877
5 625 342 732 1 336 336 4 950 967 33 734 898
1 γ γ γ γ γ
2 2pγ pγ pγ 2pγ 1

2pγ
3 p2γ p2γ p2γ p2γ p2γ
4 2p3γ p3γ p3γ 2p3γ 1

2p3γ
5 p4γ p4γ p4γ p4γ p4γ

Table 1: γα = γ
(4)
α (p) for 1 ≤ α ≤ 5 andp ≤ 37, p ≡ 1 (mod 4).
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Further computations might lead one to conjecture that, given a primep ≡ 1 (mod 4)
andγ := ordp(p−1

4 !), the sequence of ordersγ1 = γ, γ2, γ3, . . . is





γ, pγ, p2γ, p3γ, . . . whenp ≡ 1 (mod 8)
or p ≡ 5 (mod 8) and4|γ,

γ, 1
2pγ, p2γ, 1

2p3γ, . . . whenp ≡ 5 (mod 8) andγ ≡ 2 (mod 4),
γ, 2pγ, p2γ, 2p3γ, . . . whenp ≡ 5 (mod 8) andγ is odd.

(3. 2)

However, forp = 29 789 this pattern fails: We haveγ1 = 14 894, while γ2 = 7 447. That
is, in the step fromγ1 to γ2, there was no factorp.

In addition to discussing the pattern (3. 2 ), this section will be concerned with “excep-
tional primes” such asp = 29 789, and we will address the following natural questions:

– Are there more?
– Can we characterize and/or compute them?
– Can the “skippedp” occur elsewhere in the sequence?

3.2. Now we return to the general caseM ≥ 2 in (3. 1 ). The next result shows that the
pattern (3. 2 ), which we observed forM = 4, is actually true in general.

Theorem 3.1. Given integersM ≥ 2 and α ≥ 1, and a primep ≡ 1 (mod M), let

γ
(M)
α (p) be as in(3. 1 ). If p ≡ 1 (mod 2M), then

γ
(M)
α+1(p) = pγ(M)

α (p) or γ
(M)
α+1(p) = γ(M)

α (p).

If p ≡ M + 1 (mod 2M), then

γ
(M)
α+1(p) =





pγ
(M)
α (p) or γ

(M)
α (p) when γ

(M)
α (p) ≡ 0 (mod 4),

1
2pγ

(M)
α (p) or 1

2γ
(M)
α (p) when γ

(M)
α (p) ≡ 2 (mod 4),

2pγ
(M)
α (p) or 2γ

(M)
α (p) when γ

(M)
α (p) ≡ 1 (mod 2).

This leads to the following definition.

Definition 3.2. When the second alternative holds in one of the cases in Theorem 3.1, we
call p anα-exceptional prime forM .

It turns out that exceptional primes are extremely rare. Table 2 shows all that are known
to us, with their respective search limits. For49 ≤ M ≤ 100 there are no 1-exceptional
primesp ≤ 2 · 106; we’ll consider the caseα ≥ 2 a bit later.

In order to explain how the entries in Table 2 were computed, we establish two different
criteria for exceptionality, the first of which — while completely general and effective —
is computationally expensive in practice, and the second of which is very specialized (for
the casesM = 3, 4 and 6), but is extremely fast in application.
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M p up to
3 13, 181, 2 521, 76 543, 489 061 1012

4 29 789 1011

5 71 2 · 106

6 13, 181, 2 521, 76 543, 489 061 1012

10 11 2 · 106

18 1 090 891 2 · 106

21 211, 15 583 2 · 106

23 3 037 2 · 106

24 73 2 · 106

29 59 2 · 106

35 1 471 2 · 106

44 617 2 · 106

48 97 2 · 106

Table 2: 1-exceptional primesp for 3 ≤ M ≤ 100.

For the first criterion, we need the following definitions. For any primep, theWilson
quotientis defined by

w(p) :=
(p− 1)! + 1

p
. (3. 3)

This is always an integer, by Wilson’s Theorem (1. 1 ). This quotient, along with the
Fermat quotient (2. 4 ), were of some importance in the study of Fermat’s last theorem
(in its classical theory; see, e.g., [31]). Next, forM ≥ 2 andp ≡ 1 (mod M), we define

SM (p) :=

p−1
M∑

j=1

1
j
.

ForM = 2, 3, 4 and 6 there are well-known evaluations in terms of Fermat quotients, e.g.,

p−1
4∑

j=1

1
j
≡ −3qp(2) (mod p),

p−1
3∑

j=1

1
j
≡ − 3

2qp(3) (mod p).

These identities are of the same nature as (2. 12 ) and (2. 13 ) and can be found, e.g., in
[28] or [2].

Next, forα ≥ 1, M ≥ 2 andp ≡ 1 (mod M) we defineV M
α (p) by

((
pα−1

M

)
p
!
)γ(M)

α (p)

≡ 1 + V M
α (p)pα (mod pα+1).

With these definitions and notations, we can state our first criterion for a prime to beα-
exceptional forM .

Theorem 3.3. The first alternative in each case of Theorem 3.1 holds exactly when

V M
α (p) + 1

M γ(M)
α (p)

(
w(p)− SM (p)

) 6≡ 0 (mod p).
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The basic idea for the proofs of both Theorems 3.1 and 3.3 is as follows: First we
establish a congruence connecting

(
pα+1−1

M

)
p
! and

(
pα−1

M

)
p
! (mod pα+1).

Then we raise both sides to an appropriate power, and finally use the definition of order.
For details, see [10].

All entries in Table 2 were found by way of this criterion. However, its implementation
proved too slow to reach the search limits listed forM = 3, 4 and 6, which were attained
using the second, more specialized criterion; this will be explained later.

3.3. In the casesM = 3, 4 and 6 we can use the theory of Jacobi sums to obtain
some strong criteria, in addition to further insight. For instance, the fact that the entries
for M = 3 and 6 in Table 2 are identical will be explained in the process. For reasons of
brevity, we will concentrate onM = 3, 6; the caseM = 4 is similar, and details can be
found in [15].

Suppose now thatp ≡ 1 (mod 6) is a prime. It is known that the representationp =
a2 + 3b2 is unique up to sign, but the signs are crucial here. We fix them as follows: Letg
be a primitive root modulop, and choose a characterχ6 modulop of order 6 in such a way
thatχ6(g) = e2πi/6 = (1 + i

√
3)/2. Then we fix the signs ofa andb by requiring that

a ≡ −1 (mod 3), 3b ≡ (2g(p−1)/3 + 1)a (mod p).

If a, b are given as above, we define two pairsr, s andu, v (in this exposition we need only
r andu):

Let Z =indg2, the index of2 (mod p) with respect to the primitive rootg. Then we
have 




r = 2a, u = 2a (Z ≡ 0 (mod 3)),
r = −a− 3b, u = −a + 3b (Z ≡ 1 (mod 3)),
r = −a + 3b, u = −a− 3b (Z ≡ 2 (mod 3)).

(3. 4)

They also satisfy sums-of-squares identities:

4p = r2 + 3s2, 4p = u2 + 3v2, r ≡ u ≡ 1 (mod 3).

We already encountered the numberr in (2. 5 ) and in Theorem 2.3 and its generalizations.
The numberu, on the other hand, occurs in the following analogue of the theorems of
Gauss and Jacobi [24]:

Theorem 3.4(Hudson, Williams, 1984). With p ≡ 1 (mod 6) prime andu as given in
(3. 4 ), we have

(p−1
3

p−1
6

)
≡ (−1)

p−1
6 +1u (mod p).

As already indicated in Section 2, this result also has a “Catalan extension”; as before,
let Cn := 1

n+1

(
2n
n

)
be thenth Catalan number.
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Theorem 3.5. Letp andu be as in(3. 4 ). Then for any integerα ≥ 1 we have
(

pα−1
3

)
p
!

((
pα−1

6

)
p
!
)2 ≡ (−1)

p−1
6 +1

(
u− p

u
− p2

u3
− · · · − Cα−1

pα−1

u2α−3

)
(mod pα).

The next result will be the basis for everything in the remainder of this section.

Theorem 3.6. Letp ≡ 1 (mod 6) andr, u as in(3. 4 ). Then for allα ≥ 1 we have
(

r − p

r
− · · · − Cα−1p

α

r2α−1

)3

≡
(

u− p

u
− · · · − Cα−1p

α

u2α−1

)3

(mod pα+1), (3. 5)

whereCn is again thenth Catalan number.

The main ingredients in the proof are an identity between the cubes of certain Jacobi
sums, as well as congruences (modpα+1) between these Jacobi sums and both sides of the
congruence (3. 5 ). Quotients of certain Gauss factorials are also involved as intermediate
steps. For details, see Section 3 in [15].

By cubing the congruences in Theorems 2.6 and 3.5, and applying Theorem 3.6, we get
the following result after some easy manipulations:

Corollary 3.7. For anyp ≡ 1 (mod 6) andα ≥ 1 we have
((

pα−1
3

)
p
!
)24

≡
((

pα−1
6

)
p
!
)12

(mod pα).

After some further intermediate steps, this in turn implies a result that explains why the
entries forM = 3 andM = 6 in Table 2 are identical:

Corollary 3.8. Letp ≡ 1 (mod 6) andα ≥ 1. Thenp is α-exceptional forM = 3 exactly
when it isα-exceptional forM = 6.

Another consequence of Theorem 3.6 is the second exceptionality criterion, for the spe-
cial casesM = 3 and 6:

Theorem 3.9. Let p ≡ 1 (mod 6) and u be as in(3. 4 ). Then for a fixedα ≥ 1, p is
α-exceptional forM = 3 (andM = 6) exactly when

(
u− p

u
− p2

u3
− 2

p3

u5
− · · · − Cα−1

pα

u2α−1

)p−1

≡ 1 (mod pα+1),

whereCn is thenth Catalan number.

The following important special case is worth mentioning:

Corollary 3.10. Let p ≡ 1 (mod 6) and u be as in(3. 4 ). Thenp is 1-exceptional for
M = 3 (andM = 6) exactly when

(
u− p

u

)p−1 ≡ 1 (mod p2).

In the case of 1-exceptionality,u can be replaced by2a in the above result, and we
obtain a particularly convenient criterion:
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Corollary 3.11. Letp ≡ 1 (mod 6), p = a2 + 3b2 with a ≡ −1 (mod 3).
Thenp is 1-exceptional forM = 3 (andM = 6) exactly when

(2a)p−3
(
(2a)2 + p

) ≡ 1 (mod p2).

The next and final result in this section shows that 1-exceptionality is actually the most
important case:

Theorem 3.12. Suppose thatM ≥ 2 and p ≡ 1 (mod M), with α ≥ 2. If p is α-
exceptional, it is also(α− 1)-exceptional.

This means, in particular, that only 1-exceptional primes need to be checked for possible
2-exceptionality. We used the criterion in Corollary 3.10; no new 1-exceptional primes for
M = 3, 6 were found up to1012.

Exceptionality criteria that are very similar to Theorem 3.9 and Corollary 3.10 also exist
for the caseM = 4; see Section 4 in [15]. Using this analogue to Corollary 3.10, we
searched for 1-exceptional primes (forM = 4) up to1011, but found no new ones. Also,
with Theorem 3.12 in mind, we used appropriate criteria to check all entries in Table 2 and
found that none are 2-exceptional.

Finally in this section, we remark that theM = 3 andM = 6 exceptional primes
13, 181, 2521 and 489061 (that is, four of the five listed in Table 2) have the property in
common that they satisfyp2 = 3x2 + 3x + 1 for some integerx. See Section 6 in [10]
for this and related results, as well as further comments. It is a further consequence of
Theorem 3.9 that all such primes are 1-exceptional, but none are 2-exceptional, forM = 3
andM = 6.

4. GAUSS FACTORIALS OF ORDER 1. PART I

4.1. In this section, which contains our third application of Gauss factorials, we take a
somewhat different approach. We fix an integerM ≥ 1 and ask for which integersn the
congruence

⌊
n−1
M

⌋
n
! ≡ 1 (mod n), n ≡ ±1 (mod M), (4. 1)

is satisfied. In this section we consider the solutions of (4. 1 ) in the related casesM = 3,
M = 6. The contents of this section are based on the recent paper [16], where complete
proofs, further explanations, and remarks on computations can be found.

Let us first consider the congruence (4. 1 ) from a more general point of view. The case
M = 1 is just Theorem 1.2, which gives all solutions. ForM = 2, see Theorem 1.3 which
shows that only 1, 2, and 4 can occur as orders of

(
n−1

2

)
n
! modulon; the more general

case corresponding to (4. 1 ) was solved in [8]. The caseM = 4 will be discussed in the
next section; see also [14].

Returning to (4. 1 ), we make the assumption thatn has the form
{

n = pαw, with w = qβ1
1 . . . qβs

s (s ≥ 0, α, β1, . . . , βs ∈ N),
p ≡ 1 (mod 3), q1 ≡ · · · ≡ qs ≡ −1 (mod 3) distinct primes,

(4. 2)



Gauss Factorials, Jacobi Primes, and Generalized Fermat Numbers 13

and with the convention thatw = 1 whens = 0. Our main goal is now to characterize
integers of this form for which

⌊
n−1

3

⌋
n
! ≡ 1 (mod n), or (4. 3)⌊

n−1
6

⌋
n
! ≡ 1 (mod n). (4. 4)

The first few solutions of each of these congruences are displayed in Table 3.

n (4. 3 ) factored n (4. 4 ) factored
26 2 · 13 1105 5 · 13 · 17

244 22 · 61 14365 5 · 132 · 17
305 5 · 61 34765 5 · 17 · 409
338 2 · 132 303535 5 · 17 · 3571

9755 5 · 1951 309485 5 · 11 · 17 · 331
18205 5 · 11 · 331 353365 5 · 29 · 2437
33076 22 · 8269 508255 5 · 11 · 9241
48775 52 · 1951 510605 5 · 102121
60707 17 · 3571 527945 5 · 11 · 29 · 331

Table 3: Smallest solutions of (4. 3 ) and (4. 4 );p is in boldface.

At first sight there are no apparent patterns, apart from some factors occurring repeat-
edly. We also observe that both parts of the table contain integers that are not of the form1
(mod 3), respectively1 (mod 6), which means that in (4. 3 ) and (4. 4 ) the floor function
is indeed meaningful. Our main results in this section, and the more complete results in the
original paper [16], will fully explain the entries in Table 3.

The following examples give a better indication than Table 3 of the challenges and ex-
pected results.

Example 2. Let p = 7. This is the least possiblep in (4. 2 ). Combining theory and
computation we found that there are no solutions of (4. 3 ) fors = 0, 1, . . . , 6. However,
for s = 7 we have 27 solutions, between

n = 7 · 2 · 5 · 17 · 353 · 169553 · 7699649 · 531968664833, and
n = 7 · 29 · 5 · 17 · 353 · 7699649 · 47072139617 · 531968664833;

these two have, respectively, 30 and 36 decimal digits. On the other hand, (4. 4 ) has the
trivial solutionn = 7 in the cases = 0, and fors = 1, 2, . . . , 5 there are no solutions. For
s = 6 there is the single 40-digit solution

n = 7 · 17 · 353 · 169553 · 7699649 · 47072139617 · 531968664833.

As far as the corresponding factorsqj are concerned, we note that5 | 72 + 1, and

17 | 723
+ 1 and 169 553 | 723

+ 1,

353 | 724
+ 1 and 47 072 139 617 | 724

+ 1,

7 699 649 | 725
+ 1 and 531 968 664 833 | 725

+ 1.

We also note that722
+ 1 has no prime factor of the formq ≡ −1 (mod 3); furthermore,

the exact power of 2 dividing(7− 1)(7 + 1)(721
+ 1) . . . (725

+ 1) is 29.
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Example 3. The next smallestp in (4. 2 ) isp = 13. Again, by combining theoretical
results with computations we found that fors = 0, 1, . . . , 7 and 9, the congruence (4. 3 )
has no solutions. However, fors = 8 it has exactly 38 solutions which have between 39
and 43 decimal digits. For reasons of brevity we skip further details, which can be found in
[16]. However, we remark that in this example we have solutions of the form (4. 2 ) with
α = 2. This happens very rarely; in fact, we will explain later thatp = 13 is theonlyprime
p < 1014 which can haveα = 2; and furthermore, for the same range of primes, (4. 3 ) or
(4. 4 )cannot have any solutions withα > 2.

The fact thatp = 7 andp = 13 both lead to numerous solutions is a bit misleading. In
fact, it turns out that there are no solutions of (4. 3 ) or (4. 4 ) forp = 19, 31, 37, or 43.
After these, there are solutions forp = 61 andp = 97, and then only five more up to 1000.
All this leads to the following natural questions:

(i) What determines the presence/absence of solutions?
(ii) What are the factorsqj when solutions exist?
(iii) For whatp can solutions exist?

4.2. An explanation of these phenomena is given by the fact that we can find necessary
and sufficient conditions for the solutions of

⌊
n−1

3

⌋
n
!3 ≡ 1 (mod n) and

⌊
n−1

6

⌋
n
!3 ≡ 1 (mod n),

i.e., necessary conditions for the original congruences (4. 3 ) and (4. 4 ). For greater clarity
and simplicity, we restrict ourselves in this exposition to the following special cases:

M = 3, s ≥ 2, w ≡ 1 (mod 3),

where the third condition implies thatn ≡ 1 (mod 3). Our main approach will be to find
criteria for

(
n−1

3

)
n
!3 ≡ 1 (mod w) and (4. 5)

(
n−1

3

)
n
!3 ≡ 1 (mod pα), (4. 6)

and then to combine the two by way of the Chinese Remainder Theorem.
In order to find congruences modulow, we define the partial totient function

ϕ(M, w) = #{τ | 1 ≤ τ ≤ w−1
M , gcd(τ, w) = 1},

which was earlier studied by D. H. Lehmer [27] in a somewhat different form. These
objects are used in the following lemma; its proof uses most of what is mentioned in the
remainder of this section.

Lemma 4.1. Withn as before, we have
(

n−1
3

)
n
! ≡ 1

pϕ(3,w)
(mod w), ϕ(3, w) = 1

3 (ϕ(w) + 2s−1). (4. 7)

The proof is very technical. The basic idea is to write

n−1
3 = pα−1

3 w + w−1
3 (n ≡ 1 (mod 3)),

with a slightly different form whenn ≡ −1 (mod 3). This means thatbn−1
3 cn! is the

product ofpα−1
3 “main terms” and one “remainder term”.
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By the Gauss-Wilson theorem (1. 9 ), the main terms mostly evaluate to 1 (modw). The
remainder term is more subtle and requires more care; in addition to the Gauss-Wilson the-
orem this term also requires the Euler-Fermat theorem for its evaluation. This can actually
all be done for arbitrary denominatorsM ≥ 2.

To continue, we raise both sides of the congruence in (4. 7 ) to the 3rd power. We then
obtain (

n−1
3

)
n
!3 ≡ p−ϕ(w)−2s−1 ≡ p−2s−1

(mod w).
Therefore we have (

n−1
3

)
n
!3 ≡ 1 (mod w)

exactly when

p2s−1 − 1 ≡ 0 (mod w).
But the left of this factors:

p2s−1 − 1 = (p− 1)(p + 1)(p2 + 1) . . . (p2s−2
+ 1).

We have therefore obtained:

Theorem 4.2. Letn be as before, withs ≥ 1. Then(4. 5 )holds if and only if everyqβi

i is

a divisor ofp2s−1 − 1; i.e., exactly when every

qβi

i divides

{
p− 1, for s = 1,

(p− 1)(p + 1)(p2 + 1) . . . (p2s−2
+ 1), for s ≥ 2.

We note that this result actually holds for
⌊

n−1
3

⌋
n
! ≡ 1 (mod w),

whenn is not 1 (mod 3).

4.3.Next we state the second crucial ingredient, which gives the necessary congruences
modulopα.

Lemma 4.3. Letn ≡ 1 (mod 3) be as before. Then fors ≥ 2,

(
n− 1

3

)

n

! ≡ (q1 . . . qs)(−1)s−1 ϕ(pα)
3

((
pα − 1

3

)

p

!

)2s

(mod pα).

Once again, this lemma holds in greater generality, and the proof is again very technical.
To apply this lemma, we first observe that by cubing both sides of the congruence, by the
Fermat-Euler theorem the term with base(q1 . . . qs) becomes 1 (modpα). Therefore the
congruence (4. 6 ) is equivalent to

(pα−1
3 )p!3·2

s ≡ 1 (mod pα). (4. 8)

We will see that primesp that satisfy this congruence are rather special. Using the same
notation as in (3. 1 ) above, we set

γ(3)
α (p) := ordpα((pα−1

3 )p!) (p ≡ 1 (mod 3))

for the multiplicative order modulopα. Then (4. 8 ) implies

γ(3)
α (p) = 2` or 3 · 2` (0 ≤ ` ≤ s). (4. 9)
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We saw in Section 3 that the sequenceγ1(p), γ2(p), . . . behaves in a very special way. This
means, in particular, that (4. 9 ) implies

γ
(3)
1 (p) = 2` or 3 · 2`.

This now gives rise to the following definition:

Definition 4.4. We call a primep ≡ 1 (mod 3) a level` Jacobi prime if

ordp

(
p−1
3 !

)
= 2` or ordp

(
p−1
3 !

)
= 3 · 2`.

Example 4.For the first three primesp ≡ 1 (mod 6) we find:

p = 7 : p−1
3 ! = 2, ordp

(
p−1
3 !

)
= 3 = 3 · 20;

p = 13 : p−1
3 ! = 24, ordp

(
p−1
3 !

)
= 12 = 3 · 22;

p = 19 : p−1
3 ! = 720, ordp

(
p−1
3 !

)
= 9.

Therefore 7 and 13 are Jacobi of levels 0, resp. 2, while 19 is not Jacobi.

The reason for calling these primesJacobi primeslies in Jacobi’s binomial coefficient
theorem (Theorem 2.3 above), which has the following easy consequence:

Corollary 4.5. Withp andr as in(2. 5 ), we have

(p−1
3 )!3 ≡ 1

r
(mod p). (4. 10)

As a consequence we get an equivalent definition:

Corollary 4.6. A primep ≡ 1 (mod 3) is a level-̀ Jacobi prime if and only if

ordp(r) = 2`.

Example 5.For the primes in Example 4 we find:

p = 7 : 4p = 12 + 27 · 12, ordp(1) = 20;

p = 13 : 4p = (−5)2 + 27 · 12, ordp(−5) = 22;

p = 19 : 4p = 72 + 27 · 12, ordp(7) = 3.

Once again, we see that 7 and 13 are Jacobi primes, while 19 is not, consistent with Exam-
ple 4.

Jacobi primes of the lowest levels satisfy some important properties:

Theorem 4.7. (a) A primep is a level-0 Jacobi prime exactly when

p = 27X2 + 27X + 7 (X ∈ Z).

(b) There are no Jacobi primes of level1.
(c) The only level-2 Jacobi prime isp = 13.

Parts (a) and (b) of this result follow easily from Corollary 4.6, while part (c) requires
some results from the theory of Pell equations.

Remarks: (1) As expected, level-0 Jacobi primes are quite abundant; the first few (up to
1000) are 7, 61, 331 and 547, and there are a total of215 105 up to1014.
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(2) On the other hand, there are very few Jacobi primes of levels` ≥ 2. The first few
are 13, 97, 193, 409, 769, with a total of only 44 up to1014.

(3) Because of the substantial differences in their nature (see Theorem 4.7) and in their
numbers, we call Jacobi primes of level 0standard Jacobi primes, while Jacobi primes of
levels` ≥ 2 will be referred to asnonstandard Jacobi primes.

4.4. Finally in this section, we combine the Jacobi prime condition for the congruence
(4. 6 ) to hold (see the development leading up to (4. 9 )) with Theorem 4.2. Using a
slightly more general setting again, withn ≡ w ≡ ±1 (mod 3), we have:

Theorem 4.8. Letn be as above, withs ≥ 2 andα ≥ 1. Then the congruence
⌊

n−1
3

⌋
n
!3 ≡ 1 (mod n)

holds exactly when all of the following are satisfied:

(a) if α > 1, thenp is (α− 1)-exceptional;

(b) p is a Jacobi prime of level̀ for some0 ≤ ` ≤ s;

(c) qβi

i | (p− 1)(p + 1)(p2 + 1) . . . (p2s−2
+ 1) for all 1 ≤ i ≤ s.

Note that the condition (a) is vacuous whenα = 1. Condition (c) is related to factors of
generalized Fermat numbers that have Jacobi primes as bases. In fact, the paper [16] (see
also the web pages [7]) describes a major computational effort to factor as many of these
generalized Fermat numbers as possible.

For the concept of an exceptional prime, see Section 3. Of relevance here is the fact that
p = 13 is the onlyJacobi prime< 1014 that is also 1-exceptional. Returning to Table 1,
we see thatp = 13 occurs to the power 2; we now know that this is the only prime< 1014

with p ≡ 1 (mod 3) with this property.
For numerous further results, examples, computations, tables, and remarks, see the orig-

inal paper [16] and the web pages [7].

5. GAUSS FACTORIALS OF ORDER 1. PART II

In this section we consider one more interesting concept that has not come up earlier.
While Section 4 deals mainly withM = 3 andM = 6, a related development is possible,
and has been done, forM = 4; see [14]. This is of a similar nature as theM = 3 and 6
case, but the details are quite different.

The premise is similar to that of Section 4, and we start with the question: For which
n ≡ 1 (mod 4) is the congruence

(
n−1

4

)
n
! ≡ 1 (mod n) (5. 1)

satisfied? This is clearly the case forn = 5. The next solutions aren = 205, 725, 1025,
1105, and there are37 109 in total up to106. With the exception ofn = 5 all these moduli
have at least two distinct prime factors congruent to 1(mod 4). It would therefore be
reasonable to guess that this is always true.

However, it is somewhat surprising that (5. 1 ) does have solutions withn ≡ 1 (mod 4)
and such thatn hasjust oneprime factorp ≡ 1 (mod 4). It turns out that solutions of this
type are extremely rare: only three exist up to1020; they are shown in Table 4.
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n n factored p
205479813 3 · 7 · 11 · 19 · 46817 46817
1849318317 33 · 7 · 11 · 19 · 46817 46817

233456083377 3 · 11 · 19 · 571 · 652081 652081

Table 4: The smallest solutions of (5. 1 ),p ≡ 1 (mod 4).

The complete characterization of all integers of this kind, some of which are extremely
large, is one of the main results of [14]. Apart from the three solutions in Table 4, the next
smallest solution we known of has 155 digits. All this is related to the concept of aGauss
prime, of which 46817 and 652081 (in Table 4) are examples.

Definition 5.1. We call a primep ≡ 1 (mod 4) a Gauss prime of level̀if

ordp

(
p−1
4 !

)
= 2`.

The name comes from the close connection to Gauss’s binomial coefficient theorem,
Theorem 1.2. In [14] we explain how Gauss primes can be computed; see Table 5 and the
remarks following Theorem 5.3.

` primes ` primes
0 5 only 11 120833, 1249520060417

1–3 none 12 12289
4 17, 241, 3361, 46817, 652081,. . . 13 1908737, 10812547073
5 97, 257, 929, 262337, 20057881714 114689, 8780414977
6 193, 65537 16 1179649, 27590657, 2742091777
7 641, 12055618177 18 786433, 3225052512257
8 3200257 24 9273304154113
9 93418448897 35 5841155522561, 54185307406337

10 285697, 345089, 11118593 38 2748779069441

Table 5: Gauss primesp < 1014 (p < 1016 for ` = 5).

The entries for0 ≤ ` ≤ 3 are explained as follows.

Theorem 5.2. Suppose thatp ≡ 1 (mod 4) is a prime. Then

(a) p−1
4 ! ≡ 1 (mod p) only if p = 5.

(b)
(

p−1
4 !

)k 6≡ −1 (mod p) for k = 1, 2, 4.

This theorem says that, apart fromp = 5, the factorialp−1
4 ! cannot have orders1, 2, 4,

or 8. The proof is based on Gauss’s Theorem 1.2, together with Corollary 1.1. This result
can be extended in different directions; see Corollary 3 and Theorem 5 in [14]. We also
note that Theorem 5.2 is similar to parts (b) and (c) of Theorem 4.7. It turns out that
Theorem 4.7(a) also has an analogue for Gauss primes:

Theorem 5.3. A primep ≡ 1 (mod 4) is a level-4 Gauss prime exactly whenp = pk :=
a2

k+1 + a2
k for somek ≥ 1, with the sequence{ak} defined bya0 = 0, a1 = 1, and

ak = 4ak−1 − ak−2.
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It is easily verified thatpk is prime for1 ≤ k ≤ 5; the corresponding Gauss primes
are shown in Table 4 under` = 4. Using the computer packages Maple and PARI/GP, we
obtained the following numerical results:

pk is composite for6 ≤ k ≤ 100 000, except for just 14 values ofk, namely 131,
200, 296, 350, 519, 704, 950, 5 598, 6 683, 7 445, 8 775, 8 786, 11 565, 12 483. Using the
elliptic curve primality test, François Morain [30] showed that they are all prime. Using
again PARI/GP, we also found that fork = 13 536, 18 006, 18 995, 48 773, and 93 344,pk

is a probable prime.
We now return to, and somewhat modify, the original question from the beginning of

this section: Suppose we are given

n = pαw, with w = qβ1
1 · · · qβr

r (r ≥ 1), (5. 2)

whereα, β1, . . . , βr are positive integers andp ≡ 1 (mod 4) andq1 ≡ . . . ≡ qr ≡ −1
(mod 4) are distinct primes. We then wish to know for whichn of this form we have

bn−1
4 cn! ≡ 1 (mod n). (5. 3)

Even though the left-hand side of (5. 3 ) is defined for alln ≥ 1, we restrict ourselves to
oddn only, to avoid having too many different cases.

First we state a result that is of a negative nature.

Theorem 5.4. Let n be as in(5. 2 ). Then the Gauss factorialbn−1
4 cn! cannot have the

following orders:

(a) 1, 2, or 4 whenr = 1, except forn = 15;
(b) 1 or 2 whenr = 2;
(c) 1 whenr = 3.

This result is best possible; indeed, there are small counterexamples when we have
q1 ≡ 1 (mod 4) in (5. 2 ). The main result of this section can now be stated as follows.

Theorem 5.5. Letn be as in(5. 2 ), with r ≥ 4. Then(5. 3 )holds exactly when

(i) ordpα(pα−1
4 )p! = 2` for somè ≥ 4,

(ii) q
βj

j | p− 1 or q
βj

j | p + 1 for j = 1, . . . , r,
(iii) r ≥ `.

Wheǹ = 4, then(5. 3 ) impliesα = 1.

This result is a direct consequence of a more general theorem; see Theorem 7 in [14].
The proof is of a similar nature as the proof of Theorem 4.8 in that it depends on “ex-
plicit formulas”, separately modulopα and modulow, and then combined via the Chinese
Remainder Theorem. The details, however, are quite different.

It can also be shown that ap ≡ 1 (mod 4) for which Condition (i) in this last theorem
holds, necessarily satisfies ordp(p−1

4 )! = 2`; that is,p is a level-̀ Gauss prime.
For further details, including proofs, examples, and remarks concerning computations,

see the original paper [14].
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6. CONCLUSION

As already mentioned in Sections 1–5, much more could be said about most of the
objects and concepts considered in this exposition, and we refer the reader to the original
papers [8]–[16], as well as the web pages [7].

In this expository paper we have tried to exhibit some of the many facets of the Gauss
factorial defined by (1. 8 ), especially as given in the form (1. 10 ). As we saw in Section 2,
and later in Theorem 3.5, quotients of appropriate Gauss factorials can be considered nat-
ural extensions of certain binomial coefficients. The strength and unexpected generality of
the “Catalan extensions”, namely Theorems 2.5, 2.6, and 3.5, can be traced to the close con-
nection between Morita’sp-adic gamma function and Gauss factorials. Not surprisingly,
then, we obtain strong results in Section 3 in connection with sequences of multiplica-
tive orders and their behaviours, and in particular the exceptions to otherwise very regular
patterns.

The concept of multiplicative orders of Gauss factorials of the type (1. 10 ) was also
the main topic of Sections 4 and 5, where in particular we considered the question of
characterizing those integersn that give rise to Gauss factorials of order 1 modulon. This
led to special sequences of primes whose corresponding Gauss factorials have powers of 2
as orders. Although we were able to derive many properties of these Jacobi primes (in the
casesM = 3 and 6) and Gauss primes (in the caseM = 4), much about them still remains
mysterious, and is worthy of further investigation.

Many other open questions remain. Just to name a few, we refer the reader to the sum-
mary following (1. 10 ), and repeat the fact that little is known to us whenn does not have
a prime factor≡ 1 (mod M). The question raised in the first part of the remark at the end
of Section 1 seems less intractable; in fact, some strong patterns emerge in the sequence
of all partial products mentioned in that remark. Recall that in this paper we exclusively
considered the first ofM different partial products.

We encourage the reader to explore these and other questions related to the attractive
area of classical number theory surrounding Gauss factorials.
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