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Abstract. New methods are proposed for evaluation of one-dimensional
highly oscillatory integrals with and without critical points. These inte-
grals are hard to approximate due to the existence of high oscillations of
the integrand and to take care of the critical point in the domain interval.
Levin procedure with Gaussian radial basis function is implemented to
evaluate oscillatory integrals without critical point. The meshless method
is coupled with multi-resolution analysis in a new shape to handle the
critical points. Test problems verify accuracy and efficiency of the new
methods.
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1. INTRODUCTION

Highly oscillatory integrals (HOIs) have many practical applications in physical sci-
ences, particularly in the field of optics, quantum mechanics, acoustics and electromagnet-
ics [26, 16]. The general form of these integrals is given as

I[f ] =

∫ b

a

f(x)eiωg(x)dx, (1. 1)

105
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where the functions f, g : [a, b] → R are non-oscillatory smooth functions, ω � 1 and
g(x) may or may not have critical points in [a,b]. The parameter ω represents frequency
of the oscillations. Large value of ω implies that the integrand is highly oscillatory. Many
quadrature rules such as Simpson rule and Gauss-Legender quadrature etc. fail to compute
integrals of the form (1. 1 ) for large ω.

In the last two decades, many state of the art methods have been developed for com-
putation of one-dimensional HOIs, which include asymptotic method [14, 27, 24, 30],
numerical steepest decent method [13, 2, 10, 1], Filon(-type) method [7, 8, 25, 12, 11],
Levin(-type) method [23, 19, 20, 17, 21, 31] and generalized quadrature rule [29, 5].

The asymptotic expansion theory which is considered by Filon [8] is one of the best
method for evaluation of HOIs. This method has been modified in many forms like [24].
The method [24] gives a high asymptotic order when the frequency ω −→ ∞, but the
limitations of this method is that it can solve HOIs with linear phase functions only [13, 6].

Few methods have been used which are applicable to approximate oscillatory integrals
with stationary points [24, 9, 28, 27, 4]. In [24], the authors have used Gauss-type quadra-
ture rules with complex-valued nodes and weights to approximate oscillatory integrals with
stationary points of high order. The method is based on substituting the original interval of
integration by a set of contours in the complex plane, corresponding to the paths of steepest
descent. A high asymptotic order of convergence is attained for this type of integrals.

Superinterpolation method is used [9] in which the values of the integrand at certain
complex points close to the critical points, can actually yield a higher asymptotic order ap-
proximation to the integral. The asymptotic convergence rates of Filon-type methods can
be doubled at no additional cost. The asymptotic order of convergence by the superinter-
polation method reaches to O(ω−2s−1).

Levin method [23] has got much attention as it can compute HOIs with complicated
phase functions. In this method, a one-dimensional HOI is converted into an ordinary
differential equation and then, ultimately, the equation is solved by the collocation method.
Levin [23] has used monomials basis function. In the proposed work, Gaussian radial basis
function is used in the Levin’s approach.

The Levin collocation procedure fails to approximate HOIs with critical point as in case
of critical point g′(x0) = 0, where x0 ∈ [a, b] is unique critical point of g(x). The Levin
ODE can not be solved for the unknown parameters of the collocation method reported in
[23]. The author [28] has introduced a splitting algorithm, which based on unified approach
of the Levin collocation method and the two points Gaussian quadrature rule to evaluate
HOIs with critical point.

Recently, Siraj-ul-Islam et.al. [20] proposed a new algorithm, following the procedure
[28], in which a meshless collocation method with multiquadric RBF is couple with hybrid
function based quadrature and attained a high convergence rate. In this work, the authors
have proved some theoretically error bounds of the component methods of the new algo-
rithm.

The current work is the modified form of [20] in which a meshless collocation method
based on Gaussian RBF is coupled with the multi-resolution quadrature rules. Multi-
resolution quadrature rules based on hybrid functions or Haar wavelets is used to tackle
the critical point(s). In this procedure, the domain interval is split into two or more sub-
intervals in order to isolate the critical point. The integral over a small interval having



An Accurate Computation of Highly Oscillatory Integrals with Critical Points 107

TABLE 1. Nomenclature Box:

Symbols Discription
RBF Radial basis functions
GRBF Gaussian radial basis functions
HOIs Highly oscillatory integrals
QMM
G [f ] Meshless procedure with Gaussian RBF

QHF [f ] Quadrature based on hybrid functions
QHW [f ] Quadrature based on Haar wavelets
Qξ[f ] Splitting procedure based on hybrid functions and meshless method
Qη[f ] Splitting procedure based on Haar wavelets and meshless method
ε Shape parameter of the Gaussian radial basis functions
ω Frequency parameter
ξ Splitting parameter
κ Order of the critical point

critical point is evaluated by the multi-resolution quadratures and the remaining integrals
are approximated by the meshless collocation procedure. Some benchmark test problems
are included to verify accuracy of the proposed algorithm.

The rest of paper is organized as follows:
In Section 2, some quadrature rules like meshless collocation procedure and multi-resolution
quadratures based on hybrid functions and Haar wavelets are discussed. In Section 3, the
proposed splitting algorithm and error bounds of the component methods are discussed. In
Section 4, numerical results are reported and in Section 5, brief conclusions of the work
are included.

2. QUADRATURE RULES

Some quadrature rules are discussed in this section.

2.1. Meshless collocation procedure. To compute highly oscillatory integrals of the form
(1. 1 ) with no critical point by Levin’s procedure, we find an approximate function S̃(x)
that satisfies the ODE:

S′(x) + iω g′(x)S(x) = f(x). (2. 2)

Substituting (2. 2 ) into (1. 1 ), we get

I[f ] =

∫ b

a

[S̃′(x) + iωg′(x)S̃(x)]eiωg(x)dx

=

∫ b

a

d[S̃(x)eiωg(x)]

= S̃(b)eiωg(b) − S̃(a)eiωg(a).

(2. 3)

In this procedure, we assume that S̃(x) =
∑m
k=1 δkϕ(r, ε) be an approximate solution of

the ODE (2. 2 ). The unknown coefficients δk, k = 1, 2, ...m can be determined by the
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following interpolation condition

S̃′(xj) + iω g′(xj)S̃(xj) = f(xj), j = 1, 2, ...,m. (2. 4)

Equation (2. 4 ) gives a system of m-linear equations in m-unknowns and can be written
in matrix notation as

Aδ = f ,

where
δ = [δ1, δ2, ..., δm]

>
, f = [f1, f2, ..., fm]

>
,

and A is an m×m square matrix with entries:

ajk = ϕ
′

jk(r, ε) + iω g(xk)ϕjk(r, ε), j, k = 1, 2, ...m.

To find the values of δ, system of linear equations (2. 4 ) can be solved by LU-factorization
or Gauss-elimination method and consequently, one can find the approximate solution
S̃(x).

In the proposed work, a Gaussian RBF ϕ(r, ε) is used as a basis function, which is
defined as

ϕ(r, ε) = e
−r2

ε2 , r = |x− xc|,
where xc are m-centers of the RBF interpolation and ε is the shape parameter. The deriva-
tive of ϕ(r, ε) is given by

ϕ
′
(r, ε) =

−2r
ε2

e−
r2

ε2 .

The approximate solution by the meshless procedure given in (2. 3 ) is denoted byQMM
G [f ],

which depends on selecting an optimal value of the shape parameter ε. An algorithm [17]
is used in the current work for finding ε.

2.2. Hybrid and Haar functions. In this section, some formulae for multi-resolution
quadratures are discussed. The detail description and derivations of the formulae for multi-
resolution quadratures based on hybrid functions QHF [f ] and Haar wavelets QHW [f ] are
discussed in [18, 3].

Formula of QHF [f ] of order 8 for evaluating integrals of the form I[f ] =
∫ b
a
f(x) dx

is given by

QHF [f ] =
8 h

1935360

n∑
k=1

[
295627 f

(
a+

h

2
(16k − 15)

)
+ 71329 f

(
a+

h

2
(16k − 13)

)
+ 471771 f

(
a+

h

2
(16k − 11)

)
+ 128953 f

(
a+

h

2
(16k − 9)

)
+ 128953 f

(
a+

h

2
(16k − 7)

)
+ 471771 f

(
a+

h

2
(16k − 5)

)
+ 71329 f

(
a+

h

2
(16k − 3)

)
+ 295627 f

(
a+

h

2
(16k − 1)

)]
. (2. 5)

The truncation error of QHF [f ] for a = 0, b = 1 and N = 4, is given by

|E| = 3194621× h9
14515200

f (8)(ς),

where ς ∈ (a, b).
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Also, formula of QHW [f ] for computing integral of the form I[f ] =
∫ b
a
f(x) dx is

given as

QHW [f ] =
b− a
2M

N∑
i=1

f

(
a+

b− a
2M

(i− 0.5)

)
, (2. 6)

where N = 2M .
Truncation error of the quadrature rule QHW [f ] is given by

|E| = h3

6
f
′′
(η),

for some η ∈ (a, b).

3. SPLITTING ALGORITHM AND ERROR BOUNDS

As discussed earlier that the meshless collocation method QMM
G [f ] fails to evaluate

highly oscillatory integrals with critical point. An interval splitting procedure is proposed
for evaluation of HOIs with critical points.

3.1. Splitting algorithm. According to this procedure, the domain is subdivided in order
to isolate the critical point. For this purpose, we define a splitting parameter ξ in terms of
frequency ω as

ξ =

(
N

10ω

) 1
κ

, (3. 7)

where a < ξ < b, ξ → 0 as ω → ∞, for fixed N , and κ is the order of critical point.
If x = a is a unique critical point that lies at the lower end of the domain interval i.e.
g′(a) = 0, then integral (1. 1 ) can be written in split form as

I[f ] =

∫ a+ξ

a

f(x) eiωg(x)dx+

∫ b

a+ξ

f(x) eiωg(x)dx

= Ic[f ] + Inc[f ].

The integral Ic[f ] contains the critical point and is approximated by QHF [f ] or QHW [f ]
with N quadrature points and Inc[f ] having no critical point is computed by QMM

G [f ] for
m equal subintervals. The resulting value of (1. 1 ) is given as

i. If Ic[f ] is evaluated by the hybrid function of order 8, then compute

Qξ[f ] = QHF [f ] +QMM
G [f ].

ii. If Haar wavelets based quadrature is used for Ic[f ], then compute

Qη[f ] = QHW [f ] +QMM
G [f ].

iii. When the critical point x = x0 ∈ [a, b] lies in the middle of the integration domain,
then integral (1. 1 ) can be split at x = ξ as

I[f ] =

∫ x0−ξ

a

f(x)eiωg(x)dx+

∫ x0+ξ

x0−ξ
f(x)eiωg(x)dx+

∫ b

x0+ξ

f(x)eiωg(x)dx

= I1[f ] + I2[f ] + I3[f ],
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where ξ is the splitting parameter satisfying (3. 7 ). The integral I2[f ] contains the critical
point x0 ∈ [x0 − ξ, x0 + ξ] and is approximated by the QHF [f ]. The remaining integrals
are computed by the meshless procedure QMM

G [f ].

3.2. Error bounds. Some error bounds of the individual methods in terms of ω are ob-
tained to ensure the asymptotic convergence rate of the new algorithm.

Lemma 3.3. Suppose that the oscillator g has a critical point at x = a of order (κ − 1).
Let ξ satisfy 10Mξ ω = N for large ω, where Mξ = maxx ∈ [a,ξ]|g(x)− g(a)|. Then the
error bound for computing Ic[f ] by the QHF [f ] for N quadrature points, is given by

Ec = |Ic[f ]−QHF[f]| ≤
C(ξ − a)
4.54× 108

=
C(( N

10 ω )
1/κ − a)

4.54× 108
, ω � 1,

where the constant C is independent of ξ and ω.

Proof. See [20]. �

Lemma 3.4. Suppose that the function g(x) has a critical point at x = a of order (κ− 1).
For ξ = ( N

10ω )
1/κ and δ = minx∈ [ξ , b] |g′(x)|, the error bound of the meshless procedure

for computing Inc, is given by
(1) For ξ < x1 < x2 < ... < xm = b, we have

Enc = |Inc[f ]−QMM
G [f]| = O

(
(b− ξ)m
(ω)1/κ

)
, ω � 1.

(2) For a < x1 < x2 < ... < xm = b, i.e. the end points of the interval are included,
then

Enc = |Inc[f ]−QMM
G [f]| = O

(
(b− x1)m−1

ω2

)
, ω � 1.

Proof. See [20]. �

According to the splitting procedure, integral (1. 1 ) can be written in split form as

I[f ] = Ic[f ] + Inc[f ].

Integral Ic[f ] is computed by the hybrid function and Inc[f ] is computed by the meshless
procedure. The resulting value of the integral is given by

Qξ[f ] = QHF [f ] +QMM
G [f ].

The error bound of the splitting method Qξ[f ] depends upon the two methods QHF [f ] and
QMM
G [f ].

Combining the results of Theorems 1 and 2, the error bound of the splitting procedure
Qξ[f ] is given as

|Error| = |I[f ]−Qξ[f ]| ≤ min

(
C(( N0

10ω )
1/κ − a)

4.54× 108
,
(b− x1)m−1

ω2

)
. (3. 8)
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TABLE 2. Labs produced by QMM
G [f ], ε ∈ [0, 0.5] for test problem 4.1.

ω m = 10 m = 20 m = 30
105 6.6078e− 09 4.4537e− 10 2.2092e− 10
106 2.1118e− 11 1.4378e− 10 4.0540e− 09
107 6.2537e− 13 5.0288e− 10 1.9846e− 10
108 5.9605e− 14 7.8408e− 11 4.0268e− 12
109 1.1187e− 15 1.2355e− 12 4.7708e− 13
1010 2.6504e− 16 8.0227e− 14 5.4330e− 14

Equation (3. 8 ) shows that the method Qξ[f ] attains asymptotic order of convergence
O(ω−2).

4. NUMERICAL EXAMPLES AND DISCUSSION

In this section, the proposed methods are tested on some benchmark test problems re-
ported in [25, 28, 27, 22]. The reference solution is obtained by MAPLE 15. The ab-
solute errors Labs, relative errors Lre and absolute scaled errors are computed in each
test problem. Results of the new methods are compared with the results of the methods
[25, 28, 27, 22]. Computation is performed by using MATLAB platform.

Example 4.1. Consider the computation of integral [25]:

I1[f ] =

∫ 1

0

e10xeiω(x
2+x)dx. (4. 9)

The integral is highly oscillatory and is evaluated by the new methodsQMM
G [f ],QHW [f ]

and QHF [f ]. Results in terms of absolute errors are shown in figures 1-2 and table 2. In
figure 1, the absolute errors scaled by ω3 of QMM

G [f ] and its comparison with the results
of [25] is shown. From figure 1, it is clear that the performance of the method QMM

G [f ]
is better than the method [25]. The meshless procedure QMM

G [f ] is tested for higher fre-
quencies and nodes. The results are shown in table 2. It is clear from the table that as we
increase the value of ω or nodal points, accuracy of the method is improving.

Integral (4. 9 ) is evaluated by the proposed methods QMM
G [f ], QHW [f ] and QHF [f ]

for varying frequency and fixed nodes. The absolute errors are shown in figure 2 (left),
while in figure 2 (right), fixed the frequency and varying nodal points. It is shown in the
figures that the method QMM

G [f ] gives better accuracy than all the other methods. The
main advantage of the new method QMM

G [f ] is that it improves the accuracy on increasing
values of the ω for small nodal points.

Example 4.2. Consider the numerical evaluation of integral [27]:

I2[f ] =

∫ 1

0

cosxeiω(x
2+x)dx. (4. 10)

The integral (4. 10 ) is highly oscillatory and the oscillations of the integrand are shown
in figure 9 (left). The integral is computed by the proposed methods QMM

G [f ], QHF [f ]
and QHW [f ]. Absolute errors are shown in figures 3-4. The absolute errors scaled by ω4
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FIGURE 1. (left) Labs scaled by ω3 of QMM
G [f ] for m = 30, (right)

Labs scaled by ω3 of the Filon method (top) and Levin method (bottom)
[25] for test problem 4.1.
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FIGURE 2. (left) Labs of the proposed methods form = 30, (right) Labs
of the proposed methods, ω = 104 for test problem 4.1.

of QMM
G [f ] are calculated and are shown in figure 3. Comparison of the proposed methods

with the results of method reported in [27] is performed. From figure 3, it is clear that the
proposed method QMM

G [f ] is more accurate than all the other methods.
Integral (4. 10 ) is evaluated by the proposed methods QMM

G [f ], QHW [f ] and QHF [f ]
for varying frequency and fixed nodes . The results are given in figure 4 (left). In figure 4
(right), the frequency is fixed and nodal points are variable. It is clear from figures 3 and 4
that the new method QMM

G [f ] is accurate than all the other methods. The main advantage
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of the new method QMM
G [f ] is that it improve the accuracy on increasing the value of ω

for small nodal points. From figure 3 (left), it is confirmed that the new method QMM
G [f ]

attains an asymptotic order of convergence O(ω−4).
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FIGURE 3. (left) Labs scaled by ω4 of QMM
G [f ] for m = 30, (right)

Labs scaled by ω3 of the method reported in [27] for test problem 4.2.
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FIGURE 4. (left) Labs of the proposed methods, m = 30,(right) Labs of
the proposed methods, ω = 105 for test problem 4.2.

Example 4.3. Consider the following integral [28]:

I3[f ] =

∫ 1

0

eiωx
2

dx. (4. 11)
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The integral (4. 11 ) has a critical point at a = 0. Irregular oscillations of the integrand
are shown in figure 6 (right). Integral (4. 11 ) is approximated by the proposed splitting
algorithm. Results are shown in figures 5-6. The results obtained by the new splitting
method for fixed nodal points are shown in figure 5 (left), while comparison of the method
reported in [28] is shown in figure 5 (right). From the figure, it is clear that the proposed
procedure is relatively better than the method reported in [28].

The integral is evaluated by QMM
G [f ] for larger values of ω. Results in terms of scaled

absolute errors are shown in figure 6 (left). From the figure it is clear that the new method
attains asymptotic convergence O(ω−3).
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FIGURE 5. (left) Labs produced by Qξ[f ] for m = 30, (right) Labs of
method reported in [28] for test problem 4.3.

Example 4.4. Consider the following integral [22]:

I4[f ] =

∫ 1

−1
(x2 + x) eiω

√
1+(x+1)2 dx (4. 12)

The integrand has a critical point at the lower end point x = −1. Irregular oscillations of
the integrand is shown in figure 9 (right). The integral is approximated by the new splitting
procedure Qξ[f ]. Results in the form of relative errors are shown in figures 7-8. Accuracy
obtained by the new splitting method for fixed frequency is shown in figure 7 (left), while
comparison with the method [22] is shown in figure 7 (right). In figure 7, it is shown that
the relative errors of Qξ[f ] are decreased up to O(10−9), while in [22] it is decreased up
to O(10−6). The results obtained by the new splitting method for varying frequency and
fixed nodes, are shown in figure 8 (left), while the results for varying nodal points and
fixed frequency are given in figure 8 (right). It is obvious from the figure that the proposed
splitting algorithm performs better than the methods reported in the cited literature.
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FIGURE 6. Test problem 4.3, (left)Labs scaled by ω3 form = 30, (right)
the oscillatory behavior of the integrand of I3[f ] for ω = 500.
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FIGURE 7. (left) Lre produced by Qξ[f ] for ω = 100, (right) Lre of
method reported in [22] for test problem 4.4.

Example 4.5. Consider the computation of integral [15]:

I5[f ] =

∫ 1

0

eiωx

1 + x
dx. (4. 13)

The integral is highly oscillatory and is evaluated by the new methodQMM
G [f ]. Absolute

errors scaled by ω3 are computed and are shown in figure 10 (left). The results of the new
methods are compared with the results of Filon method [15]. It is shown in the figure
that our method gives O(10−4), while the Filon method gives O(1.8 × 100) for the same



116 Sakhi Zaman, Suleman and Siraj-ul-Islam

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−9

10
−8

10
−7

ω

L
r
e

Qξ[f ] real

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

N

L
r
e

Qξ[f ] real

FIGURE 8. (left) Lre produced by Qξ[f ] for m = 30, (right) Lre pro-
duced by Qξ[f ], ω = 1000 for test problem 4.4.
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FIGURE 9. Oscillatory behavior of the integrand of (left) I2[f ] for ω =
100 (right) I4[f ] for ω = 500.

frequency. This shows that the results of the proposed method are more accurate than the
method reported in [15].

5. CONCLUSION

In this paper, three methodsQMM
G [f ], QHF [f ] andQHW [f ] are applied to approximate

HOIs without critical point(s). It has been shown that the method QMM
G [f ] gives better

accuracy than all the other quadrature rules. Secondly, the new splitting technique Qξ[f ] is
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G [f ] for m = 30, (right)

Labs scaled by ω3 of the method in [15] for test problem 4.5.
x

applied for numerical evaluation of HOIs with critical point(s), which unifies the QMM
G [f ]

and multi-resolution analysis. This technique attains high asymptotic order of convergence.
Numerical examples verified better performance of the proposed methods. The technique
is extended to integrable singular integrals like Cauchy principal value integrals with oscil-
latory kernels. The work is under review.
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