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Abstract. The goal of this study is to extend the applicability of
a homotopy method for locating an approximate zero using New-
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1 Introduction

The convergence region and error analysis of iterative methods are very pes-
simistic in general for both the semi-local and local case [1–5, 11–16]. The
aim of the paper is to extend the convergence region using the homotopy
method. This goal is achieved using the same Lipschitz-type functions as be-
fore [4,6–10,13]. We achieve this goal, since we find a more precise location for
the Newton iterates leading to at least as tight Lipschitz-type functions [4,6,7].
Let F : D ⊂ B1 −→ B2 be differentiable in the sense of Fréchet, D be a convex
and open subset of B1 and B1,B2 be Banach spaces.

Let F ′ is one-to-one and onto, we introduce the Newton operator

NF (x) := x− F ′(x)−1F (x) (1.1)
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and the corresponding Newton iteration

xn+1 = NF (xn) for all n = 0, 1, 2, . . . (1.2)

where x0 ∈ D is an initial point. We are concerned with the problem of approx-
imating a regular (to be precised in Section 2) solution w of

F (x) = 0 (1.3)

utilizing a homotopy method of the form

H(x, t) := F (x)− tF (x0) (1.4)

where x0 ∈ D is a given initial point and t ∈ [0, 1]. Clearly this is a geometrical
way of solving equation (1.3). Consider the line segment M = {tF (x0) : t ∈
[0, 1]} and the set F−1(M). Suppose that F ′(x0) is one-to-one and onto. Then,
it follows by the implicit function theorem applied in a neighbourhood of x0 that
there exists a curve x(t) solving the equation F (x(t)) = tF (x0) for t ∈ [1− ε, 1]
and ε > 0. This curve solves the initial value problem (IVP)

ẋ(t) = −DF (x(t))−1F (x0), x(1) = x0. (1.5)

It is well known that (1.5) has no solution on [0, 1], in general. But if it has a
solution, one must follow x(t) (numerically), which is given by H(x(t), t) = 0
using the operator related to H(., t). That is consider the sequence {sn} given
by s0 = 1 > s1 > . . . > sn > . . . > 0 such that

xn+1 = NH(.,sn+1)(xk)

is an approximate zero of x(sn+1), with

H(x(sn+1), sn+1) = 0.

A convergence analysis of Newton sequence {xn} was given in the elegant
work by Guttierrez et al. [10]. Here, we improve their results as already men-
tioned previously.

The study is structured as: The convergence of Newton’s method is presented
in Section 2 whereas Section 3 contains the special cases. Finally, in Section 4,
we present the numerical examples.

1 Convergence Analysis

We need the Definition of an approximate zero.

Definition 1.1 [14] A G−regular ball is open so that G′(x) is one-to-one and
onto. A point x0 is a regular approximate zero of G, provided there exists a ball
G−regular containing a zero w of G and a sequence {xn} converging to w.
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Let L0, L̄, L : [0, +∞) −→ [0,+∞) be continuous and non-decreasing functions.
These functions are needed for the introduction of the Lipschitz conditions that
follow (see (1.7), (1.9) and (1.11)). We shall also suppose that there exists
z ∈ D so G′(z) is continuous, one-to-one, onto and G′(z)−1 exists. We need to
introduce the following two Lipschitz conditions that follow.

Definition 1.2 The function G′(z)−1G′ is L0− center Lipschitz at z if there
exist positive quantities v0 and

γ0 := γ0(G, z) (1.6)

satisfying for a ∈ D, γ0(‖a− z‖) ≤ v0

‖G′(z)−1(G′(a)−G′(z))‖ ≤
∫ γ0‖a−z‖

0

L0(τ)dτ. (1.7)

Definition 1.3 The function G′(z)−1G′ is L̄−center Lipschitz restricted at z,
if there exist positive quantities v̄ and

γ̄ := γ̄(G, z) (1.8)

satisfying for a, b ∈ D0 := D ∩ Ū(z, v̄
γ̄ )

γ̄(‖a− z‖+ τ‖a− b‖) ≤ v̄

and

‖G′(z)−1(G′((1− τ)a + τb)−G′(a))‖ ≤
∫ γ̄(‖a−z‖+τ‖b−a‖)

γ̄‖a−z‖
L̄(τ)dτ (1.9)

for all τ ∈ [0, 1].

Definition 1.4 [10] The function G′(y0)−1G′ is L−center Lipschitz at z if
there exist positive quantities v and

γ := γ(G, z) (1.10)

satisfying for a, b ∈ D
γ(‖a− z‖+ τ‖a− b‖) ≤ v

and

‖G′(z)−1(G′((1− τ)a + τb)−G′(a))‖ ≤
∫ γ(‖a−z‖+τ‖b−a‖)

γ‖a−z‖
L(τ)dτ (1.11)

for each τ ∈ [0, 1].

REMARK 1.5 Notice that (1.11) implies (1.7) and (1.9). We can certainly
take v0 = v = v̄, L0(τ) = L(τ) = L̄(τ) for each τ ≥ 0, so for all τ ∈ [0, v]

γ0(τ) ≤ γ(τ) (1.12)

and
γ̄(τ) ≤ γ(τ), (1.13)

since D0 ⊂ D.
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In what follows we shall assume that

γ0(τ) ≤ γ̄(τ). (1.14)

If instead of (1.14)
γ̄(τ) ≤ γ0(τ), (1.15)

holds then the following results are true with L̄ replacing L0 in all of them.

LEMMA 1.6 Suppose that v0 is the least positive number such that
∫ v0

0

L0(τ)dτ = 1. (1.16)

Then F ′(x) is one-to-one, onto and

‖F ′(x)−1F ′(z)‖ ≤
(

1−
∫ γ0‖x−z‖

0

L0(τ)dτ

)−1

for all x ∈ U(z,
v0

γ0
). (1.17)

The set U(z, v0
γ0

) is called the γ0−ball of z. We define similarly, the γ̄ and γ−
balls. As in [10], we assume the existence of ϕ̄ : [0, v̄) −→ [0, +∞) satisfying
ϕ̄(0) = 1, where

γ̄(F, x) = ϕ̄(γ̄(F, z)‖x− z‖)γ̄ for each x in U(z,
v̄

γ̄
). (1.18)

Moreover, for b = b(F, z) := ‖F ′(z)−1F (z)‖ we set

ᾱ := ᾱ(F, z) := γ̄b̄. (1.19)

By simply using (1.17) instead of the less precise estimate (since γ0(τ) ≤ γ(τ))

‖F ′(x)−1F ′(x0)‖ ≤
(

1−
∫ γ0‖x−x0‖

0

L(τ)dτ

)−1

for all x ∈ U(x0,
v

γ
). (1.20)

as well as γ̄, v̄ instead of γ, v, respectively, we can reproduce the proofs of the
results of [10] in this setting.

The following result improves Theorem 1 in [10] which in turn generalizes
the corresponding result by Meyer [13].

THEOREM 1.7 Suppose: F ′(x0)−1F is L̄− and L0− Lipschitz restricted at
x0 ∈ D;

ᾱ(F, x0) ≤
∫ v̄

0

L̄(τ)τdτ (1.21)

and
Ū(x0, v̄) ⊆ D, (1.22)

where ᾱ is given by (1.19) and v̄ is the smallest positive number such that
∫ v̄

0

L̄(τ)dτ = 1. (1.23)
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Then, the solution of the IVP (1.5) exists in U(x0,
v1
γ̄ ) for each t ∈ [0, 1], where

v̄1 is the first positive root of gā(t) less than or equal to uL̄/c̄ where gā(t) =
ā− t +

∫ t

0
L̄(τ)(t− τ)dτ. Therefore, x(0) is a solution of equation (1.3).

Condition (1.21) is the usual Newton-Kantorovich type criterion [2, 3, 15].

REMARK 1.8 If L0(s) ≥ L̄(s) for all s ∈ [0, v̄], then the results of Theorem
1.7 hold with L̄ replacing L.

The Theorem 1.7 does not apply, if ᾱ >
∫ v̄

0
L̄(s)ds. That is why as in [10], we

suppose that the solution of the IVP (1.5) is inside the γ̄−ball of x0. Then, we
ask: How many k−steps are needed to approximate the zero xk of F = h(., 0)?

THEOREM 1.9 Let x0 be an element of the γ̄−ball of z. Set v∗ = γ̄‖x0 − z‖
for 0 ≤ u < v̄, where v̄ satisfies (1.23). Define function q̄ on [0, v̄] by

q̄(t) =

∫ t

0
L̄(τ)dτ

t(1− ∫ t

0
L0(τ)dτ)

. (1.24)

Let uL̄ be such that
q̄(uL̄) = 1. (1.25)

Let c̄ ≥ 1 and define function gā on [0, v̄] by

gā(t) = ā− t +
∫ t

0

L̄(τ)(t− τ)dτ, (1.26)

so that

min{uL̄/c̄ −
∫ uL̄/c̄

0

L̄(τ)(uL̄/c̄ − τ)dτ,

∫ v̄

0

L̄(τ)τdτ} ≥ ā (1.27)

with the smallest positive solution of equation gā(t) = 0 is not exceeding uL̄/c̄.
Set

p =
ϕ̄(u)(ᾱ +

∫ v∗

0
L̄(τ)(v∗ − τ)dτ + v∗)

(1− ∫ uL̄/c̄

0
L0(τ)dτ)(1− ∫ u

0
L0(τ)dτ)

q =

∫ uL̄/c̄

0
L̄(τ)(uL̄/c̄ − τ)dτ + uL̄/c̄

1− ∫ uL̄/c̄

0
L0(τ)dτ

,

where ϕ̄ is given in (1.18). Moreover, suppose x(t) is the solution of the IVP is
inside the γ̄−ball of z. Let us also define sequence {sn} by

s0 = 1, sn > 0, sn−1 − sn > sn − sn+1 > 0, n ≥ 0, lim
n−→+∞

sn = 0, (1.28)

where

s1 = 1− 1− ∫ u

0
L0(τ)dτ

ϕ̄(u)(ᾱ +
∫ v∗

0
L̄(τ)(v∗ − τ)dτ + v∗)

.

Set wn such that F (wn) = snF (x0). Then, the following assertions hold:
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(i) Points wn and wn+1, are such that

γ̄ϕ(u)‖wn+1 − wn‖ ≤ ā.

(ii) Newton sequence {xn} generated by (1.28) and wn are such that

γ̄ϕ(v∗)‖xn − wn‖ ≤ uL̄/c̄.

(iii) Set N̄ =
R v̄
0 L̄(τ)τdτ−q

p . The steps n required for xn to be an approximate
zero of wn exceeds or is equal to

[
1− N̄

1− s1

]
, if sn := max{0, 1− n(1− s1)},

[
logN̄

logs1

]
, if sn := sn

1

[
log2

(
logN̄

logs1
+ 1

)]
, if sn := s2k−1

1 .

‖xn − w̄‖ ≤ q̄(ū)2
n−1‖x0 − w̄‖,

where ū = γ(F, w̄)‖x0 − w̄‖ < uL̄ and q̄ is given in (1.24).

REMARK 1.10 If L = L0 = L̄, γ0 = γ = γ̄, then the preceding items coincide
with the ones in [10]. But , if (1.12) or (1.8) hold as strict inequalities, then the
new results constitute an improvement over the ones in [10]. These improve-
ments are deduced using the same effort as in [10], because finding function L
requires finding functions L0 and L̄. If L0 > L̄, then, the preceding results hold
with L̄ replacing L0.

2 Special Cases

We consider specializations of the preceding results in the general (Kantorovich)
case L̄(s) = 1 and the analytic case L̄(s) = 2

(1−s)3 , respectively. Examples,
where (1.14) and (1.15) hold as strict inequalities in the Kantorovich case can
be found in [2,3] whereas the examples in the analytic case can be found in [4].
To avoid repetitions, we refer the reader to [10], where α(F, x0), ϕ, v,N,L are
replaced by ᾱ(F, x0), ϕ̄, u, N̄ L̄, respectively.

Next, we present the α and γ Theorems improving the works in [10] which
in turn improved the works by X. Wang [16] and Traub and Wozniakowski [15],
respectively.

THEOREM 2.1 Suppose: F ′(x0)−1F is L̄ and L0− center-Lipschitz restricted
at x0;

ᾱ(F, x0) ≤
∫ v̄

0

L̄(τ)τdτ,
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where v̄ is given in (1.23). Specialize function ḡα(F,x0) by

ḡᾱ(F,x0)(t) := ḡ(t) = ᾱ(F, x0)− t +
∫ t

0

L̄(τ)(t− τ)dτ. (2.1)

Then, the following items hold

(i) There exist ρ1, ρ2 ∈ R with ρ1 6= ρ2 such that ḡ(ρ1) = ḡ(ρ2) = 0 with ḡ
strictly convex and

ḡ(t) = (t− ρ1)(t− ρ2)ψ(t),

where

ψ(t) =
∫ 1

0

∫ 1

0

θ(L̄(1− θ) + θsρ2 + θτt)dτdθ.

and for r0 = 0, limn−→+∞ rn = limn−→+∞Nḡ(rn−1) = v̄1.

(ii) Equation F (x) = 0 has a solution w̄ which is unique in U(x0,
v̄

γ̄(F,x0)
).

(iii) Newton sequence {xn} defined by xn+1 = NF (xn) exists, stays in Ū(x0,
ρ1

γ̄(F,x0)
)

and converges to w̄, so that

‖xn − w̄‖ ≤ ‖rn − ρ1‖

(iv) If ḡ(t) ≥ ᾱ(F,x0)
ρ1ρ2

, then

‖xn − w̄‖ ≤ 1
γ̄(F, x0)zn

(
ρ1

ρ2

)2n−1

ρ1.

THEOREM 2.2 Suppose:

(i) w̄ solves F (x) = 0 and is a regular solution:

(ii) F ′(w̄)−1F ′(w̄) is L̄ and L0 center Lipschitz restricted for all x ∈ U(w̄, v̄
γ̄(F,w̄) ).

Then, Newton sequence {xn} generated by x0 = x, xn+1 = NF (xn) con-
verges to w̄ for all x ∈ U(w̄, uL̄

γ̄(F,w̄) ), where uL̄ is given in (1.25). More-
over, we have the following:

‖xn − w̄‖ ≤ q̄(ū)2
n−1‖x0 − w̄‖.

REMARK 2.3 If L0 = L = L̄, γ0 = γ = γ̄, the two preceding results reduce to
Theorem 3 and Theorem 4 in [10], respectively, i.e., if (1.14) or (1.15) hold as
strict inequalities, then the earlier results are improved (see also the numerical
examples).
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3 Numerical examples

We provide two examples for the Kantorovich case, where function has no pos-
itive roots. Hence the older results can not apply, but function ḡ has roots, so
the new results apply to solve equations.

EXAMPLE 3.1 Let B1 = B2 = R, x0 = 1, D = {x : |x−x0| ≤ λ}, λ ∈ [0, 1/2)
and F defined by

F (x) = x3 − λ. (3.2)

Then, for L0(τ) = L(τ) = L̄(τ) = 1, v0 = v̄ = v = 1, we have

b̄ = b =
1− λ

3
, γ0(τ) = 3− λ, γ(τ) = 2(2− λ) and γ̄(τ) = 2(1 +

1
3− λ

).

Notice that
γ0 < γ < γ̄.

The functions g and ḡ are then given, respectively by

g(t) =
t2

2
− t +

2
3
(1− λ)(2− λ)

and

ḡ(t) =
t2

2
− t +

2
3
(1− λ)(1 +

1
3− λ

).

The Newton-Kantorovich condition (i.e., the discriminant dg of g) is given by

dg = 1− 4
3
(1− λ)(2− λ) < 0 for each λ ∈ [0, 1/2) (3.3)

so function g has not positive roots. However, function ḡ has positive roots,
since the discriminant

dḡ = 1− 4
3
(1− λ)(1 +

1
3− λ

) > 0 for each λ ∈ I = [0.4619832, 1/2). (3.4)

Therefore, our Theorem 2.1 can be used to solve equation F (x) = 0 for all λ ∈ I.

EXAMPLE 3.2 Let B1 = B2 = C[0, 1]. Let D = {x ∈ B1 : ‖x‖ ≤ R} for
R > 0. Define F on D by

F (x)(s) = x(s)− f(s)− δ

∫ 1

0

K(s, t)x(t)3dt, x ∈ B1, s ∈ [0, 1], (3.5)

where f ∈ B1 is a fixed function and λ is given by

K(s, t) =
{

(1− s)t, if t ≤ s,
s(1− t), if s ≤ t.



Cyclic Vector of the Weighted Mean Matrix Operator 9

Then, for each x ∈ D, F ′(x) is given by

[F ′(x)(v)](s) = v(s)− 3δ

∫ 1

0

K(s, t)x(t)2v(t)dt, v ∈ X, s ∈ [0, 1].

Set x0(s) = f(s) = 1. Then, we have ‖I−F ′(x0)‖ ≤ 3|δ|/8 if |δ| < 8/3, then
F ′(x0)−1 exists and

‖F ′(x0)−1‖ ≤ 8
8− 3|δ| .

Moreover,

‖F (x0)‖ ≤ |δ|
8

,

so

b = ‖F ′(x0)−1F (x0)‖ ≤ |δ|
8− 3|δ| .

Furthermore, for x, y ∈ D, we have

‖F ′(x)− F ′(y)‖ ≤ 1 + 3|δ|‖x + y‖
8

‖x− y‖ ≤ 1 + 6R|δ|
8

‖x− y‖

and

‖F ′(x)− F ′(1)‖ ≤ 1 + 3|δ|(‖x‖+ 1)
8

‖x− 1‖ ≤ 1 + 3|δ|(1 + R)
8

‖x− 1‖.

Let δ = 1.175 and R = 2, we have b = 0.26257..., γ̄(τ) = 2.76875..., γ0(τ) =
1.8875... and γ(τ) = 1.47314..., v0 = v̄ = v = 1. Using these values, we get that
the discriminant dg of g is

dg = 1− 1.02688 < 0,

but the discriminant dḡ of ḡ is

dḡ = 1− 0.986217 > 0.

Hence, limn−→∞ xn = x∗ by Theorem 2.1, where x∗ is a solution of equation
F (x)(s) = 0, where F is given by (3.5).

References

[1] E. L. Allgower and K. George, Numerical continuation methods, 33,
Springer, Berlin 1990.

[2] I. K. Argyros, Computational theory of iterative methods. Series: Studies
in Computational Mathematics, 15, Editors: C. K. Chui and L. Wuytack,
Elsevier Publ. Co. New York, U. S. A, 2007.

[3] I. K. Argyros and S. Hilout, Weaker conditions for the convergence of New-
ton’s method, J. Complexity, 28, (2012) 364–387.



Cyclic Vector of the Weighted Mean Matrix Operator 10

[4] I. K. Argyros and S. George, Extending the applicability of Newton’s method
using Wang’s– Smale’s α-theory, Carpathian Journal of Mathematics, 33,
No. 1 (2017) 27-33.

[5] I. K. Argyros and S. George, Expanding the Convergence Domain of New-
tonlike Methods and Applications in Banach Space, Punjab Univ. J. Math.
Vol. 47, No. 1 (2015) 1-13

[6] C. Beltran and A. Leykin, Certified numerical homotopy tracking, Exp.
Math. 21, No. 1 (2012) 69–83.

[7] A. Cauchy, Sur la determination approximative des racines d’une equa-
tion algebrique on transcendante In:Lecons sur le Calcul Differentiel, Bure
freres, Paris, (1829) 573–609.

[8] J. P. Dedieu, G. Malajovich and M. Shub, Adaptive step-size selection for
homotopy methods to solve polynomial equations, IMA J. Numer. Anal. 33,
No. 1 (2013) 1-29.

[9] J. B. J Fourier, Analyse des equations determincees, Firmin Didot, Paris 1,
(1831).
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