Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(2)(2018) pp. 1-10

Improved Complexity of a Homotopy Method for Locating an Approximate Zero

Ioannis K. Argyros Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA. Email: iargyros@cameron.edu

Santhosh George Department of Mathematical and Computational Sciences, NIT Karnataka, 575025-India. Email:sgeorge@nitk.ac.in

Received: 25 August, 2017 / Accepted: 21 November, 2017 / Published online: 18 January, 2018

Abstract. The goal of this study is to extend the applicability of a homotopy method for locating an approximate zero using Newton's method. The improvements are obtained using more precise Lipschitz-type functions than in earlier works and our new idea of restricted convergence regions. Moreover, these improvements are found under the same computational effort.

AMS Subject Classifications: 65G99, 65H10, 47H17, 49M15, **Key words:** Approximate zero, Banach space, Homotopy method, Newton's method, local, semi-local convergence, Lipschitz-type conditions.

1 Introduction

The convergence region and error analysis of iterative methods are very pessimistic in general for both the semi-local and local case [1–5, 11–16]. The aim of the paper is to extend the convergence region using the homotopy method. This goal is achieved using the same Lipschitz-type functions as before [4, 6–10, 13]. We achieve this goal, since we find a more precise location for the Newton iterates leading to at least as tight Lipschitz-type functions [4, 6, 7]. Let $F: D \subset \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be differentiable in the sense of Fréchet, D be a convex and open subset of \mathcal{B}_1 and $\mathcal{B}_1, \mathcal{B}_2$ be Banach spaces.

Let F' is one-to-one and onto, we introduce the Newton operator

$$N_F(x) := x - F'(x)^{-1}F(x)$$
(1.1)

and the corresponding Newton iteration

$$x_{n+1} = N_F(x_n)$$
 for all $n = 0, 1, 2, \dots$ (1.2)

where $x_0 \in D$ is an initial point. We are concerned with the problem of approximating a regular (to be precised in Section 2) solution w of

$$F(x) = 0 \tag{1.3}$$

utilizing a homotopy method of the form

$$\mathcal{H}(x,t) := F(x) - tF(x_0) \tag{1.4}$$

where $x_0 \in D$ is a given initial point and $t \in [0, 1]$. Clearly this is a geometrical way of solving equation (1.3). Consider the line segment $M = \{tF(x_0) : t \in [0, 1]\}$ and the set $F^{-1}(M)$. Suppose that $F'(x_0)$ is one-to-one and onto. Then, it follows by the implicit function theorem applied in a neighbourhood of x_0 that there exists a curve x(t) solving the equation $F(x(t)) = tF(x_0)$ for $t \in [1 - \varepsilon, 1]$ and $\varepsilon > 0$. This curve solves the initial value problem (IVP)

$$\dot{x}(t) = -DF(x(t))^{-1}F(x_0), \ x(1) = x_0.$$
 (1.5)

It is well known that (1.5) has no solution on [0, 1], in general. But if it has a solution, one must follow x(t) (numerically), which is given by $\mathcal{H}(x(t), t) = 0$ using the operator related to $\mathcal{H}(., t)$. That is consider the sequence $\{s_n\}$ given by $s_0 = 1 > s_1 > \ldots > s_n > \ldots > 0$ such that

$$x_{n+1} = N_{\mathcal{H}(.,s_{n+1})}(x_k)$$

is an approximate zero of $x(s_{n+1})$, with

$$\mathcal{H}(x(s_{n+1}), s_{n+1}) = 0.$$

A convergence analysis of Newton sequence $\{x_n\}$ was given in the elegant work by Guttierrez et al. [10]. Here, we improve their results as already mentioned previously.

The study is structured as: The convergence of Newton's method is presented in Section 2 whereas Section 3 contains the special cases. Finally, in Section 4, we present the numerical examples.

1 Convergence Analysis

We need the Definition of an approximate zero.

Definition 1.1 [14] A G-regular ball is open so that G'(x) is one-to-one and onto. A point x_0 is a regular approximate zero of G, provided there exists a ball G-regular containing a zero w of G and a sequence $\{x_n\}$ converging to w.

Let $L_0, \overline{L}, L: [0, +\infty) \longrightarrow [0, +\infty)$ be continuous and non-decreasing functions. These functions are needed for the introduction of the Lipschitz conditions that follow (see (1.7), (1.9) and (1.11)). We shall also suppose that there exists $z \in D$ so G'(z) is continuous, one-to-one, onto and $G'(z)^{-1}$ exists. We need to introduce the following two Lipschitz conditions that follow.

Definition 1.2 The function $G'(z)^{-1}G'$ is L_0- center Lipschitz at z if there exist positive quantities v_0 and

$$\gamma_0 := \gamma_0(G, z) \tag{1.6}$$

satisfying for $a \in D$, $\gamma_0(||a - z||) \le v_0$

$$\|G'(z)^{-1}(G'(a) - G'(z))\| \le \int_0^{\gamma_0 \|a - z\|} L_0(\tau) d\tau.$$
(1.7)

Definition 1.3 The function $G'(z)^{-1}G'$ is \overline{L} -center Lipschitz restricted at z, if there exist positive quantities \overline{v} and

$$\bar{\gamma} := \bar{\gamma}(G, z) \tag{1.8}$$

satisfying for $a, b \in D_0 := D \cap \overline{U}(z, \frac{\overline{v}}{\overline{\gamma}})$

$$\bar{\gamma}(\|a-z\|+\tau\|a-b\|) \le \bar{v}$$

and

$$\|G'(z)^{-1}(G'((1-\tau)a+\tau b) - G'(a))\| \le \int_{\bar{\gamma}\|a-z\|}^{\bar{\gamma}(\|a-z\|+\tau\|b-a\|)} \bar{L}(\tau)d\tau \qquad (1.9)$$

for all $\tau \in [0, 1]$.

Definition 1.4 [10] The function $G'(y_0)^{-1}G'$ is L-center Lipschitz at z if there exist positive quantities v and

$$\gamma := \gamma(G, z) \tag{1.10}$$

satisfying for $a, b \in D$

$$\gamma(\|a - z\| + \tau \|a - b\|) \le v$$

and

$$\|G'(z)^{-1}(G'((1-\tau)a+\tau b) - G'(a))\| \le \int_{\gamma\|a-z\|}^{\gamma(\|a-z\|+\tau\|b-a\|)} L(\tau)d\tau \qquad (1.11)$$

for each $\tau \in [0,1]$.

REMARK 1.5 Notice that (1.11) implies (1.7) and (1.9). We can certainly take $v_0 = v = \bar{v}$, $L_0(\tau) = L(\tau) = \bar{L}(\tau)$ for each $\tau \ge 0$, so for all $\tau \in [0, v]$

$$\gamma_0(\tau) \le \gamma(\tau) \tag{1.12}$$

and

$$\bar{\gamma}(\tau) \le \gamma(\tau),$$
 (1.13)

since $D_0 \subset D$.

In what follows we shall assume that

$$\gamma_0(\tau) \le \bar{\gamma}(\tau). \tag{1.14}$$

If instead of (1.14)

$$\bar{\gamma}(\tau) \le \gamma_0(\tau),$$
(1.15)

holds then the following results are true with \overline{L} replacing L_0 in all of them.

LEMMA 1.6 Suppose that v_0 is the least positive number such that

$$\int_{0}^{v_0} L_0(\tau) d\tau = 1.$$
 (1.16)

Then F'(x) is one-to-one, onto and

$$\|F'(x)^{-1}F'(z)\| \le \left(1 - \int_0^{\gamma_0 \|x - z\|} L_0(\tau) d\tau\right)^{-1} \text{ for all } x \in U(z, \frac{v_0}{\gamma_0}).$$
(1.17)

The set $U(z, \frac{v_0}{\gamma_0})$ is called the γ_0 -ball of z. We define similarly, the $\bar{\gamma}$ and γ -balls. As in [10], we assume the existence of $\bar{\varphi} : [0, \bar{v}) \longrightarrow [0, +\infty)$ satisfying $\bar{\varphi}(0) = 1$, where

$$\bar{\gamma}(F,x) = \bar{\varphi}(\bar{\gamma}(F,z) \|x-z\|) \bar{\gamma} \text{ for each } x \text{ in } U(z,\frac{v}{\bar{\gamma}}).$$
(1.18)

Moreover, for $b = b(F, z) := \|F'(z)^{-1}F(z)\|$ we set

$$\bar{\alpha} := \bar{\alpha}(F, z) := \bar{\gamma}\bar{b}. \tag{1.19}$$

By simply using (1.17) instead of the less precise estimate (since $\gamma_0(\tau) \leq \gamma(\tau)$)

$$\|F'(x)^{-1}F'(x_0)\| \le \left(1 - \int_0^{\gamma_0 \|x - x_0\|} L(\tau)d\tau\right)^{-1} \text{ for all } x \in U(x_0, \frac{v}{\gamma}).$$
(1.20)

as well as $\bar{\gamma}, \bar{v}$ instead of γ, v , respectively, we can reproduce the proofs of the results of [10] in this setting.

The following result improves Theorem 1 in [10] which in turn generalizes the corresponding result by Meyer [13].

THEOREM 1.7 Suppose: $F'(x_0)^{-1}F$ is $\overline{L}-$ and L_0- Lipschitz restricted at $x_0 \in D$;

$$\bar{\alpha}(F, x_0) \le \int_0^{\bar{v}} \bar{L}(\tau) \tau d\tau \tag{1.21}$$

and

$$\bar{U}(x_0, \bar{v}) \subseteq D, \tag{1.22}$$

where $\bar{\alpha}$ is given by (1.19) and \bar{v} is the smallest positive number such that

$$\int_0^{\bar{v}} \bar{L}(\tau) d\tau = 1. \tag{1.23}$$

Then, the solution of the IVP (1.5) exists in $U(x_0, \frac{v_1}{\tilde{\gamma}})$ for each $t \in [0, 1]$, where \bar{v}_1 is the first positive root of $g_{\bar{a}}(t)$ less than or equal to $u_{\bar{L}/\bar{c}}$ where $g_{\bar{a}}(t) = \bar{a} - t + \int_0^t \bar{L}(\tau)(t-\tau)d\tau$. Therefore, x(0) is a solution of equation (1.3).

Condition (1.21) is the usual Newton-Kantorovich type criterion [2, 3, 15].

REMARK 1.8 If $L_0(s) \ge \overline{L}(s)$ for all $s \in [0, \overline{v}]$, then the results of Theorem 1.7 hold with \overline{L} replacing L.

The Theorem 1.7 does not apply, if $\bar{\alpha} > \int_0^{\bar{v}} \bar{L}(s) ds$. That is why as in [10], we suppose that the solution of the IVP (1.5) is inside the $\bar{\gamma}$ -ball of x_0 . Then, we ask: How many k-steps are needed to approximate the zero x_k of F = h(.,0)?

THEOREM 1.9 Let x_0 be an element of the $\bar{\gamma}$ -ball of z. Set $v^* = \bar{\gamma} ||x_0 - z||$ for $0 \le u < \bar{v}$, where \bar{v} satisfies (1.23). Define function \bar{q} on $[0, \bar{v}]$ by

$$\bar{q}(t) = \frac{\int_0^t \bar{L}(\tau) d\tau}{t(1 - \int_0^t L_0(\tau) d\tau)}.$$
(1.24)

Let $u_{\bar{L}}$ be such that

r

$$\bar{q}(u_{\bar{L}}) = 1.$$
 (1.25)

Let $\bar{c} \geq 1$ and define function $g_{\bar{a}}$ on $[0, \bar{v}]$ by

$$g_{\bar{a}}(t) = \bar{a} - t + \int_0^t \bar{L}(\tau)(t-\tau)d\tau, \qquad (1.26)$$

so that

$$\min\{u_{\bar{L}/\bar{c}} - \int_{0}^{u_{\bar{L}/\bar{c}}} \bar{L}(\tau)(u_{\bar{L}/\bar{c}} - \tau)d\tau, \int_{0}^{\bar{v}} \bar{L}(\tau)\tau d\tau\} \ge \bar{a}$$
(1.27)

with the smallest positive solution of equation $g_{\bar{a}}(t) = 0$ is not exceeding $u_{\bar{L}/\bar{c}}$. Set

$$p = \frac{\bar{\varphi}(u)(\bar{\alpha} + \int_{0}^{\sigma} L(\tau)(v^{*} - \tau)d\tau + v^{*})}{(1 - \int_{0}^{u_{L/\bar{c}}} L_{0}(\tau)d\tau)(1 - \int_{0}^{u} L_{0}(\tau)d\tau)}$$
$$q = \frac{\int_{0}^{u_{L/\bar{c}}} \bar{L}(\tau)(u_{\bar{L}/\bar{c}} - \tau)d\tau + u_{\bar{L}/\bar{c}}}{1 - \int_{0}^{u_{L/\bar{c}}} L_{0}(\tau)d\tau},$$

where $\bar{\varphi}$ is given in (1.18). Moreover, suppose x(t) is the solution of the IVP is inside the $\bar{\gamma}$ -ball of z. Let us also define sequence $\{s_n\}$ by

$$s_0 = 1, s_n > 0, s_{n-1} - s_n > s_n - s_{n+1} > 0, \ n \ge 0, \lim_{n \longrightarrow +\infty} s_n = 0, \qquad (1.28)$$

where

$$s_1 = 1 - \frac{1 - \int_0^u L_0(\tau) d\tau}{\bar{\varphi}(u)(\bar{\alpha} + \int_0^{v^*} \bar{L}(\tau)(v^* - \tau) d\tau + v^*)}$$

Set w_n such that $F(w_n) = s_n F(x_0)$. Then, the following assertions hold:

(i) Points w_n and w_{n+1} , are such that

$$\bar{\gamma}\varphi(u)\|w_{n+1} - w_n\| \le \bar{a}.$$

(ii) Newton sequence $\{x_n\}$ generated by (1.28) and w_n are such that

$$\bar{\gamma}\varphi(v^*)\|x_n - w_n\| \le u_{\bar{L}/\bar{c}}.$$

(iii) Set $\overline{N} = \frac{\int_0^{\overline{v}} \overline{L}(\tau) \tau d\tau - q}{p}$. The steps *n* required for x_n to be an approximate zero of w_n exceeds or is equal to

$$\begin{bmatrix} \frac{1-\bar{N}}{1-s_1} \end{bmatrix}, \text{ if } s_n := \max\{0, 1-n(1-s_1)\},$$
$$\begin{bmatrix} \frac{\log \bar{N}}{\log s_1} \end{bmatrix}, \text{ if } s_n := s_1^n$$
$$\begin{bmatrix} \log_2\left(\frac{\log \bar{N}}{\log s_1} + 1\right) \end{bmatrix}, \text{ if } s_n := s_1^{2^k-1}.$$
$$\|x_n - \bar{w}\| \le \bar{q}(\bar{u})^{2^n-1} \|x_0 - \bar{w}\|,$$

where $\bar{u} = \gamma(F, \bar{w}) \|x_0 - \bar{w}\| < u_{\bar{L}}$ and \bar{q} is given in (1.24).

REMARK 1.10 If $L = L_0 = \overline{L}$, $\gamma_0 = \gamma = \overline{\gamma}$, then the preceding items coincide with the ones in [10]. But, if (1.12) or (1.8) hold as strict inequalities, then the new results constitute an improvement over the ones in [10]. These improvements are deduced using the same effort as in [10], because finding function Lrequires finding functions L_0 and \overline{L} . If $L_0 > \overline{L}$, then, the preceding results hold with \overline{L} replacing L_0 .

2 Special Cases

We consider specializations of the preceding results in the general (Kantorovich) case $\bar{L}(s) = 1$ and the analytic case $\bar{L}(s) = \frac{2}{(1-s)^3}$, respectively. Examples, where (1.14) and (1.15) hold as strict inequalities in the Kantorovich case can be found in [2,3] whereas the examples in the analytic case can be found in [4]. To avoid repetitions, we refer the reader to [10], where $\alpha(F, x_0), \varphi, v, N, L$ are replaced by $\bar{\alpha}(F, x_0), \bar{\varphi}, u, \bar{N}, \bar{L}$, respectively.

Next, we present the α and γ Theorems improving the works in [10] which in turn improved the works by X. Wang [16] and Traub and Wozniakowski [15], respectively.

THEOREM 2.1 Suppose: $F'(x_0)^{-1}F$ is \overline{L} and L_0 – center-Lipschitz restricted at x_0 ;

$$\bar{\alpha}(F, x_0) \le \int_0^v \bar{L}(\tau) \tau d\tau,$$

where \bar{v} is given in (1.23). Specialize function $\bar{g}_{\alpha(F,x_0)}$ by

$$\bar{g}_{\bar{\alpha}(F,x_0)}(t) := \bar{g}(t) = \bar{\alpha}(F,x_0) - t + \int_0^t \bar{L}(\tau)(t-\tau)d\tau.$$
(2.1)

Then, the following items hold

(i) There exist $\rho_1, \rho_2 \in \mathbb{R}$ with $\rho_1 \neq \rho_2$ such that $\overline{g}(\rho_1) = \overline{g}(\rho_2) = 0$ with \overline{g} strictly convex and

$$\bar{g}(t) = (t - \rho_1)(t - \rho_2)\psi(t),$$

where

$$\psi(t) = \int_0^1 \int_0^1 \theta(\bar{L}(1-\theta) + \theta s \rho_2 + \theta \tau t) d\tau d\theta.$$

and for $r_0 = 0$, $\lim_{n \longrightarrow +\infty} r_n = \lim_{n \longrightarrow +\infty} N_{\bar{g}}(r_{n-1}) = \bar{v}_1.$

- (ii) Equation F(x) = 0 has a solution \overline{w} which is unique in $U(x_0, \frac{\overline{v}}{\overline{\gamma}(F, x_0)})$.
- (iii) Newton sequence $\{x_n\}$ defined by $x_{n+1} = N_F(x_n)$ exists, stays in $\overline{U}(x_0, \frac{\rho_1}{\overline{\gamma}(F, x_0)})$ and converges to \overline{w} , so that

$$||x_n - \bar{w}|| \le ||r_n - \rho_1||$$

(iv) If
$$\bar{g}(t) \ge \frac{\bar{\alpha}(F,x_0)}{\rho_1 \rho_2}$$
, then

$$||x_n - \bar{w}|| \le \frac{1}{\bar{\gamma}(F, x_0)z^n} \left(\frac{\rho_1}{\rho_2}\right)^{2^n - 1} \rho_1.$$

07 4

THEOREM 2.2 Suppose:

- (i) \bar{w} solves F(x) = 0 and is a regular solution:
- (ii) $F'(\bar{w})^{-1}F'(\bar{w})$ is \bar{L} and L_0 center Lipschitz restricted for all $x \in U(\bar{w}, \frac{\bar{v}}{\bar{\gamma}(F,\bar{w})})$. Then, Newton sequence $\{x_n\}$ generated by $x_0 = x, x_{n+1} = N_F(x_n)$ converges to \bar{w} for all $x \in U(\bar{w}, \frac{u_{\bar{L}}}{\bar{\gamma}(F,\bar{w})})$, where $u_{\bar{L}}$ is given in (1.25). Moreover, we have the following:

$$||x_n - \bar{w}|| \le \bar{q}(\bar{u})^{2^n - 1} ||x_0 - \bar{w}||.$$

REMARK 2.3 If $L_0 = L = \overline{L}$, $\gamma_0 = \gamma = \overline{\gamma}$, the two preceding results reduce to Theorem 3 and Theorem 4 in [10], respectively, i.e., if (1.14) or (1.15) hold as strict inequalities, then the earlier results are improved (see also the numerical examples).

3 Numerical examples

We provide two examples for the Kantorovich case, where function has no positive roots. Hence the older results can not apply, but function \bar{g} has roots, so the new results apply to solve equations.

EXAMPLE 3.1 Let $\mathcal{B}_1 = \mathcal{B}_2 = \mathbb{R}$, $x_0 = 1$, $D = \{x : |x - x_0| \le \lambda\}$, $\lambda \in [0, 1/2)$ and F defined by

$$F(x) = x^3 - \lambda. \tag{3.2}$$

Then, for $L_0(\tau) = L(\tau) = \bar{L}(\tau) = 1, v_0 = \bar{v} = v = 1$, we have

~

$$\bar{b} = b = \frac{1-\lambda}{3}, \gamma_0(\tau) = 3-\lambda, \gamma(\tau) = 2(2-\lambda) \text{ and } \bar{\gamma}(\tau) = 2(1+\frac{1}{3-\lambda}).$$

Notice that

$$\gamma_0 < \gamma < \bar{\gamma}.$$

The functions g and \overline{g} are then given, respectively by

$$g(t) = \frac{t^2}{2} - t + \frac{2}{3}(1 - \lambda)(2 - \lambda)$$

and

$$\bar{g}(t) = \frac{t^2}{2} - t + \frac{2}{3}(1 - \lambda)(1 + \frac{1}{3 - \lambda}).$$

The Newton-Kantorovich condition (i.e., the discriminant d_g of g) is given by

$$d_g = 1 - \frac{4}{3}(1 - \lambda)(2 - \lambda) < 0 \text{ for each } \lambda \in [0, 1/2)$$
(3.3)

so function g has not positive roots. However, function \bar{g} has positive roots, since the discriminant

$$d_{\bar{g}} = 1 - \frac{4}{3}(1 - \lambda)(1 + \frac{1}{3 - \lambda}) > 0 \text{ for each } \lambda \in I = [0.4619832, 1/2).$$
(3.4)

Therefore, our Theorem 2.1 can be used to solve equation F(x) = 0 for all $\lambda \in I$.

EXAMPLE 3.2 Let $\mathcal{B}_1 = \mathcal{B}_2 = \mathcal{C}[0,1]$. Let $D = \{x \in \mathcal{B}_1 : ||x|| \leq R\}$ for R > 0. Define F on D by

$$F(x)(s) = x(s) - f(s) - \delta \int_0^1 K(s,t)x(t)^3 dt, x \in \mathcal{B}_1, s \in [0,1],$$
(3.5)

where $f \in \mathcal{B}_1$ is a fixed function and λ is given by

$$K(s,t) = \begin{cases} (1-s)t, & \text{if } t \leq s, \\ s(1-t), & \text{if } s \leq t. \end{cases}$$

Then, for each $x \in D$, F'(x) is given by

$$[F'(x)(v)](s) = v(s) - 3\delta \int_0^1 K(s,t)x(t)^2 v(t)dt, v \in X, s \in [0,1]$$

Set $x_0(s) = f(s) = 1$. Then, we have $||I - F'(x_0)|| \le 3|\delta|/8$ if $|\delta| < 8/3$, then $F'(x_0)^{-1}$ exists and

$$||F'(x_0)^{-1}|| \le \frac{8}{8-3|\delta|}.$$

Moreover,

$$\|F(x_0)\| \le \frac{|\delta|}{8},$$

so

$$b = ||F'(x_0)^{-1}F(x_0)|| \le \frac{|\delta|}{8-3|\delta|}.$$

Furthermore, for $x, y \in D$, we have

$$\|F'(x) - F'(y)\| \le \frac{1+3|\delta| \|x+y\|}{8} \|x-y\| \le \frac{1+6R|\delta|}{8} \|x-y\|$$

and

$$||F'(x) - F'(1)|| \le \frac{1+3|\delta|(||x||+1)}{8}||x-1|| \le \frac{1+3|\delta|(1+R)}{8}||x-1||$$

Let $\delta = 1.175$ and R = 2, we have $b = 0.26257..., \bar{\gamma}(\tau) = 2.76875..., \gamma_0(\tau) = 1.8875...$ and $\gamma(\tau) = 1.47314..., v_0 = \bar{v} = v = 1$. Using these values, we get that the discriminant d_q of g is

$$d_q = 1 - 1.02688 < 0,$$

but the discriminant $d_{\bar{q}}$ of \bar{g} is

$$d_{\bar{q}} = 1 - 0.986217 > 0.$$

Hence, $\lim_{n \to \infty} x_n = x_*$ by Theorem 2.1, where x_* is a solution of equation F(x)(s) = 0, where F is given by (3.5).

References

- E. L. Allgower and K. George, Numerical continuation methods, 33, Springer, Berlin 1990.
- [2] I. K. Argyros, Computational theory of iterative methods. Series: Studies in Computational Mathematics, 15, Editors: C. K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U. S. A, 2007.
- [3] I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity, 28, (2012) 364–387.

- [4] I. K. Argyros and S. George, Extending the applicability of Newton's method using Wang's- Smale's α-theory, Carpathian Journal of Mathematics, 33, No. 1 (2017) 27-33.
- [5] I. K. Argyros and S. George, Expanding the Convergence Domain of Newtonlike Methods and Applications in Banach Space, Punjab Univ. J. Math. Vol. 47, No. 1 (2015) 1-13
- [6] C. Beltran and A. Leykin, Certified numerical homotopy tracking, Exp. Math. 21, No. 1 (2012) 69–83.
- [7] A. Cauchy, Sur la determination approximative des racines d'une equation algebrique on transcendante In:Lecons sur le Calcul Differentiel, Bure freres, Paris, (1829) 573–609.
- [8] J. P. Dedieu, G. Malajovich and M. Shub, Adaptive step-size selection for homotopy methods to solve polynomial equations, IMA J. Numer. Anal. 33, No. 1 (2013) 1-29.
- [9] J. B. J Fourier, Analyse des equations determincees, Firmin Didot, Paris 1, (1831).
- [10] J. M. Gutiérrez, A. A. Magrenãn and J. C. Yakoubsohn, Complexity of a Homotopy method at the neighborhood of a zero, Springer International Publishing Switzerland, 2016, S. Amat, S. Busquier, eds. Advances in Iterative methods for nonlinear equations, SEMA SIMAI Springer Series, 10, Pages 147.
- [11] A. A. Magrénãn, Different anomalies in a Jarratt family of iterative root finding methods, Appl. Math. Comput. 233, (2014) 29-38.
- [12] A. A. Magrénãn, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput. 248, (2014) 29-38.
- [13] G. H. Meyer, On solving nonlinear equations with a one-parameter operator imbedding, SIAM J. Numer. Anal. 5, No. 4 (1968) 739-752.
- [14] S. Smale, Newton's method estimates from data at one point. In: The merging of Discipline New Directions in Pure, Applied and Computational Mathematics (Laramie, Wyo, 1985), (1986), 185-196.
- [15] J. F. Traub and H. Wozniakowski, Convergence and Complexity of Newton iteration for operator equations, J. ACM, 26, No. 2 (1979) 250-258.
- [16] W. Xinghua, Convergence of Newton's method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal. 20, No. 1 (2000) 123-134.