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Abstract. In this article, we have estimated the scale parameter of ex-
ponential distribution with a prior information. A shrinkage estimator is
derived for parameter of exponential distribution contaminated with out-
liers and in the presence of LINEX loss function. An admissible estimator
based on the LINEX loss function are compared with different methods of
estimations. Numerical study are used to compare the estimators.
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1. INTRODUCTION

The following probability density function (pdf) which is exponential distribution is
often used in life-testing research.

f(x, θ) =
1
θ
e
−x
θ , x > 0, θ > 0.

Let (X1, X2, · · · , Xn) is a random sample of sizen which is derived from the exponential
distribution. In this distribution,θ is known as the scale parameter and is the mean life.θ
is the average time to failure and̄X is an unbiased estimator of it. By using the squared
error loss function (SELF) which is a symmetric, it is not appropriate to estimate mean of
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life reliability function. [20] and [18] introduced a new version of loss function which is
asymmetric and known as the LINEX loss function (LLF). This approach was modified
by [6] and [8]. Also, a modified version of LINEX loss function is exist which is general
entropy loss function and proposed by [7].
For any parameterθ, a LLF which is invariant is

f(∆) = ea∆ − a∆− 1, a 6= 0, ∆ =
( θ̂

θ
− 1

)
,

based on [6]. In this loss function, the grade of asymmetry and orientation are depend on
sign and magnitude ofa, respectively. The positive value ofa is usually considered when
overestimation is more benefit than the underestimation and the negative value is taken in
the reverse situations. Whena is around zero, the loss function is almost squared error and
it is a symmetric. Details are found in [13] and [2].
A minimum mean square error (MMSE) estimator of parameterθ in the exponential distri-
bution is obtained by [15] and defined asnn+1X̄ under the class ofkX̄. [13] have used the
Searls’s estimator and explained that it was inadmissible under the LLF.
[19] derived optimal shrinkage estimations for the parameters of exponential distribution
based on record values. [14] presented shrinkage estimation of the parameter of exponen-
tial type-II censored data under LLF. [4] have estimatedP (X < Y ) in the exponential
distribution with common location parameter by using shrinkage method. [12] discussed
several methods of shrinkage estimation ofP (Y < X) in the exponential distribution
mixing with exponential distribution. [1] have used beta priors and new Bayes estimators
of population proportion of respondents possessing stigmatized attribute to extend Man-
gat Randomized Response Technique. Also, [16] have considered a new methodology for
Bayesian analysis of mixture models under doubly censored samples. They evaluated the
Bayesian estimation of parameters of the two-component mixture of Rayleigh distribution
under square root gamma, Maxwell and half normal priors using two loss functions. Fur-
ther, [3] have presented a modified factor-type estimator under two-phase sampling. This
method is found by incorporating information like coefficient of variation, kurtosis, skew-
ness and correlation coefficient.
Based on [17], whenθ0 indicates a conjecture ofθ a shrinkage estimator is

θ̂sh = c(θ̂ − θ0) + θ0.

One can evaluate the shrinkage factorc depend on the guessed valueθ0. This method of
estimation is now used in different subjects.
If we assume source distributed which may be a small plot of plants. When the weather is
normal, the plants distribute the pollen and it intersperse such as an exponential distribution
far from the origin. Also, in some situation, for example in fog or light rain, the herbage
reduced their diffusion of pollen, but still exponentially distributed with other scale para-
meter. [9] have assumed viral spores (BYMDV) and estimated the parameters of its pdf.
So, in this paper we constructed the structure as: Section 2 is to present density of
(X1, X2, · · · , Xn) contaminated with outliers. In sections 3 and 4, shrinkage estimators of
the scale parameter of an exponential distribution contaminated with outliers under squared
error and LLF are discussed. In section 5, the minimum risk of the two loss functions are
derived.



On Bayesian Shrinkage Estimator of Parameter of Exponential Distribution with Outliers 13

2. JOINT DENSITY OF (X1, X2, · · · , Xn) WITH OUTLIERS

Let a random sample of sizen shows the interval of a sampled plant from a plant from a
plot of plants which is infected by a virus. Here, most of data are coming from the airborne
dispersal of the spores and follow the exponential distribution. A small number of data from
n random variables (denote byk) are remained and to be transport barley yellow mosaic
dwarf virus (BYMDV) have moved the virus into the plants while the aphids cuisines on
the sap. [10] have estimated the parameters of the exponential distribution contaminated
with outliers which is coming from uniform distribution.
Then, consider(X1, X2, · · · , Xn) are distributed such thatk of them are coming from pdf
g(x, θ, β)

g(x, θ, β) =
β

θ
e
−βx

θ , x > 0, β > 0, θ > 0, (2. 1)

and the other(n− k) are generated from pdff(x, θ) as

f(x, θ) =
1
θ
e
−x
θ , x > 0, θ > 0. (2. 2)

So, the joint pdf of(X1, X2, · · · , Xn) is

f(x1, x2, · · · , xn) =
k!(n− k)!

n!

n∏

i=1

f(xi, θ)
∗∑ k∏

j=1

g(xAij
, θ, β)

f(xAij
, θ)

, (2. 3)

with
∑∗ =

∑n−k+1
A1=1

∑n−k+2
A2=A1+1 · · ·

∑n
Ak=Ak−1+1. Then, forg(x, θ, β) andf(x, θ) which

are given in (2.1) and (2.2), respectively,f(x1, x2, · · · , xn) is

f(x1, x2, · · · , xn) =
k!(n− k)!

n!
e
−P xi

θ

θn

∗∑ k∏

j=1

βe
−βxAj

θ

e
−xAj

θ

=
k!(n− k)!βk

n!θn
e
−P xi

θ

∗∑ k∏

j=1

e
−βxAj

θ

e
−xAj

θ

=
k!(n− k)!βk

n!θn
e
−P xi

θ

∗∑ k∏

j=1

e−(β−1)
xAj

θ . (2. 4)

Therefore, by using equation (2.4), we obtain the marginal density ofX as follows.

f(x, θ, β) =
k

n
g(x, θ, β) +

n− k

n
f(x, θ)

=
kβ

nθ
e
−βx

θ +
n− k

nθ
e
−x
θ , x > 0.

3. SHRINKAGE ESTIMATION OF θ WITH SELF

Here, the shrinkage estimator of parameterθ whenθ0 is a guess value of it, is given by

θ̂sh = c(θ̂ − θ0) + θ0, c ∈ [0, 1].
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Let us suppose that̂θshsel = c(X̄ − θ0) + θ0 be the estimator in the SELF. Assume that
this risk denotes byRs. Hence

Rs = E[θ − θ̂shsel]2 = E[θ − c(X̄ − θ0)− θ0]2

= E[θ + (c− 1)θ0 − cX̄]2

= [θ + (c− 1)θ0]2 + c2E(X̄2)− 2c[θ + (c− 1)θ0]E(X̄).

By using the marginal distribution ofX, E(X̄) andV (X̄) are obtained respectively as

E(X̄) =
kθ

nβ
+

(n− k)θ
n

,

and

V (X̄) =
θ2

n3

[
k2

β2
+ (n− k)2

]
.

Hence

Rs = [θ + (c− 1)θ0]2 +
c2θ2

n2

[
k2

nβ2
+

(n− k)2

n
+

k2

β2
+ (n− k)2 +

2k(n− k)
β

]

− 2cθ

n
[θ + (c− 1)θ0]

[
k

β
+ (n− k)

]
.

Let

A =
k2

nβ2
+

(n− k)2

n
+

k2

β2
+ (n− k)2 +

2k(n− k)
β

,

and

B =
k

β
+ (n− k),

then,Rs will be

Rs = [θ + (c− 1)θ0]2 +
c2θ2

n2
A− 2cθ

n
[θ + (c− 1)θ0]B. (3. 5)

Now, we have to minimized the risk and findc0 such that

dRs

dc
= 0.

Therefore

dRs

dc
= θ0[θ + (c− 1)θ0] +

cθ2

n2
A− θ

n
[θ + (c− 1)θ0]B − cθθ0

n
B = 0,

and

c0 =
nθ2

0 + θ2B − (n + B)θθ0

nθ2
0 + θA

n − 2θθ0B
.

Forθ0=0 andc0 = nB
A , it is given by [10].

Hence

θ̂shsel = c0(X̄ − θ0) + θ0.
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Substitutec0 in (3.5), imply that

MinRs = [θ + (c0 − 1)θ0]2 +
c2
0θ

2

n2
A− 2c0θ

n
[θ + (c0 − 1)θ0]B.

4. SHRINKAGE ESTIMATOR WITH LLF

In this section, an estimator ofθ is derived under LLF based on shrinkage method. The
following function is LLF

f(∆) = ea∆ − a∆− 1, a 6= 0, ∆ =

(
θ̂shll

θ
− 1

)
,

where

θ̂shll = c(θ̂ − θ0) + θ0.

Let us suppose that

θ̂shll = c(X̄ − θ0) + θ0,

be the estimator under LLF and the risk is denoted byLRs. Hence

LRs = E(L(4)) = E
(
ea4 − a4− 1

)
,

where

∆ =
θ̂shll

θ
− 1 =

1
θ
[cθ̂ − cθ0 + θ0]− 1

=
cθ̂

θ
+ (1− c)

θ0

θ
− 1 =

cθ̂

θ
+ s,

and

s = (1− c)
θ0

θ
− 1.

So

LRs = E(L(4)) = E
(
ea4 − a4− 1

)

= E

(
e
a
�

cθ̂
θ +s

�
− a

(
cθ̂

θ
+ s

)
− 1

)

= easE
(
e

ac
θ θ̂

)
− ac

θ
E(θ̂)− as− 1,

where

E(θ̂) = E(X̄) =
kθ

nβ
+

(n− k)θ
n

,
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E
(
e

ac
θ θ̂

)
= E

(
e

ac
θ X̄

)
= E

(
e

ac
nθ

P
Xi

)
= E

(
e

ac
θ X

)

=
∫ ∞

0

kβ

nθ
e

acx
θ e

−βx
θ dx +

(n− k)
nθ

∫ ∞

0

e
acx

θ e
−x
θ dx

=
k

n

∫ ∞

0

β

θ
e−(1− ac

β ) βx
θ dx +

n− k

n

∫ ∞

0

1
θ
e−(1−ac) x

θ dx

=
k

n

β

(β − ac)
+

(n− k)
n

1
(1− ac)

.

Therefore

LRs = eas

(
kβ

n(β − ac)
+

(n− k)
n(1− ac)

)
− ac

(
k

nβ
+

(n− k)
n

)
− as− 1.

Now, we have to minimize the risk. Hence,c0 is found such thatdLRs

dc = 0, ie.

h(c) = −aθ0

θ
eas

(
kβ

n(β − ac)
+

(n− k)
n(1− ac)

)
+ eas

(
kβa

n(β − ac)2
+

(n− k)a
n(1− ac)2

)

− a

(
k

nβ
+

(n− k)
n

)
+ a

θ0

θ
= 0. (4. 6)

Therefore,h(c) = 0 is solved by using Newton-Raphson method as

cj = cj−1 − h(cj−1)
h′(cj−1)

, j = 1, 2, ...,

whereh′(c) = dh(c)
dc .

After selection the proper value ofc, LRs will be minimum for c = c0, wherec0 is the
solution of the equation (4.6).

5. NUMERICAL EXPERIMENTS AND DISCUSSIONS

Here, to see the performance of the estimators ie.Rs andLRs, sampling experiments by
usingR statistical software are used. The results are given in Tables 1-6 fork=1,2,β=0.5,
1.5,θ=2,3,θ0=0.75 anda=-0.2. Bias ofθ̂ (ie. Bias(̂θ)) is defined asE(θ̂)− θ.

Table 1. Bias of the estimators,Rs andLRs for k=1,β=1.5,θ=2, θ0=0.75 anda=-0.2.
n Bias(̂θshsel) Rs Bias(̂θshll) LRs

10 -7.370582 6461.77 -0.867558 0.002586
20 -7.622106 5706.11 -0.874153 0.002691
30 -6.558582 1661.77 -0.888976 0.002655
40 -6.317610 862.48 -0.889309 0.002671
50 -6.094307 702.66 -0.896411 0.002644
60 -6.102083 677.75 -0.889351 0.002701
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Table 2. Bias of the estimators,Rs andLRs for k=2,β=1.5,θ=2, θ0=0.75 anda=-0.2.
n Bias(̂θshsel) Rs Bias(̂θshll) LRs

10 -6.671847 1735.64 -0.885200 0.002698
20 -6.462133 1665.02 -0.879905 0.002660
30 -6.379222 1380.26 -0.873978 0.002758
40 -6.145077 724.14 -0.885146 0.002711
50 -6.115715 683.22 -0.881738 0.002747
60 -5.970897 611.50 -0.890469 0.002696

Table 3. Bias of the estimators,Rs andLRs for k=1,β=1.5,θ=3, θ0=0.75,a=-0.2.
n Bias(̂θshsel) Rs Bias(̂θshll) LRs

10 -19.151860 63021.03 -1.384436 0.004786
20 -16.937740 19807.44 -1.389674 0.004950
30 -15.755640 13068.62 -1.413402 0.004930
40 -15.565560 11551.14 -1.407027 0.004982
50 -15.369630 10245.82 -1.406485 0.005003
60 -14.905750 8715.08 -1.421279 0.004972

Table 4. Bias of the estimators,Rs andLRs for k=2,β=1.5,θ=3, θ0=0.75 anda=-0.2.
n Bias(̂θshsel) Rs Bias(̂θshll) LRs

10 -17.621820 75474.21 -1.340366 0.004911
20 -15.478530 14127.74 -1.410833 0.004901
30 -15.574820 12204.55 -1.393489 0.005014
40 -15.120370 10115.33 -1.406576 0.005007
50 -14.813120 8989.30 -1.417287 0.004981
60 -15.012150 8839.64 -1.403421 0.005041

Table 5. Bias of the estimators,Rs andLRs for k=1,β=0.5,θ=3, θ0=0.75 anda=-0.2.
n Bias(̂θshsel) Rs Bias(̂θshll) LRs

10 -31.177520 133815.00 -1.512323 0.004325
20 -20.504490 52664.87 -1.474874 0.004652
30 -18.030170 23910.56 -1.457887 0.004785
40 -17.160260 18089.33 -1.442318 0.004867
50 -16.324460 13794.63 -1.446929 0.004867
60 -16.018730 12267.45 -1.440376 0.004900

Table 6. Bias of the estimators,Rs andLRs for k=2,β=0.5,θ=3, θ0=0.75 anda=-0.2.
n Bias(̂θshsel) Rs Bias(̂θshll) LRs

10 -31.341310 122380.00 -1.624322 0.003857
20 -24.419250 105833.60 -1.529319 0.004465
30 -19.762300 39089.02 -1.507678 0.004602
40 -18.353870 24394.75 -1.477247 0.004758
50 -17.301090 18342.36 -1.472677 0.004784
60 -17.016030 15612.78 -1.451695 0.004880

From Tables 1 to 6LRs is less thanRs. Also, comparing the bias shows that the
absolute value of bias of the estimators ofθ is decreasing respect ton. In addition, the bias
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of shrinkage estimator ofθ under LLF is less than the bias of the corresponding estimator
under SELF. Further more, the values ofLRs andRs are decreasing whenn increased.
Overall conclusion is that we can say that to estimateθ underg andf the LLF has better
performance than the SELF.

6. ACTUAL EXAMPLE

To show the performance of the estimators, we have selected an actual example which
is based on a data set discussed by [11] and [5]. When the size of the crushed rock is larger
than the rocks crushed, a rock crushing machine is working. Else, it has been reset. The
following data shows the sizes of the crushed rocks up to the third reset of the machine.

9.30, 0.60, 24.40, 18.10, 6.60, 9.00, 14.30, 6.60, 13.00, 2.40, 5.60, 33.80

By using Kolmogorov-Smirnov (Statistic=0.20685, critical value at the level of 5%=0.37543
and p=0.61239) and Anderson-Darling (Statistic=0.33653, critical value at the level of
5%=2.5018) tests, data follows exponential distribution with parameterθ̂=11.97461. Here,
we assume thatβ=1.5,θ0 is the median anda=-0.2. So, the shrinkage estimators ofθ, Rs,
LRs and the corresponding likelihood respect tok=1, 2 and 3 are shown in Table 7.

Table 7. Shrinkage estimators ofθ, Rs, LRs and the corresponding likelihood for
k=1,2,3,θ0=0.75 anda=-0.2.

k θ̂shsel Rs L(θ̂shsel) θ̂shll LRs L(θ̂shsel)
1 8.919453 0.1000459 3.401296e-19 9.332078 7.137392e-05 4.115446e-19
2 8.864743 0.1514201 2.779157e-19 9.372426 8.634380e-05 3.613990e-19
3 8.800492 0.2294922 2.204463e-19 9.419562 1.044919e-04 3.149668e-19

Table 7 shows that the likelihood is maximized whenk=1 under both loss functions. There-
fore, in the example the number of outliers (k) is equal to 1 and the value of the shrinkage
estimators of unknown parameterθ, Rs andLRs could be taken from the first row of Table
7.
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