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Abstract. In this article the rotational flow of some fractional Maxwell
fluid is studied. An infinite straight circular cylinder is filled with the fluid
and its motion is generated by a time dependent torsion, applied to the
surface of the cylinder. As novelty, the dimensionless governing equation
related to the non-trivial shear tension is used and the first exact solutions
analogous to a ramped shear stress on the surface are obtained using in-
tegral transforms. The obtained results allow us to provide solution for
ordinary Maxwell fluid performing similar motion. In addition, the effect
of non-integer order paerameter on shear stress and velocity profiles is an-
alyzed by graphical interpretations using Mathcad software.
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1. INTRODUCTION

Rotating flows due to the shear stress is one of the significant current topics in fluid
dynamics because of its useful applications in meteorology, geophysics, turbo machinery
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and so on [9]. Rotating flows caused by system rotation or swirl flows caused by swirl
generators etc. There are many examples of flow near rotating machines, for instance
rotating-disc systems are used to model (experimentally and computationally) the flow and
heat transfer associated with the internal-air systems of gas turbines, where discs rotate
close to a rotating or a stationary surface [10]. Optimum design for the model requires
an understanding about the principles of rotating flows, development of core concepts and
appropriate solutions of the general understanding. The flow in rotating curved pipes with
a constant circular cross-section have found wide applications in heat exchangers, piping
systems, electric motors, chemical reactors and many other engineering systems. The flows
in rotating pipes have been studied by numerous researchers. Miyazaki [33],[34] analyzed
the laminar boundary layer flow and heat transfer in rotating curved pipes of circular and
rectangular cross-sections for the case of positive rotation. Ito and Motai [18] studied the
flow with negative rotation and found the reversal of the secondary flow for the first time.

During the last few years, various investigations have been made to study the different
flow models of non-Newtonian fluids [49], [37], [20], [22], [19], [41], [50], [38], [2], [35],
[26]. These fluids are generally used in industry and very much differ in their rheology.
Some fluids such as glycerin, crude oil or some polymeric solutions exhibit both viscous
and elastic behavior. Such viscoelastic fluid are reffered as Maxwell fluids, the constitutive
relation can be recovered from the Jefferys-Oldroyd B fluid by setting retardation time to be
zero. Maxwell fluid [6] model is a rate type model and by the reason of the ramification of
its governing equations, researchers have given significant consideration and discussed its
flow in diverse geometries. Petrov and Cherepanov [39], discussed the flow of viscoplastic
fluid in a circular pipe. The unsteady unidirectional transient flow of rate fluid with non-
integer order time derivatives, in an annulus region, produced by a fixed pressure gradient
and a translation with constant velocity of the inner cylinder was studied by Mathur and
Khandelwal [31]. Liu et al [28] studied some helical flows of rate type fluids with non-
integer order time derivatives, in a space between two oscillating concentric cylinders and
within an oscillating circular cylinder of infinite length. The most existing solutions in the
literature correspond to the problems with boundary conditions on the velocity.

However, there are several particular problems with the specified force on the bound-
ary [43], [44]. For example in [43], Renardy has studied the motion of Maxwell fluid
across a strip bounded by parallel plates and proved that, to develop a well posed problem
it is necessary to impose boundary conditions on the stresses at the inflow boundary. In
[44], Renardy explained how well posed boundary value problems can be established using
boundary conditions on stresses. Waters and King [52] were among the first specialists who
used the shear stress at the boundary to find exact solutions for motions of Maxwell fluids.
Other remarkable problems like unsteady unidirectional transient flows of non-Newtonian
fluid in unbounded domains which geometrically are axisymmetric pipe-like [12], Jamil et
al. [21] establish the results of shear stress for the motion of fluid between concentric cylin-
ders using Hankel transform, the flow of an incompressible electrically conducting couple
stress fluid generated by performing longitudinal and torsional oscillations of a porous cir-
cular cylinder subjected to constant suction/injection at the surface of the cylinder and in
the presence of a radial magnetic field was discuss by Nagarajn et al. [36]. Moreover, axial
flow of serval non-Newtonian fluids through circular cylinder are investigated by Vieru et
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al. [51]. More recently, Fetecau et al. [14], obtained exact solutions for flows of rate type
fluids in a circular domain that applies constant couple to the fluid.

Nowadays, fractional calculus modeling in dynamical problems is gaining popularity.
For the accurate modeling of physical and engineering processes the non-integer order de-
rivative models and techniques are found to be the best and meticulous to the experimental
results [17], [15]. Basically viscoelastic fluid models for example Maxwell, Oldroyd-B etc
are the best expressed in terms of non-integer (fractional) order form. Within the context
of viscoelasticity the use of non-integer order derivatives was firstly proposed by Germant
[16] After that the theory of viscoelasticity in the setting of fractional calculus was further
extended by Smith and de Vries [46], Sarwar [45], Yang [53] and Koeller [25] etc. As such,
these models are consistent with basic theories and are not arbitrary constructions that hap-
pen to describe experimental data. Hence a number of researchers have used fractional
calculus as an empirical method of describing the properties of viscoelastic materials. A
detailed bibliography is contained in the book by Mainardi [30], including an historical
perspective up to 1980’s. For further studies see [27],[23], [42], [48], [5], [1], [3], [4].

Many experimental data highlighted that the state of a physical system depends not only
upon its current state but, also depends of its history. Because the integer order differen-
tial operator is a local operator, the classical fluid models cannot give the best description
of the fluids behavior. Since the fractional derivative operators have non-local properties,
the fractional calculus has been successfully used in the description of several physical phe-
nomena. Many authers have proposed fractional models obtained from the classical models
by replacing the integer derivative operator by the fractional derivative operator [15], [32].

So, the results with ordinary derivative models have marginal scientific value and def-
initely insufficient to warrant suitable correlation with the experimental data. Moreover,
non-integer order derivatives have the elegant property that, if the limit of the fractional
parameter tends to integer they coincide with the classic derivative of that order.

Our goal here is to investigate the unsteady flow of Maxwell fluids with non-integer
order derivatives through a circular cylinder of infinite length in a rotating frame. In the
present paper, the governing equation of the flow is associated to the tension and we consid-
ered the boundary conditions on the shear stress as in [14] and [13]. The flow of the fluid is
shear driven as the consequence of the circular motion of the cylinder about its axis, under
the action of a time dependent shear stress given on the boundary. The obtained solutions
which are new in the literature, for the motion of Maxwell fluids with non-integer order
derivatives, allow us to recover the corresponding results for ordinary Maxwell fluids. Also
the effect of the non-integer order parameters and that of Reynolds number on the profiles
of shears tress and fluid’s velocity is underlined by graphical illustrations.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

The Cauchy stress tensorT corresponding to Maxwell fluid [6] is given by the rela-
tions

T = −pI + S, S+ λ
(

Ṡ− LS− SLT
)

= µA, (2. 1)
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wherep, I , S, λ, L , µ, andA are respectively the hydrostatic pressure (SI unit as pas-
cal), identity tensor , the extra-stress tensor (having same unit as force, pressure, strain
and density and SI unit as Newton per meter square) pressure, the relaxation time (SI unit
as Second), the velocity gradient (per second), the dynamic viscosity (Newton second per
meter square) and first Rivlin-Ericksen tensor. The superscript T denotes the transpose op-
erator and the superpose dot denote the material time derivative. The model characteristic
by the constitutive equation (1) contains as a special case the Newtonian fluids.

Consider an infinite circular cylinder of radiusR. At t′ = 0, the cylinder and fluid are
at rest. After timet′ = 0+, the cylinder instigates to turn about its axis as the consequence
of a time dependent torque per unit length2πRτ ′(R, t′), whereτ ′ is the non-trivial shear
stress applied to the boundary of the cylinder. We infer that velocity and extra-stress tensor
are of the form,

V = V(r′, t′) = w′(r′, t′)êθ, S = S(r′, t′), (2. 2)

whereêθ is unit vector alongθ-direction of cylindrical coordinate system. For such a flow
the constrain of incompressibility is fulfilled. Since the model is at rest at timet′ = 0, we
have

w′(r′, 0) = 0, S(r′, 0) = 0. (2. 3)

Introducing ( 2. 2 ) in ( 2. 1 ) and using ( 2. 3 ), we getSr′r′ = Sr′z = Szθ = Szz = 0
together with the following partial differential equation [14](

1 + λ
∂

∂t′

)
τ ′(r′, t′) = µ

(
∂

∂r′
− 1

r′

)
w′(r′, t′), (2. 4)

whereτ ′(r′, t′) = Sr′θ(r′, t′) is the non zero component of extra stress tensor.
With no body force, the balance of linear momentum, reduces to [14]

ρ
∂w′(r′, t′)

∂t′
=

(
∂

∂r′
+

2
r′

)
τ ′(r′, t′), (2. 5)

whereρ is the constant density of the fluid.
Driving outw′(r′, t′) from Eqs. ( 2. 4 ) and ( 2. 5 ), we extract the subsequent governing

equation for the shear stress [14], [13](
1 + λ

∂

∂t′

)
∂τ ′(r′, t′)

∂t′
= ν

(
∂2

∂r′2
+

1
r′

∂

∂r′
− 4

r′2

)
τ ′(r′, t′), (2. 6)

whereν is the kinematic viscosity (SI units are meter square per second) of the fluid.
The suitable initial and boundary conditions are

τ ′(r′, 0) =
∂τ ′(r′, t′)

∂t′
|t′=0= 0, (2. 7)

τ ′(R, t′) = fH(t′)
t
′δ−1

λδ−1Γ(δ)
; δ ≥ 1, (2. 8)

whereH(·) is the Heaviside unit step function.
By introducing the following dimensionless quantitiest = t′

λ , r = r′
R , w = w′

Wo
, Wo = λf

ρR ,

τ = τ ′
f ,into the Eqs. ( 2. 5 )–( 2. 8 ) become

∂w(r, t)
∂t

=
(

∂

∂r
+

2
r

)
τ(r, t), (2. 9)
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Re

(
1 +

∂

∂t

)
∂τ(r, t)

∂t
=

(
∂2

∂r2
+

1
r

∂

∂r
− 4

r2

)
τ(r, t), (2. 10)

with Re = R2

λν , the Reynolds number and

τ(r, 0) =
∂τ(r, t)

∂t
|t=0= 0, w(r, 0) = 0, (2. 11)

τ(1, t) = H(t)
tδ−1

Γ(δ)
; t ≥ 0, δ ≥ 1. (2. 12)

The corresponding non-integer order model is characterized by

Re (1 + Dα
t )

∂τ(r, t)
∂t

=
(

∂2

∂r2
+

1
r

∂

∂r
− 4

r2

)
τ(r, t), (2. 13)

Dα
t w(r, t) = (

∂

∂r
+

2
r
)τ(r, t), (2. 14)

subject to the conditions

τ(r, 0) =
∂τ(r, t)

∂t
|t=0= 0, w(r, 0) = 0, (2. 15)

τ(1, t) = H(t)
tδ−1

Γ(δ)
; t ≥ 0, δ ≥ 1, (2. 16)

whereDp
t f(t) =

{
1

Γ(1−p)

∫ t

0
f ′(s)

(t−s)p ds, 0 ≤ p < 1;
f ′(t), p = 1,

is the Caputo derivative operator

with respect tot [7], [8], [24], [40].

3. SOLUTION OF THE PROBLEM

3.1. CALCULATION FOR SHEAR STRESS. Implementing Laplace transform [11] to
Eq. ( 2. 13 ) and utilizing ( 2. 15 )1 and ( 2. 16 ), we get

τ(r, q) =
1

Re

1
q + qα+1

(
∂2

∂r2
+

1
r

∂

∂r
− 4

r2

)
τ(r, q), (3. 17)

τ(1, q) =
1
qδ

, (3. 18)

whereτ(r, q) is the Laplace transform ofτ(r, t) andq is the transform variable.
Applying Hankel transform [47] to Eqs. ( 3. 17 ) and ( 3. 18 ), we obtain

τH(rn, q) =
1

Re

1
q + qα+1

(
−rnJ

′
2(rn)τ(1, q)− r2

nτH(rn, q)
)

, (3. 19)

whereτH(rn, q) =
∫ 1

0

rτ(r, q)J2(rrn)dr is the finite Hankel transform of the function

τ(r, q) andrn, n = 1, 2, .... are the positive roots of the transcendental equationJ2(x) = 0,
Jν(·) being the Bessel function of first kind of orderν. Equation ( 3. 19 ) is equivalent to

[
Re(q + qα+1) + r2

n

Re(q + qα+1)

]
τH(rn, q) = − 1

Re

1
q + qα+1

rnJ
′
2(rn)
qδ

, (3. 20)
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or

τH(rn, q) = − 1
Re(q + qα+1) + r2

n

rnJ
′
2(rn)
qδ

. (3. 21)

Using the equivalent expressions

1
Re(q + qα+1) + r2

n

− 1
r2
n

= − q + qα+1

r2
n[(qα+1 + An) + q]

, (3. 22)

whereAn = r2
n

Re and

1
Re(q + qα+1) + r2

n

− 1
r2
n

=− q

r2
n

∞∑

k=0

(−1)k

[
qα+k

(qα+1 + An)k+1
+

qk

(qα+1 + An)k+1

]
,

(3. 23)

into Eq. ( 3. 21 ), we get

τH(rn, q) = −J1(rn)
rnqδ

+
J1(rn)

rn

∞∑

k=0

(−1)k×

×
[

qα+k+1−δ

(qα+1 + An)k+1
+

qk+1−δ

(qα+1 + An)k+1

]
. (3. 24)

Implementing the inverse Laplace transform [29] to the last equality, we get

τH(rn, t) = −H(t)
tδ−1

Γ(δ)
J1(rn)

rn
+ H(t)

J1(rn)
rn

∞∑

k=0

(−1)k×

× [Gα+1, α+k+1−δ, k+1(−An, t) + Gα+1, k+1−δ, k+1(−An, t)], (3. 25)

whereGa,b,c(·, t) is the generalized Lorenzo Hartley function [29],

with L−1
{

qb

(qa−d)c

}
= Ga,b,c(d, t); Re(ac− b) > 0, Re(q) > 0,

∣∣∣∣ d
qa

∣∣∣∣ < 1,

andGa,b,c(d, t) =
∑∞

j=0
djΓ(c+j)

Γ(c)Γ(j+1)
t(c+j)a−b−1

Γ[(c+j)a−b] .

Applying the inverse Hankel transform to Eq. ( 3. 25 ) and using the inverse formula

τ(r, t) = 2
∞∑

n=1

J2(rrn)
[J ′2(rn)]2

τH(rn, t),

we get

τ(r, t) = H(t)
tδ−1

Γ(δ)
r2 + 2H(t)

∞∑
n=1

J2(rrn)
rnJ1(rn)

∞∑

k=0

(−1)k×

× [Gα+1, α+k+1−δ, k+1(−An, t) + Gα+1, k+1−δ, k+1(−An, t)]. (3. 26)

3.2. CALCULATION FOR VELOCITY. Using Eq. ( 3. 26 ) into Eq. ( 2. 14 ), we
obtain the following non-integer order differential equation for velocity

Dα
t w(r, t) = 4rH(t)

tδ−1

Γ(δ)
+ 2H(t)

∞∑
n=1

J1(rrn)
J1(rn)

∞∑

k=0

(−1)k×

× [Gα+1, α+k+1−δ, k+1(−An, t) + Gα+1, k+1−δ, k+1(−An, t)]. (3. 27)



Unsteady Rotational Flow of Fractional Maxwell Fluid in a Cylinder Subject to Shear Stress on the Boundary 27

Implementing the Laplace transform to this equation, we have

w(r, q) =4r
1

qδ+α
+

∞∑
n=1

J2(rrn)
J1(rn)

∞∑

k=0

(−1)k×

×
[

qk+1−δ

(qα+1 + An)k+1
+

qk−α−δ+1

(qα+1 + An)k+1

]
, (3. 28)

with the inverse Laplace transform,

w(r, t) = 4r
tδ+α−1

Γ(δ + α)
+ 2H(t)

∞∑
n=1

J1(rrn)
J1(rn)

∞∑

k=0

(−1)k×

× [Gα+1, k+1−δ, k+1(−An, t) + Gα+1, k−α+1−δ, k+1(−An, t)]. (3. 29)

4. LIMITING CASE

4.1. ORDINARY MAXWELL FLUID MODEL. Into Eqs. ( 3. 26 ) and ( 3. 29 ), letting
α = 1, we have

τM (r, t) =H(t)
tδ−1

Γ(δ)
r2 + 2H(t)

∞∑
n=1

J2(rrn)
J1(rn)

1
rn

∞∑

k=0

(−1)k×

×[G2, 2+k−δ, k+1(−An, t) + G2, k+1−δ, k+1(−An, t)], (4. 30)

wM (r, t) =4r
tδ+α−1

Γ(δ + 1)
+ 2H(t)

∞∑
n=1

J1(rrn)
J1(rn)

∞∑

k=0

(−1)k×

×[G2, k+1−δ, k+1(−An, t) + G2, k−δ, k+1(−An, t)], (4. 31)

the expressions of shear stress and velocity for ordinary Maxwell fluid.

5. NUMERICAL RESULTS AND DISCUSSION

In this article, unsteady rotational flows of Maxwell fluid with non-integer order
derivatives which fills a straight circular cylinder of radiusR and of infinite length are
studied. Flows are produced by a time dependent torque applied to the boundary of the
cylinder. As novelty, the governing equation related to the dynamic torsion is used. Closed
form solutions of dimensionless shear stress and velocity fields are obtained by utilizing
integral transforms. These solutions that satisfy all prescribed initial and boundary condi-
tion, allow us to contribute the exact solutions for the motion of a rate type fluid produced
by the circular cylinder that exerts a constant or time dependent shear stress to the fluid.
These solutions can easily be step down to the analogous solutions for ordinary Maxwell
fluids as limiting cases. Further, the control of non-integer order parameter on the flow is
investigated numerically and by graphical interpretation as follows.

In Fig. 1, we have prepared graphs in order to study the control/infulence of the non-
integer order parameterα on the shear stress and fluid velocity forδ = 1 (corresponding
to uniform shear stress),δ = 2 and3 (for time dependent shear stress). The profiles corre-
sponding to shear stress and velocity are plotted versus r for small time and miscellaneous
values of the non-integer order parameterα, namely,α ∈ {0.3, 0.5, 0.7} andRe = 3. The
curves show that the effect of the non-integer order parameterα is significant only near
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the boundary of the cylinder. It is observed that near the boundary, the shear stress and
velocity decreases by increasing values ofα. It is also observed that the magnitude of the
shear stress and velocity decrease by increase the value ofδ(the parameter of the external
torsion).

In Fig. 2, we presented the effect of the Reynolds number on the shear stress and veloc-
ity of the fluid. The shear stress and velocity profiles are plotted versus r for separate values
of Reynolds numberRe, namely,Re ∈ {0.5, 1.5, 3.5}, andα = 0.7. The curves show that
the shear stress along with velocity decreases with increasing values ofRe, but very near
to the cylinder there is a critical value ofr after which the velocity increases with the in-
creasing values ofRe. It is observed that the magnitude of the shear stress and velocity
decreases by increasing the value ofδ. In all the graphs, we have chosen the dimensionless
material parameterλ = 1.8 and dimensionless timet = 0.2.
Furthermore to approximate the positive roots of the Bessel functionJ2(x) = 0 we used
the computer software Mathcad.

6. CONCLUSION

Some concluding remarks are:
• The effects of the non-integer order parameterα on the fluid motion is significant espe-
cially in the vicinity of the cylinder.
• The fluid velocity decreases for increasing values ofα on the whole domain.
• The magnitude of the shear stress as well as that of velocity decreases with increasing
value ofδ.
• The shear stress and velocity admit a maximum value for certain values ofδ at each mo-
ment of timet. These maximum values increase with the timet. Also, there are values of
theδ for which the shear stress and velocity are zero.
• The variation of the shear stress and of velocity with the Reynolds number is small and
approaches some constant value for each moment of the timet. It is noted that influence of
the Reynolds number on velocity of the fluid and shear stress is significant only for small
values of timet.
• Results for Ordinary Maxwell fluid are obtained by using limitα → 0
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FIGURE 1. Profiles of shear stress and velocity versus r forα variation
and different values ofδ.
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