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Abstract. This paper focuses on the analytical and numerical solutions of
dynamic models for dengue fever. The considered model consists of a sys-
tem of coupled non-linear differential equations. Homotopy Perturbation
Method (HPM) and Runge Kutta Method of Order 4 (RK4) are applied
to obtain analytical and numerical solutions, respectively. Moreover, the
positivity of the solution is proved. The results of the suggested methods
are validated with the exact solution for simplified model equations. Fur-
thermore, the proposed methods are applied to the considered model using
the real time data of Lahore (years 2011-2014), Pakistan. The results are
found to be in agreement with the available exact solution and real time
data. HPM results approach the exact solution by including higher order
polynomials. The parametric study of dengue cases are performed. More-
over, the synchronization between the simulated results and real time data
of dengue cases verifies the correctness of model formulation. On the
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basis of these results, it is concluded that RK4 and HPM are suitable tech-
niques to solve a non-linear dynamical system for dengue.

AMS (MOS) Subject Classification Codes: 35S29; 40S70; 25U09
Key Words: Nonlinear dynamical models, Homotopy perturbation method, Reproduction
number, RK4.

1. INTRODUCTION

Infectious diseases have been the main cause of high mortality rate during the recent
decades. Average life span was reduced due to lack of health facilities. Infectious dis-
eases were controlled with the improvement in medical science. After the first half of 20th
century, it was expected that infectious diseases would disappear, because of achievements
in vaccination, antibiotics and better life conditions. However, with the start of 21st century,
many infectious diseases e.g. dengue, hepatitis spread fast, and mortality rates increased
in many developing countries. Many infectious diseases e.g. malaria, tuberculosis, AIDS,
yellow fever and Ebola are still not completely controlled [20].
Among the infectious diseases, Dengue Fever (threatening about 2.5 million people all over
the world, mostly in South Asia) spread in more than 100 countries, especially with the
tropical and warm climates. In many tropical and sub tropical regions, dengue spreads ev-
ery year, usually during rainy season, when population of Aede mosquito is higher. Dengue
was identified in 1779-1780 for the first time in North America, Africa and Asia. In 1998,
World Heath Organization, reported about 1.2 million cases in 56 countries. Every year,
dengue infects almost 50 million humans. Among the affected humans, almost 0.5 million
are affected by Dengue Hemorrhagic Fever (DHF)[5, 20].
Mathematical modeling is an effective tool to test and compare different strategies that
are useful in controlling and eliminating epidemics. Numerical computations have gained
a significant popularity to solve the nonlinear physical problems in the recent decades
[2, 16, 25]. Various epidemiological models have been developed to analyze the infectious
diseases. In epidemiological modeling, population can be divided into different groups
on the basis their epidemiological status: susceptible (S), infectious (I) and recovered (R).
The divisions in an SIR model are supposed to be mutually exclusive and number of in-
dividuals shifts from S to I and I to R. The variations in the compartments are based on
the disease types. Several forms of compartmental models have been used, for instance,
SI (susceptible-infected), SIS (susceptible-infected-susceptible), SIR (susceptible-infected-
recovered), SIRS (susceptible-infected-recovered-susceptible) and SEIR (susceptible-
exposed-infected-recovered) [5, 6, 17, 18, 23, 24, 26]. The dynamical models contain sys-
tems of nonlinear ordinary differential equations (ODEs). The exact solutions are only
possible for simplified mathematical models, and therefore numerical methods are used to
obtain reliable results [1, 3, 12, 14, 19, 22]. Analytical and numerical methods are effec-
tive in analyzing the transmission of infectious diseases. These methods are also helpful in
devising measures to eliminate the infectious diseases like dengue.
In mathematics, linearization is used to find the linear approximation of a function at a given
point. In dynamical systems, linearization is a method for assessing the local stability of
an equilibrium point of a system of nonlinear differential equations or discrete dynamical
systems. Linearization is used in engineering, physics, economics, and ecology.
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The purpose of this work is to solve the dynamical models for dengue fever and validate
through real time data of Lahore, Pakistan (years 2011-2014). The dynamical models can
predict how infectious diseases spread to the extent of an epidemic. The SIR model in-
cluding human and vector (mosquitoes) population is taken into consideration [23]. The
positivity of the solution for the considered model is also proved in this study. HPM and
RK4 is used to solve the SIR model. Numerical case studies are presented to validate the
analytical and numerical results. The simplified model having exact solution is verified
with the proposed analytical and numerical techniques. The results are compatible with
the real time data. The parametric study is also performed and various aspects of dengue
disease are highlighted.

The paper is organized as follows: In section 2, SIR model for dengue fever with model
parameters are briefly described. In section 3, stability analysis is presented. In section 4,
the positivity of the solution is discussed. Moreover, the procedure of HPM is explained
and implemented to the SIR model. In section 5, the numerical test problems employing
HPM and RK4 are presented. Finally, section 6 comprises the conclusion, remarks and
future prospectives of the current research.

2. THE SIR MODEL WITH VECTOR POPULATION

In this research, the SIR model of Side and Noorani is considered [23]. The model iden-
tifies two populations: human population (N1) and vector population (N2). The human
population is further split into three subcategories: susceptible (S1), the group of people
who may potentially get infected with dengue virus; infected (I1), the group of people
infected with dengue virus, and recovered (R1), the group of people who came back to a
normal state of health after infection. The mosquito population is split into two categories:
susceptible (S2) and infected (I2). The changes in human and vector population can be
expressed in mathematical form:
For the human population,

dS1

dt
= µ1N1 −

β1b

N1
I2S1 − µ1S1,

dI1
dt

=
β1b

N1
I2S1 − (µ1 + γ1)I1,

dR1

dt
= γ1I1 − µ1R1. (2. 1)

For the vector population,

dS2

dt
= µ2N2 −

β2b

N1
I1S2 − µ2S2,

dI2
dt

=
β2b

N1
I1S2 − µ2I2, (2. 2)

with the initial conditions

S1(0) ≥ 0, I1(0) ≥ 0, R1(0) ≥ 0, S2(0) ≥ 0, I2(0) ≥ 0. (2. 3)
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Moreover,

S1 + I1 +R1 = N1 ⇒ R1 = N1 − S1 − I1,

S2 + I2 = N2 =
A

µ2
⇒ S2 = N2 − I2 =

A

µ2
− I2. (2. 4)

The parameters µ1N1 is the change in the total human population, β1bI2
N1

is the probability
of susceptible individual being infected with dengue virus, β1 is the infection probability
from infected ones to a susceptible mosquito, b represents a mosquito’s average bites and
µ1S1 denotes the deaths among susceptible human population. Moreover, the number
of deaths in the infected human population is represented by µ1I1, whereas the infected
people who recovered from infection is represented by γ1I1. The parameter R1 is the total
human population that has recovered from infection. The difference between the humans
recovered from infection (γ1I1) and the total deaths in recovered human population (µ1R1)
is the rate of change for a healthy population.
The parameter β2bI1

N1
shows that each individual in the susceptible population has the proba-

bility of being bitten by mosquitoes infected with dengue virus, β2 is the transmission prob-
ability from infected human to virtually infected mosquito, µ2S2 is the death toll among the
susceptible mosquitoes. The number of deaths in the mosquito population is represented by
µ2I2. The model given in Eqs. (2. 1 ) and (2. 2 ) can be simplified by assuming following
fractions:

x1 =
S1

N1
, x2 =

I1
N1

, x3 =
R1

N1
, x4 =

S2

N2
, x5 =

I2
N2

. (2. 5)

Thus, the human and vector population is given below:

dx1
dt

= µ1(1− x1(t))− αx1(t)x5(t),

dx2
dt

= αx1(t)x5(t)− βx2(t),

dx3
dt

= γ1x2(t)− µ1x3(t),

dx4
dt

= µ2(1− x4(t))− ξx2(t)x4(t),

dx5
dt

= ξx2(t)x4(t)− µ2x5(t), (2. 6)

where α = bβ1A
µ2N1

, β = γ1 + µ1, ξ = bβ2.

3. STABILITY ANALYSIS

In this section the stability analysis is presented by using linearization method.
Equilibrium points
Let the set Ω be given by
Ω = {(S1, I1, R1, S2, I2)/0 ≤ I2 ≤ N2; 0 ≤ S1, I1; 0 ≤ S2, I2;S1 + I1 +R1 ≤ N1;S2 +
I2 ≤ N2} Then we have the following theorem.



Stability Analysis and Solutions of Dynamical Models for Dengue 49

3.1. Theorem. The system Eq. (2. 6 ) admits two equilibrium points F1 = (1, 0, 0, 1, 0)
and
F2 = (x10, x20, x30, x40, x50), where x10 = (µ1ξ+βµ2)

ξ(α+µ1)
, x20 = µ1(αξ−βµ2)

ξβ(α+µ1)
, x30 =

γ1(αξ−βµ2)
ξβ(α+µ1)

,

x40 = µ2β(α+µ1)
α(µ1ξ+βµ2)

, x50 = µ1(αξ−βµ2)
α(µ1ξ+βµ2)

.
Proof:
The system Eq. (2. 6 ) is given as:

dx1
dt

= µ1(1− x1(t))− αx1(t)x5(t),

dx2
dt

= αx1(t)x5(t)− βx2(t),

dx3
dt

= γ1x2(t)− µ1x3(t),

dx4
dt

= µ2(1− x4(t))− ξx2(t)x4(t),

dx5
dt

= ξx2(t)x4(t)− µ2x5(t). (3. 7)

The equilibrium points satisfy the following relations:
dx1
dt

=
dx2
dt

=
dx3
dt

=
dx4
dt

=
dx5
dt

= 0. (3. 8)

Putting Eq. (3. 7 ) into Eq. (3. 8 ) yields,

µ1(1− x1(t))− αx1(t)x5(t) = 0,

αx1(t)x5(t)− βx2(t) = 0,

γ1x2(t)− µ1x3(t) = 0,

µ2(1− x4(t))− ξx2(t)x4(t) = 0,

ξx2(t)x4(t)− µ2x5(t) = 0. (3. 9)

The first F1 = (1, 0, 0, 1, 0) is trivial in the sense that all individuals stay healthy. Now to
find the second equilibrium point, we consider Eq. (3. 9 ),

µ1(1− x1(t))− αx1(t)x5(t) = 0, (3. 10)

αx1(t)x5(t)− βx2(t) = 0, (3. 11)

γ1x2(t)− µ1x3(t) = 0, (3. 12)

µ2(1− x4(t))− ξx2(t)x4(t) = 0, (3. 13)

ξx2(t)x4(t)− µ2x5(t) = 0. (3. 14)

Adding Eq. (3. 10 ) and Eq. (3. 11 ),

µ1(1− x1(t))− βx2(t) = 0,

x2 =
µ1(1− x1(t))

β
. (3. 15)
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Now adding Eq. (3. 13 ) and Eq. (3. 14 ),

µ2(1− x4(t))− µ2x5(t) = 0,

x4 = 1− x5. (3. 16)

Further simplification of Eq. (3. 15 ) results in the following equation:

x1 =
µ1 − βx2(t))

µ1
. (3. 17)

Putting Eq. (3. 17 ) into Eq. (3. 11 ) yields,

α(
µ1 − βx2(t))

µ1
)x5(t)− βx2(t) = 0,

α(µ1 − βx2(t))x5(t)− βµ1x2(t) = 0,

αµ1x5(t)− βx2(t)x5(t)− βµ1x2(t) = 0. (3. 18)

Simplification of Eq. (3. 14 ) results in the following equation:

x2(t) =
µ2x5(t)

ξ(1− x5)
. (3. 19)

Now putting the value of x2 into Eq. (3. 18 ),

αµ1x5 − αβx5
µ2x5

ξ(1− x5)
− βµ1

µ2x5
ξ(1− x5)

= 0,

x5 =
µ1(αξ − βµ2)

α(µ1ξ + βµ2)
. (3. 20)

Now in Eq. (3. 16 ) replacing x5 by its value we get x4,

x4 = 1− x5 = 1− µ1(αξ − βµ2)

α(µ1ξ + βµ2)
,

x4 =
µ2β(α+ µ1)

α(µ1ξ + βµ2)
. (3. 21)

Similarly by putting the value of x5 into Eq. (3. 19 ), we get x2,

x2 =
µ2x5

ξ(1− x5)
=

µ2
µ1(αξ−βµ2)
α(µ1ξ+βµ2)

ξ(1− µ1(αξ−βµ2)
α(µ1ξ+βµ2)

)

x2 =
µ1(αξ − βµ2)

ξβ(α+ µ1)
. (3. 22)

Now putting the value of x2 into Eq. (3. 17 ), we obtain x1,

x1 =
µ1 − βx2

µ1
=
µ1 − β µ1(αξ−βµ2)

ξβ(α+µ1)

µ1
,

x1 =
µ1ξ + βµ2

ξ(α+ µ1)
. (3. 23)
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Then giving the value of x2 into Eq. (3. 12 ), we get x3,

γ1x2 − µ1x3 = 0,

x3 =
γ1(αξ − βµ2)

ξβ(α+ µ1)
. (3. 24)

The second point is F2 = (x10, x20, x30, x40, x50) that corresponds to the endemic state
i.e. the case where the disease persists in the two populations.
The obtained values of x10, x20, x30, x40 and x50 are given below:

x10 =
(µ1ξ + βµ2)

ξ(α+ µ1)
, x20 =

µ1(αξ − βµ2)

ξβ(α+ µ1)
, x30 =

γ1(αξ − βµ2)

ξβ(α+ µ1)
,

x40 =
µ2β(α+ µ1)

α(µ1ξ + βµ2)
, x50 =

µ1(αξ − βµ2)

α(µ1ξ + βµ2)
. (3. 25)

Hence it is proved that the system of Eq. (2. 6 ) has two equilibrium pointsF1 = (1, 0, 0, 1, 0)
and F2 = (x10, x20, x30, x40, x50).

3.2. Theorem. 1 • The equilibrium point F1 = (1, 0, 0, 1, 0) is a saddle point.
2 • The equilibrium point F2 = (x10, x20, x30, x40, x50) is asymptotically stable.
Here, x10 = (µ1ξ+βµ2)

ξ(α+µ1)
, x20 = µ1(αξ−βµ2)

ξβ(α+µ1)
, x30 = γ1(αξ−βµ2)

ξβ(α+µ1)
, x40 = µ2β(α+µ1)

α(µ1ξ+βµ2)
,

x50 = µ1(αξ−βµ2)
α(µ1ξ+βµ2)

.
Proof:
1• To find the variational matrix we linearize the system given in Eq. (2. 6 ) at the the first
equilibrium point F1, we get the following matrix:

−µ1 0 0 0 −α
0 −β 0 0 α
0 γ1 −µ1 0 0
0 −ξ 0 −µ2 0
0 ξ 0 0 −µ2

 (3. 26)

Using MAPLE, Eq. (3. 26 ) leads to the following characteristic equation.

λ5 + (β + 2µ1 + 2µ2)λ4 + (αξ + 2βµ2 − µ2
1 − µ2

2)λ3 − (2αµ1ξ + αµ2ξ

− βµ2
1 − 4βµ1µ2 − βµ2

2 − 2µ2
1µ2 − 2µ1µ

2
2)λ2 − (αµ2

1ξ + 2αµ1µ2ξ − 2βµ2
1µ2

− 2βµ1µ
2
2 − µ2

1µ
2
2)λ− αµ2

1µ2ξ + µ2
2µ1β = 0. (3. 27)

The parameter values are given in Table 1. The eigenvalues for Eq. (3. 27 ) are as follows,
λ1 = −0.00004000, λ2 = −.55945061, λ3 = 0.201167613, λ4 = −0.00003990, λ5 =
−0.0294100.
As one of the eigenvalues at the equilibrium point F1 is positive, so the equilibrium point
is a saddle point. The human population is free of dengue disease since the the number of
infected human is 0 as well as the number of infected mosquito is also 0. Over all human
population is healthy and there is no infected human in the population.
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Name of parameter Notation Value

Host to vector infected rate γ1 0.328833
Contact rate, vector to host bβ1 0.75000
Contact rate, host to vector bβ2 0.375000

Human life span µ1 0.000046
Vector life span µ2 0.0323

TABLE 1. Parameter Values.

2 • To find the variational matrix we linearize the system given in Eq. (2. 6 ) at the
second equilibrium point F2, we obtain the following matrix:


µ1 − µ1

(αξ−βµ2)
(µ1ξ+βµ2)

0 0 0 −α (µ1ξ+βµ2)
ξ(α+µ1)

µ1
(αξ−βµ2)
(µ1ξ+βµ2)

−β 0 0 α (µ1ξ+βµ2)
ξ(α+µ1)

0 γ1 −µ1 0 0

0 −ξ µ2β(α+µ1)
α(µ1ξ+βµ2)

0 −µ2 − µ1
(αξ−βµ2)
β(α+µ2)

0

0 ξ µ2β(α+µ1)
α(µ1ξ+βµ2)

0 µ1
(αξ−βµ2)
β(α+µ2)

−µ2


(3. 28)

Using MAPLE, Eq. (3. 28 ) leads to the following characteristic equation:
λ5 − (−µ1x50 − ξx20 − β − 2µ2)λ4 − (αx10ξx10x40 − µ1x50ξx20 − βµ1x50 − βξx20 −
µ2
1x50−2µ1µ2x50−µ2ξx20−2βµ2+µ2

1−µ2
2)λ3−(−αx40x10ξ2x20+αx10ξ

2x10x40x20+
αµ2x10ξx10x40 − βµ1x50ξx20 − µ2

1x50ξx20 − µ1µ2x50ξx20 − βµ2
1x50 − 2βµ1µ2x50 −

βµ2ξx20−2µ2
1µ2x50+µ2

1ξx20−µ1µ
2
2x50+βµ2

1−βµ2
2+2µ2

1µ2)λ2−(−αµ2
1x10ξx10x40−

βµ2
1x50ξx20 − βµ1µ2x50ξx20 − µ2

1µ2x50ξx20 − 2βµ2
1µ2x50 + βµ2

1ξx20 − βµ1µ
2
2x50 +

µ2
1µ

2
2x50 + µ2

1µ2ξx20 + 2βµ2
1µ2 + µ2

1µ
2
2)λ− αµ2

1x40x10ξ
2x20 + αµ2

1x10ξ
2x10x40x20 +

αµ2
1µ2x10ξx10x40 + βµ2

1µ2x50ξx20 + βµ2
1µ

2
2x50 − βµ2

1µ2ξx20 − βµ2
1µ

2
2.

The eigenvalues for equilibrium point F2 are,
λ1 = −.358318057, λ2 = −0.0000234827 + 0.00353i, λ3 = −0.0000400, λ4 =
−0.0002348− 0.003533, λ5 = −0.0294519.
The eigenvalues are all negative and complex, so the equilibrium point is asymptotically
stable. The second equilibrium point shows that if the number of susceptible human popu-
lation rises up to 0.07925 of the total human population and the number of infected vector
rises up to 0.001425, the infected human population increases up to 0.00011 and the value
of recovered persons becomes 0.9206. The equilibrium point F2 would be stable, and there
would occur some cases of dengue fever.

4. NUMERICAL SOLUTION OF SIR MODEL

The exact solution is not always possible, therefore, we use different numerical tech-
niques to solve the problem. There are different numerical methods to solve initial value
problems such as Euler method, Bisection method, Newton method, Heun’s method and
Runge-Kutta methods. In this work, RK4 is applied to solve SIR model given in Eq. (2. 6 ).
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4.1. Algorithm. Suppose we have m differential equations:

y′1 = g1(t, y1, y2, ..., ym)

y′2 = g2(t, y1, y2, ..., ym)

. .

. .

y′m = gm(t, y1, y2, ..., ym),

with the initial conditions,

y1(t0) = y10, y2(t0) = y20, . . ., ym(t0) = ym0.

There is no derivative on the right hand side and all of these m equations are of order one.
RK4 formula is as follows:

yi,n+1 = yi,n +
h

6
(Li,1 + 2Li,2 + 2Li,3 + Li,4), (4. 29)

tn+1 = tn + h, (4. 30)

where,

Li,1 = gi(tn, y1n, y2n, ..., ymn), (4. 31)

Li,2 = gi(tn +
h

2
, y1n +

h

2
L11, y2n +

h

2
L21, ..., ymn +

h

2
Lm1), (4. 32)

Li,3 = gi(tn +
h

2
, y1n +

h

2
L12, y2n +

h

2
L22, ..., ymn +

h

2
Lm2), (4. 33)

Li,4 = gi(tn + h, y1n + hL13, y2n + hL23, ..., ymn + hLm3). (4. 34)

where yi,n+1 is the RK4 approximation of y(ti,n+1) and h is step size.

5. ANALYTICAL SOLUTION OF SIR MODEL

Positivity of solutions:
The solution of the systems given in Eqs. (2. 1 ) and (2. 2 ) with positive initial conditions
are positive for all t > 0.

5.1. Theorem. Consider the initial conditions, given in Eq. (2. 4 ), then the solutions
(S1, I1, R1, S2, I2) of the systems in Eqs. (2. 1 ) and (2. 2 ) are positive, for all t > 0.
Proof: We consider,

t∗ = sup{t > 0 : S1 > 0, I1 ≥ 0, R1 > 0, S(2) > 0, I2 ≥ 0}.
So t∗ > 0. Now for the first equation of system (2. 1 ),

dS1

dt
= µ1N1 −

β1b

N1
I2S1 − µ1S1,

= µ1N1 − (
β1b

N1
I2 + µ1)S1,

We let g(t) = β1b
N1
I2 and c = µ1N1, where c is a constant, the above equation becomes,

d

dt
(S1exp{

∫ t

0

g(u)du+ µ1t}) = c exp{
∫ t

0

g(u)du+ µ1t},
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Now taking integration on both sides from t = 0 to t = t∗

S1(t∗)exp{
∫ t∗

0

g(u)du+ µ1t
∗} − S1(0) =

∫ t∗

0

c exp{
∫ x

0

g(x)dx+ µ1y}dy.

Multiplying both sides by exp{−
∫ t∗
0
g(u)du− µ1t

∗},

S1(t∗) =S1(0)exp{−
∫ t∗

0

g(u)du− µ1t
∗}+ exp{−

∫ t∗

0

g(u)du− µ1t
∗}

×
∫ t∗

0

c exp{
∫ x

0

g(x)dx+ µ1y}dy > 0.

Since S1(t∗) is the sum of positive terms, so it is positive. Similarly we can prove for the
quantities (I1, R1, S2, I2) are positive for all t > 0.

5.2. Homotopy Perturbation Method. HPM, introduced by J. He, has been widely ap-
plied to obtain approximate series solution of linear and nonlinear differential equations
[7, 8]. These articles comprise the relevant literature on the application and convergence of
HPM [1, 3, 9, 10, 11, 12]. Firstly, we write the general system of differential equations as
follows:

dr1
dt

+ h1(t, r1, r2, ..., rm) = f1(t),

dr2
dt

+ h2(t, r1, r2, ..., rm) = f2(t),

. . .

. . .

drm
dt

+ hm(t, r1, r2, ..., rm) = fm(t), (5. 35)

with initial conditions,

r1(t0) = k1, r2(t0) = k2, ..., rm(t0) = km. (5. 36)

We can write Eq. (5. 35 ) in the operator form as:

L(r1) +A1(r1, r2, ..., rm)− f1(t) = 0,

L(r2) +A2(r1, r2, ..., rm)− f2(t) = 0,

. . . .

. . . .

L(rm) +Am(r1, r2, ..., rm)− fm(t) = 0. (5. 37)

subject to the conditions in Eq. (5. 36 ), whereL = d
dt is a linear operator andA1, A2, ..., Am

are nonlinear operators. Now based on the standard HPM, we present the solution for model
equations given in Eq. (5. 37 ).
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We construct a homotopy for Eq. (5. 37 ) that satisfies the following relations:

L(r1)− L(r1,0) + pL(r1,0) + p[A1(r1, r2, ..., rm)− f1(t)] = 0,

L(r2)− L(r2,0) + pL(r2,0) + p[A2(r1, r2, ..., rm)− f2(t)] = 0,

. . . . .

. . . . .

L(rm)− L(rm,0) + pL(rm,0) + p[Am(r1, r2, ..., rm)− fm(t)] = 0. (5. 38)

where p ∈ [0, 1], is a parameter and r1,0, r2,0, ..., rm,0 are initial approximations satisfying
the given conditions. Eq. (5. 38 ) becomes a linear system when p = 0 and a nonlinear
system when p = 1.

r1(t) = r1,0(t) + pr1,1(t) + p2r1,2(t) + ...,

r2(t) = r2,0(t) + pr2,1(t) + p2r2,2(t) + ...,

. .

. .

rm(t) = rm,0(t) + prm,1(t) + p2rm,2(t) + .... (5. 39)

where ri,j (i = 1, 2, ...,m; j = 1, 2, ...,m) are unknown functions which we have to
determine. Now we apply the inverse operator on the above system of equations to obtain
the values of unknown ri,j (i = 1, 2, ...,m; j = 1, 2, ...,m).

L−1(.) =

∫ t

0

(.) dt. (5. 40)

So the n− term approximation to the solutions of Eq. (5. 37 ) can be expressed as:

φ1,n(t) = r1(t) = limp→1r1(t) =

n−1∑
k=0

r1,k(t),

φ2,n(t) = r2(t) = limp→1r2(t) =

n−1∑
k=0

r2,k(t),

. . . .

. . . .

φm,n(t) = rm(t) = limp→1rm(t) =

n−1∑
k=0

rm,k(t). (5. 41)
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5.3. Implementation of HPM. In this subsection, the proposed HPM is implemented on
the SIR model. The simplified form of the model with initial conditions is given below:

dx1
dt

= µ1(1− x1(t))− αx1(t)x5(t),

dx2
dt

= αx1(t)x5(t)− βx2(t),

dx3
dt

= γ1x2(t)− µ1x3(t),

dx4
dt

= µ2(1− x4(t))− ξx2(t)x4(t),

dx5
dt

= ξx2(t)x4(t)− µ2x5(t). (5. 42)

with initial conditions,

x1(t0) = k1, x2(t0) = k2, x3(t0) = k3, x4(t0) = k4, x5(t0) = k5. (5. 43)

According to HPM, constructing a homotopy for Eq. (5. 42 ) satisfies the following rela-
tions:

x′1 − x′10 + p(x′10 − µ1(1− x1) + αx1x5) = 0,

x′2 − x′20 + p(x′20 − αx1x5 + βx2) = 0,

x′3 − x′30 + p(x′30 − γ1x2 + µ1x3) = 0,

x′4 − x′40 + p(x′40 − µ2(1− x4) + ξx2x4) = 0,

x′5 − x′50 + p(x′50 − αx1x5 + µ2x5) = 0. (5. 44)

with initial approximation:

x10(t) = k1, x20(t) = k2, x30(t) = k3, x40(t) = k4, x50(t) = k5. (5. 45)

and x1(t) = x1,0(t) + px1,1(t) + p2x1,2(t) + p3x1,3(t) + ...,

x2(t) = x2,0(t) + px2,1(t) + p2x2,2(t) + p3x2,3(t) + ...,

x3(t) = x3,0(t) + px3,1(t) + p2x3,2(t) + p3x3,3(t) + ...,

x4(t) = x4,0(t) + px4,1(t) + p2x4,2(t) + p3x4,3(t) + ...,

x5(t) = x5,0(t) + px5,1(t) + p2x5,2(t) + p3x5,3(t) + ... (5. 46)

where xi,j (i = 1, 2, ...,m; j = 1, 2, ...m) are the functions to be determined. Substituting
Eq. (5. 45 ) and Eq. (5. 46 ) into Eq. (5. 44 ) and equating the terms of same powers of p,
we have:
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x′1,1 − µ1 + µ1x1,0 + αx1,0x5,0 = 0, x1,1(0) = 0,

x′2,1 − αx1,0x5,0 + βx2,0 = 0, x2,1(0) = 0,

x′3,1 − γ1x2,0 + µ1x3,0 = 0, x3,1(0) = 0,

x′4,1 − µ2 + µ2x4,0 + ξx2,0x4,0 = 0, x4,1(0) = 0,

x′5,1 − ξx2,0x4,0 + µ2x5,0 = 0, x5,1(0) = 0,

x′1,2 + µ1x1,1 + αx1,0x5,1 + αx1,1x5,0 = 0, x1,2(0) = 0,

x′2,2 − αx1,0x5,1 − αx1,1x5,0 + βx2,1 = 0, x2,2(0) = 0,

x′3,2 − γ1x2,1 + µ1x3,1 = 0, x3,2(0) = 0,

x′4,2 + µ2x4,1 + ξx2,0x4,1 + ξx2,1x4,0 = 0, x4,2(0) = 0,

x′5,2 − ξx2,0x4,1 − ξx2,1x4,0 + µ2x5,1 = 0, x5,2(0) = 0,

x′1,3 + µ1x1,2 + αx1,0x5,1 + αx1,1x5,1 + αx1,1x5,0 = 0, x1,3(0) = 0,

x′2,3 − αx1,0x5,2 − αx1,1x5,1 − αx1,2x5,0 + βx2,2 = 0, x2,3(0) = 0,

x′3,3 − γ1x2,2 + µ1x3,2 = 0, x3,3(0) = 0,

x′4,3 + µ2x4,2 + ξx2,0x4,2 + ξx2,1x4,1 + ξx2,2x4,0 = 0, x4,3(0) = 0,

x′5,3 − ξx2,0x4,2 − ξx2,1x4,1 − ξx2,2x4,0 + µ2x5,2 = 0, x5,3(0) = 0. (5. 47)

Solving the above mentioned differential equations, we get:

x1,1 =

∫ t

0

[µ1 − µ1x1,0 − αx1,0x5,0] dx, x2,1 =

∫ t

0

[αx1,0x5,0 − βx2,0] dx,

x3,1 =

∫ t

0

[γ1x2,0 − µ1x3,0] dx, x4,1 =

∫ t

0

[µ2 − µ2x4,0 − ξx2,0x4,0] dx,

x5,1 =

∫ t

0

[ξx2,0x4,0 − µ2x5,0] dx, x1,2 =

∫ t

0

[−µ1x1,1 − αx1,0s5,1 − αx1,1x5,0] dx,

x2,2 =

∫ t

0

[αx1,0x5,1 + αx1,1x5,0 − βx2,1] dx, x3,2 =

∫ t

0

[γ1x2,1 − µ1x3,1] dx,

x4,2 =

∫ t

0

[−µ2x4,1 − ξx2,0x4,1 − ξx2,1x4,0] dx,

x5,2 =

∫ t

0

[ξx2,0x4,1 + ξx2,1x4,0 − µ2x5,1] dx,

x1,3 =

∫ t

0

[−µ1x1,2 − αx1,0x5,1 − αx1,1x5,1 − αx1,1x5,0] dx,

x2,3 =

∫ t

0

[αx1,0x5,2 + αx1,1x5,1 + αx1,2x5,0 − βx2,2] dx, x3,3 =

∫ t

0

[γ1x2,2 − µ1x3,2] dx,

x4,3 =

∫ t

0

[−µ2x4,2 − ξx2,0x4,2 − ξx2,1x4,1 − ξx2,2x4,0] ds,

x5,3 =

∫ t

0

[ξx2,0x4,2 + ξx2,1x4,1 + ξx2,2x4,0 − µ2x5,2] dx.
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The parameter values are taken from [13], k1 = 7675406
7675893 , k2 = 487

7675893 , k3 = 0.0,
k4 = 0.944, k5 = 0.056 as well α = 0.2925, β = 0.328879, γ1 = 0.328833, ξ = 0.375
yields:
x1,1 = −0.0163790t, x2,1 = 0.0163593t, x3,1 = 0.0000197t, x4,1 = 0.0017876t,
x5,1 = −0.0017876t, x1,2 = 0.0003959t2, x2,2 = −0.0030857t2, x3,2 = 0.0026897t2,
x4,2 = −0.0029245t2, x5,2 = 0.0029245t2, x1,3 = −0.0002901t3, x2,3 = 0.0006284t3,
x3,3 = −0.0003383t3, x4,3 = 0.0003920t3, x5,3 = −0.0003920t3.
The 4-term solution of HPM is

x1(t) = 0.99994− 0.0163790t+ 0.0003959t2 − 0.0002901t3, (5. 48)

x2(t) = 0.00006 + 0.0163593t− 0.0030857t2 + 0.0006284t3, (5. 49)

x3(t) = 0.00 + 0.0000197t+ 0.0026897t2 − 0.0003383t3,

x4(t) = 0.944 + 0.0017876t− 0.0029245t2 + 0.0003920t3,

x5(t) = 0.056− 0.0017876t+ 0.0029245t2 − 0.0003920t3. (5. 50)

Here, we calculated the HPM up to 10th term in order to obtain a reliable solution.
In order to obtain numerical results, RK4 is employed to solve the non linear system of
ODEs [4].

6. NUMERICAL TEST PROBLEM

In this section, the proposed analytical and numerical schemes are applied to solve the
model equations. The results are verified for two different models: (1) SI model, (2) SIR
model including human and vector population. The results are compared with the exact
solution owing to the availability of exact solution for simplified SI model equations. The
solutions of the SIR model are validated with real time data of dengue cases in Lahore.

6.1. Problem 1: SI model. The purpose of this problem is to validate the results of our
proposed HPM and RK4 techniques with the exact solution. The exact solution can only
be attained for simplified model equations. Recently, Shabbir et. al [21] extracted the exact
solution to the SIR model, which is a particular case of the model given by Kermack and
Mekendrick. The model is as follows:

dS1

dt
= µ− µS1 − αS1I1,

dI1
dt

= αS1I1 − µI1, (6. 51)

with the conditions S1(0) = S10 , I1(0) = I10 and S1(t) + I1(t) = N1.
The human population (N1) is taken as constant and is divided into two categories: Sus-
ceptible (S1) and Infected (I1).
The exact solution of Eq. (6. 51 ) is given as:

S1(t) = 1 + (N − 1)(1− µt)− w

α+ ω−αI0
I0exp(

α(N−1)
µ )

exp(−ωtα(N−1)µ )
,

I1(t) =
w

α+ ω−αI0
I0exp(

α(N−1)
µ )

exp(−ωtα(N−1)µ )
, where w = αN1 − µ. (6. 52)
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FIGURE 1. Comparison of exact solution with RK4 and HPM.

TABLE 2. Problem 1: Errors of HPM and RK method

t Susceptive Human S1 Infected Human I1
|S1exact − S1RK | |S1exact − S1HPM | |I1exact − I1RK | |I1exact − I1HPM |

0.10 4.0× 10−4 4.0× 10−4 4.0× 10−4 4.0× 10−4

0.015 1.8× 10−3 1.6× 10−3 1.7× 10−3 1.6× 10−3

0.020 4.6× 10−3 3.5× 10−3 4.4× 10−3 3.4× 10−3

0.025 9.2× 10−3 5.1× 10−3 8.9× 10−3 4.8× 10−3

0.030 1.6× 10−2 4.0× 10−3 1.5× 10−1 3.6× 10−3

0.035 2.5× 10−2 2.7× 10−3 2.4× 10−2 3.6× 10−3

0.040 3.6× 10−2 1.8× 10−2 3.5× 10−2 3.3× 10−3

0.045 5.0× 10−2 4.6× 10−2 4.9× 10−2 1.9× 10−2

0.050 6.5× 10−2 8.7× 10−2 6.4× 10−2 4.7× 10−2

The exact solution of SI model given in Eq. (6. 52 ) is compared with the solution ob-
tained by using HPM and RK4 methods. The Matlab software is used to solve the above
mentioned model.
The initial conditions, S10 = 1000, I10 = 200 and parameter values, α = 0.04 and µ = 0.5
are considered. The results are shown in Figure 1.
The solution of HPM is calculated up to the third term. Figure 1, depicts that solutions
obtained by HPM and RK4 methods agree well with the exact solution, for step size
4t = 0.03. Numerical errors of both the methods are presented in Table 2. Therefore,
it can be concluded that both methods produce reliable results to solve simplified non lin-
ear dynamical models.

6.2. Application of the model for Lahore. Lahore is the capital of Punjab Province. It is
Pakistan’s second largest metropolitan and 16th most populated city in the world. In July
2014, as per one estimation, the population of Lahore was around 7.566 million. Heavy
summer monsoon rains in Punjab province provide suitable environment for the spread of
dengue as vector population spreads fast in stationary waters. Annual average tempera-
ture during 2011 remained on higher side in most part of the country, which added to the
spread of dengue (Climate of Pakistan, 2011). In this study, four years (2011 to 2014) data
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of dengue disease has been obtained from District Health Office (DHO) Lahore. The pa-
rameter values for host population are extracted from the obtained data, while approximate
parameter values are used for vector population.
The SIR model given in Eq. (2. 6 ) for Lahore is simulated by using RK4 with the condi-
tions S1(0) = 7566000

7566000 , I1(0) = 0, R1(0) = 0, S2(0) = 0.944 and I2(0) = 0.056, and the
parameters µ1 = 0.00004, bβ1 = 0.75, bβ2 = 0.375, γ1 = 0.328833 and µ2 = 0.02941.
The comparison of HPM and RK4 is shown in Figure 2. The solution of both methods
shows good synchronization with each other. The solution obtained through HPM is ac-
quired using 10th order polynomial to obtain reliable results. The higher accuracy can be
achieved by increasing the order of polynomial in HPM. On the basis of results, it can be
concluded that both techniques (HPM and RK4) produce reliable solutions and can be used
to solve the nonlinear dynamical system to predict the behavior of infectious diseases. As
a classical technique, the solution obtained through RK4 is taken as a benchmark to solve
the models used for infectious diseases in the current research.
Figure 3 (Left) shows the number of dengue cases reported in Lahore while Figure 3 (Right)
shows the results obtained by RK4. According to Figure 3 (Left), the number of dengue
cases reach the highest level in 11 months. Figure 3 (Right), acquired by using the model
Eq. (2. 6 ), depicts that the number of infected human population rises up to 11 percent
of the total human population in 13 months. Moreover, the number of infected persons
reduce after 20 months. The difference between real data and simulated results is because
of the use of approximate parameter values. The simulated results further indicate that the
humans are completely recovered in 38 months, that is consistent with the obtained data in
Figure 3 (Left), as no dengue case is reported after these particular months. Moreover, the
susceptible vector population initially starts decreasing and reach its lowest level where the
infected mosquito population is on its peak and after that the susceptible population starts
increasing. The number of infected mosquitoes takes 26 months to reach its highest value
that is 47 percent of the mosquitoes’ total population and it takes more than 60 months to
reach its lowest level i.e. zero. It is important to mention that when the number of infected
mosquitoes rises, the number of infected human beings also rises.
In SIR model, parameters can be acquired by two ways: 1) extracting from real time data
2) using parameter estimation methods. In this work, we obtained real time data of Lahore
and used it in SIR model. Afterwards, we solved SIR model and predicted the situation
of dengue spread in Lahore. The considered SIR model can be applied to analyze the
transmission of dengue disease in other regions.

6.2.1. Reproduction rate, R0. The reproduction rate (R0) is used to measure the possible
communication of a disease. The R0 shows the number of infection among the humans as
a result of infected mosquitoes [23]. It can be defined mathematically as

R0 =
bβ2I2/N1

γ1
S1(0).

If the value of R0 is greater than 1 (R0 > 1), DF become epidemic [15].
The use of initial and parameter values from the data of dengue cases in Lahore can be
rewritten in mathematical form as:
For Lahore, the value of R0 is bβ2I2/N1

γ1
S1(0) = 1.1375I2.

For different values of I2, the values of R0 are given in Table 3. From Table 3, we find that
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(A) Susceptible human population
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(B) Infected human population
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(C) Recovered human population
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(D) Susceptible vector population
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FIGURE 2. Approximate Solution of SIR model using 10th term HPM and RK4.

if the number of infected mosquitoes are less than one (I2 < 1), then R0 < 1, and cases
of dengue fever are not worrisome, since the obtained results show that dengue virus has
no potential to infect healthy humans. The sketch of the dynamics for Lahore (Pakistan) is
given in Figure 4 (upper figures). For R0 ≤ 1, Figure 4 (lower figures) depicts the typical
behavior of the SIR model and shows the trivial state where the whole human population
remains healthy. If the number of infected mosquitoes is more than one (I2 > 1), then
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FIGURE 3. Left: Number of cases reported in Lahore, Pakistan, from
2011 to 2014, Right: DF For Lahore with initial conditions S1(0) = 1,
I1(0) = 0, R1(0) = 0, S2(0) = 0.944 and I2(0) = 0.056.

R0 > 1 as indicated in Table 3. The results show that the infection rate is very high, and
the transmission of dengue virus can infect more than one persons. Figure 4 (lower figures)
shows the non-typical behavior and the number of infected human rises with the rise in
infected mosquitoes.

I2value R0 values

0.056 0.0637
0.1 0.11375
1 1.1375
5 5.6875

TABLE 3. Re-breeding value R0 of infected mosquitoes.

6.2.2. Parametric study of dengue cases. Effects of different parameters are discussed in
this subsection. In the numerical experiments, we change one parameter, while keeping all
the other parameters fixed.
In Figure 5, the value of bβ1 is varied and all the others parameter values are kept fixed.
The solution is found for three different values of human to vector contact rate i.e. bβ1
(0.65, 0.75, 0.85). The variation of susceptible human, infected human and infected vec-
tors population are shown in Figure 5. It is found that as the quantitative values of contact
rate from vector to human increase, the number of infected human population also increases
along with the increase in number of infected mosquitoes. The susceptible human popu-
lation decreases more rapidly and approaches close to zero. The decrease in the value of
contact rate from vector to human shows a decline in the number of infected human pop-
ulation due to less number of infected vector population. There also occurs a decrease in
susceptible to infected human population. Figure 6, presents the results for different val-
ues of bβ2 (0.3, 0.375, 0.46). The results show that when interaction between vector and
human increases, the number of virus infected humans also increases. Moreover, the ratio
of susceptible individuals also increases. When the value of contact rate (vector to human)
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FIGURE 4. Upper figures: For R0 < 1, Lower figures: For R0 > 1.

decreases, the number of infected individuals also decreases. Similarly with the increase
in the value of recovery rate γ, presented in Figure 7, the virus-infected human population
and infected mosquito population will decrease. There is also a decrease in the number of
susceptible individuals.

7. CONCLUSION

In this study, SIR model including human and vector population was solved analytically
and numerically. The model contains system of coupled non-linear differential equations
which incorporate the human population (Susceptible, Infected, and Recovered) and vec-
tor population (Susceptible and Infected) dynamics. HPM was applied to obtain analytical
solution, whereas, RK4 was employed to acquire numerical solution. The results were val-
idated with the available exact solution in the literature. Furthermore, HPM and RK4 were
implemented to the considered model using the four years (2011 − 2014) data of dengue
cases in Lahore, Pakistan. Both schemes were found to be in agreement with available
exact solution and real time data. HPM results approach to the exact solution by including
higher order polynomials. Synchronization between the simulated results and the real time
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FIGURE 5. Variation of the susceptible human population, infected hu-
man population and infected vector population with time for differ-
ent rate of contact, vector to human (bβ1), where other parameters are
µ1 = 0.000046, µ2 = 0.0323, bβ2 = 0.375 and γ1 = 0.328833.

data of dengue cases verified the correctness of model formulation. Furthermore, the para-
metric study was performed. The reproduction rate (R0) results showed that dengue virus
largely depends upon the infected mosquitoes which have the potential to infect healthy
human population rapidly. The study recommends that serious measures should be taken
for the reduction of mosquitoes’ breeding. We also conclude that the considered SIR model
can be applied to analyze the transmission of dengue disease in other regions.
Future researches may explore parameter estimation, inclusion of climate in the SIR model
and solution of the optimal control problems to develop the control strategies for the elim-
ination of dengue disease.
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FIGURE 6. Variation of the susceptible human population, infected hu-
man population and infected vector population with time for differ-
ent rate of contact, human to vector (bβ2), where other parameters are
µ1 = 0.000046, µ2 = 0.0323, bβ1 = 0.75 and γ1 = 0.328833.
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