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Abstract. In the current work, the Molodtsov’s idea of soft sets [14] is
applied on the theory of BCK-modules [1]. The aim here, is to introduce
the notion of soft BCK-modules and discuss its basic properties. In this
regard, three theorems for soft BCK-modules isomorphism are developed.
The notion of softX−exactness of BCK-modules is introduced and its
relation with softX−isomorphism is studied. A transitivity between two
softX−exact sequences is also established.
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1. I NTRODUCTION

The limitations of classical methods in dealing with uncertainties in economics, en-
vironmental sciences, engineering models and other fields persuade researchers to think
otherwise. This result in development of fuzzy sets [20], rough set theory [16], probability
theory, and other mathematical tools. However, these methods inherited their own difficul-
ties and limitations. Consequently, in [14], Molodtsov proposed a new approach to deal
with these difficulties, which is referred as the soft set theory. The idea attracted many
researchers and the theory developed rapidly. A detailed theoretical study of soft sets and
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their implementation on decision making is discussed by Maji et al. in [12]. The applica-
tion of soft sets is not limited to these areas only but it also motivated people working in
more abstract areas of mathematics to apply soft sets in their areas. In this regard, Aktas
et al. [3], introduced the notion of soft groups and developed its basic theory. Jun. applied
soft set theory to BCK/BCI-algebras in [10]. Soft rings were introduced by Acar et al. in
[2]. Atagün and Sezgin, discussed soft substructures of rings, fields and modules in [4].
For other developments in soft set theory, we refer [15, 18, 19].

This paper is intended to apply the theory of soft sets on BCK-modules and thereby
introducing the notion of soft BCK-modules. A BCK-module was presented in [1] as an
action of a BCK-algebra on an abelian group. It has been explored by many researchers for
various ventures (see [5, 6, 7, 11, 17]).

The paper begins with the preliminary concepts from the theories of soft sets, BCK-
algebras and BCK-modules. The presentation of the notion soft BCK-module and devel-
oping its basic theory is one of the prime motives of the current work. Several examples
and results have been presented in this regard. The three isomorphism theorems of soft
BCK-modules are established. Finally, soft exactness of BCK-modules is introduced and a
relationship between softX−exactness and softX−isomorphism aswell as transitivity of
softX−exact sequences of BCK-modules is established.

2. PRELIMINARIES

In this section, some preliminaries from the soft set theory, BCK-algebras and BCK-
modules are included. All through the section,U is referred an initial universe,E is a
parameters set,A ⊆ E andP (U) is the power set ofU .

Definition 2.1. [13] (Soft Set)
A pair (F,A) is called a soft set(S−set) overU , whereF is a mapping given byF : A →
P (U).

Definition 2.2. [13] Let (F1, A1) and (F2, A2) are S−sets overU , (F1, A1) is called a
soft subset of(F2, A2) if

(i): A1 ⊂ A2 and
(ii): ∀ε ∈ A1, F1(ε) andF2(ε) are identical approximations.

The above relation is denoted by(F1, A1)
∼⊂ (F2, A2). Similarly, the notation(F1, A1)

∼⊃
(F2, A2) denotes that(F1, A1) is a soft superset of(F2, A2).
Also,(F1, A1) = (F2, A2), if (F1, A1)

∼⊂ (F2, A2) and(F2, A2)
∼⊂ (F1, A1).

Definition 2.3. [13] Let (F1, A1) and(F2, A2) beS−sets overU

(1) The intersection of(F1, A1) and(F2, A2) is theS−set(F̃ , Ã), whereÃ = A1∩A2

and∀ε ∈ Ã, F̃ (ε) = F1(ε)
⋂

F2(ε). This relationship is denoted by(F1, A1)
∼∩

(F2, A2) = (F̃ , Ã).
(2) The union of(F1, A1) and(F2, A2) is theS−set( ˜̃F, ˜̃A), where ˜̃A = A1 ∪A2 and

∀ε ∈ ˜̃A

˜̃F (ε) =





F1(ε) ε ∈ A1 \A2

F2(ε) ε ∈ A2 \A1

F1(ε) ∪ F2(ε) ε ∈ A1 ∩A2
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This relationship is denoted by(F1, A1)
∼∪ (F2, A2) = ( ˜̃F, ˜̃A).

Example 2.4. LetU = {1, 2, 3} andE =Set of Colours. Suppose thatA1 = {red, green,
blue} and A2 = {green, blue} are two subsets ofE. DefineF1 : A1 → P (U) and
F2 : A2 → P (U) by

F1(ε) =




{1} if ε = red
{1, 2} if ε = green
{1, 2, 3} if ε = blue

F2(ε) =
{ {1, 3} if ε = green
{2, 3} if ε = blue

Then(F1, A1) and(F2, A2) are aS−sets overU . Here,A2 ⊂ A1, butF2(ε) is not equal
to F1(ε) for all ε in A2, therefore,(F2, A2) is notS−subset of(F1, A1).
Also,(F1, A1)

∼∩ (F2, A2) = (F̃ , Ã) and

F̃ (ε) =
{ {1} if a = green
{2, 3} if a = blue

Similarly,(F1, A1)
∼∪ (F2, A2) = ( ˜̃F, ˜̃A) and

˜̃F (ε) =




{1} if a = red
{1, 2, 3} if a = green
{1, 2, 3} if a = blue

Next we define a BCK-algebra. It is an important class of logical structure introduced as
a natural generalization of propositional calculus by K. Iseki and S. Tanaka in [9]. Several
researchers have been investigating it since then.

Definition 2.5. [9] (BCK-Algebra)
A BCK-algebra is an algebraic system(X, ∗, 0) that satisfies the following axioms for all
x1, x2, x3 ∈ X:

(1)
(
(x1 ∗ x2) ∗ (x1 ∗ x3)

) ∗ (x3 ∗ x2) = 0
(2)

(
x1 ∗ (x1 ∗ x2)

) ∗ x2 = 0
(3) x1 ∗ x1 = 0
(4) 0 ∗ x1 = 0
(5) x1 ∗ x2 = 0, x2 ∗ x1 = 0 impliesx1 = x2

(6) x1 ∗ x2 = 0 iff x1 ≤ x2

It can be noted that(X,≤) forms a poset. In sequel, the BCK-algebra(X, ∗, 0) is
denoted byX. If ∃1 ∈ X such thatx1 ≤ 1 for all x1 in X, thenX is called bounded,X
is called commutative ifx1 ∧ x2 = x2 ∧ x1 holds for allx1, x2 in X, wherex1 ∧ x2 =
x2 ∗ (x2 ∗ x1). We refer [8, 9] for undefined terms and more details of BCK-algebras.
Here, we present some examples of BCK-algebra.

Example 2.6. Let X1 = {0, 1, 2, 3, 4} and “∗” be a binary operation onX1 defined
as x1 ∗ x2 = x1 − min(x1, x2) ∀x1, x2 ∈ X1. Then it can be seen from Table 1 that
(X1, ∗, 0) forms a commutative BCK-algebra. Indeed, one can extend this example by
takingX1 = {0, 1, . . . , n} for any finiten ∈ N .

Example 2.7. Let A be a non-empty set andP (A) be its power set. Then(P (A), \, ∅)
forms a bounded commutative and implicative BCK-algebra, where the binary operation
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* 0 1 2 3 4

0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
3 3 2 1 0 0
4 4 3 2 1 0

TABLE 1. Cayley table for BCK-algebra(X1, ∗, 0)

“ \” is the usual set difference. Indeed, ifA = {a1, a2}, then P (A) = {∅, S1 =
{a1}, S2 = {a2}, A}. It can be seen from Table 2 that(P (A), \, ∅) forms aBCK−algebra.

\ ∅ S1 S2 A
∅ ∅ ∅ ∅ ∅
S1 S1 ∅ S1 ∅
S2 S2 S2 ∅ ∅
A A S2 S1 ∅

TABLE 2. Cayley table for BCK-algebra(P (A), \, ∅)

The next in the sequel, is the notion of a BCK-module. It was introduced as an action
of BCK-algebras on an abelian group by H.A.S. Abujabal, M. Aslam and A.B. Thaheem
in [1]. Interests have been shown by several researchers in the development of its theory.
Some of the developments can be seen in [5, 11, 17].

Definition 2.8. [1] (BCK-Module)
Let (M, +) be an abelian group andX be a BCK-algebra. ThenM is said to be an
X−module if there exists a mapping(x,m) 7→ xm from X ×M → M such that for all
x1, x2 ∈ X andm,m1,m2 ∈ M , following conditions are satisfied:

(1) (x1 ∧ x2)m = x1(x2m)
(2) x1(m1 + m2) = x1m1 + x1m2

(3) 0m = 0
(4) 1m = m, if X is bounded.

One can define a rightX−module in a similar way. In this paper, anX−moduleM , is use
to refer a left BCK-module.

Some examples of BCK-modules are presented here.

Example 2.9. [1] A BCK-algebra(X, ∗, 0) which is bounded and implicative forms an
X−module over itself.

Example 2.10. Let (P (A), \, ∅) be the BCK-algebra defined in Example 2.7. Then the
setM1 = {∅, S1} forms an abelian group w.r.t. the addition “+” defined bym1 + m2 =
(m1\m2)∪(m2\m1) ∀ m1,m2 ∈ M1. Define an action ofP (A) onM1 byxm = x∩m
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+ ∅ S1

∅ ∅ S1

S1 S1 ∅
TABLE 3. Cayley table of group(M1, +)

for all x ∈ P (A) & m ∈ M1. Then it is easy to see thatM1 forms anP (A)−module.
Table 4 summarize the action ofP (A) onM1.

∩ ∅ S1 S2 A

∅ ∅ ∅ ∅ ∅
S1 ∅ S1 ∅ S1

TABLE 4. Action of P (A) onM1

Example 2.11. Let (X1, ∗, 0) be the BCK-algebra discussed in Example 2.6 andN1 =
{0, 1} ⊂ X1. Define an operation of addition “+” on N1 asx1 + x2 = max(x1 ∗ x2, x2 ∗
x1) ∀ x1, x2 ∈ N1. Then it is easy to see that(N1, +) forms an abelian group.
Now if an action ofX1 is defined onN1 byxn = min(x, n) ∀x ∈ X1, n ∈ N1, then Table
5 shows thatN1 forms anX1−module.

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 1 1 1

TABLE 5. Action of X1 onN1

A subgroupN of an X−moduleM is called anX−submodule ofM if N is also
an X−module. LetM1,M2 be X−modules. A mappingf : M1 → M2 is called an
X−homomorphism if for anyx ∈ X andm1, m2 ∈ M1 the following hold: 1)f(m1 +
m2) = f(m1) + f(m2), 2) f(xm1) = xf(m1). An X−homomorphismf : M1 → M2

which is both one to one as well as onto is called anX−isomorphism. TheKer f and
Im f , both in usual sense, are submodules ofM1 andM2 respectively (see [17]). IfN is
anX−submodule of anX−moduleM , then quotient groupM/N forms anX−module
called the factorX−module w.r.t the scalar multiplication(x, m + N) → xm + N ∀x ∈
X, m ∈ M from X × (M/N) → M/N . (see for details and developments [1, 5, 6, 7, 11,
17]).

3. SOFT BCK-M ODULES

In this section, the notion of Soft BCK-Modules is introduced. Some related examples
will be discussed. The notion of softX−subomdules will be introduced and discussed.
The necessary conditions on summation, intersection and union of an arbitrary family of
softX−submodules to become a softX−subomdule will also be established.
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Definition 3.1. (Soft BCK-Module)
AnS−set(F,A) over anX−moduleM is said to be a softX−module (SX−module) over
M , if for all ε ∈ A, F (ε) is anX−submodule ofM . The collection of allSX−modules
over anX−moduleM is denoted bySX(M)

Some examples of soft BCK-modules are produced here.

Example 3.2. LetM1 be aP (A)−module defined in Example 2.10 andB1 ⊂ P (A) = E.
DefineG1 : B1 → P (M1) andG2 : B1 → P (M1) by

G1(ε) =
{ {∅} if ε 6⊆ M1

{∅, A1} if ε ⊆ M1
G2(ε) =

{ {∅} if ε 6⊇ M1

{∅, A1} if ε ⊇ M1

Then(G1, B1) and(G2, B1) are softP (A)−modules overM1.

Example 3.3. LetN1 be anX1−module defined in Example 2.11 andA1 = {red, green}
and A2 = {green, blue} be two subsets of the setE of all colours. DefineF1 : A1 →
P (N1) andF2 : A2 → P (N1) by

F1(ε) =
{ {0} if ε = red
{0, 1} if ε = green

F2(ε) =
{ {0} if ε = green
{0, 1} if ε = blue

Then(F1, A1) and (F2, A2) are softX1−modules overN1. Similarly, if A3 = X in
Example 2.11, thenF3 : A3 → P (N1) defined below forms a softX1−module overN1.

F3(ε) =
{ {0} if ε /∈ N1

{0, 1} if ε ∈ N1

Proposition 3.4. Let (F1, A1) and(F2, A2) be inSX(M). Then

(1) (F1, A1)
∼∩ (F2, A2) is in SX(M).

(2) (F1, A1)
∼∪ (F2, A2) is in SX(M), providedA1 ∩A2 = ∅.

Proof. It is clear from Definition 2.3 that(F1, A1)
∼∩ (F2, A2) = (F̃ , Ã) is a S−set,

where, Ã = A1 ∩ A2 and ∀ε ∈ Ã, F̃ (ε) = F1(ε)
⋂

F2(ε). Also from the fact that

intersection ofX−submodules is again anX−submodule (see [1]),(F1, A1)
∼∩ (F2, A2)

is aSX−moduleM .
Similarly, if A1 ∩ A2 = ∅, then from Definition 2.3,(F1, A1)

∼∪ (F2, A2) = ( ˜̃F, ˜̃A)
is a S−set such that̃̃F (ε) either equalsF1(ε) or F2(ε) for all ε ∈ A1 − A2 or ε ∈
A2 −A1 respectively. SinceF1(ε) andF2(ε) areX−submodules ofM , therefore˜̃F (ε) is
anX−submodules ofM . ¤

Definition 3.5. Let (F1, A1) and(F2, A2) beSX−modules over anX−moduleM . Then
(F1, A1) + (F2, A2) is defined as(S, A × B), whereS(ε, δ) = F1(ε) + F2(δ) ∀(ε, δ) ∈
A1 ×A2.

Proposition 3.6. Let (F1, A1) and (F2, A2) be inSX(M). Then(F1, A1) + (F2, A2) is
also belongs toSX(M).

Proof. This can be easily obtained from the fact that sum ofX−submodules is again an
X−submodule ofM (see [1]). ¤
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Definition 3.7. Let (F1, A1) and (F2, A2) be twoSX−modules overX−modulesM1

andM2 respectively. Then we define(F1, A1) × (F2, A2) = (P,A1 × A2) asP (ε, δ) =
F1(ε)× F2(δ) for all (ε, δ) ∈ A1 ×A2.

Proposition 3.8. Let (F1, A1) and (F2, A2) be twoSX−modules overX−modulesM1

and M2 respectively. Then(F1, A1) × (F2, A2) is a SX−module over theX−module
M1 ×M2.

Proof. This is clear from the fact that the cartesian product of twoX−modules is also an
X−module (see[1]). ¤

It was shown in [1] that direct product of twoX−moduels is isomorphic to the cartesian
product. Therefore,⊕ can be used instead of× in the above proposition.

Definition 3.9. Let (F1, A1) and(F2, A2) beSX−modules over anX−moduleM . Then
(F2, A2) is a softX−submodule (SX−submodule) of(F1, A1) if

(1) A2 ⊂ A1 and
(2) F2(ε) < F1(ε), ∀ε ∈ A2.

This is denoted by(F2, A2)
∼
< (F1, A1).

Proposition 3.10. Let (F1, A1) and (F2, A2) be SX−modules over anX−moduleM

such thatA2 ⊆ A1. Then(F2, A2)
∼
< (F1, A1) if F2(ε) ⊆ F1(ε), ∀ε ∈ A2.

Proof. It is simple to prove. ¤

Proposition 3.11. Let (F,A) be aSX−module over anX−moduleM , and consider the
nonempty family{(Gi, Bi)|i ∈ I} of softX−submodules of(F,A). Then

(1)
∑
i∈I

(Gi, Bi)
∼
< (F,A).

(2)
⋂
i∈I

(Gi, Bi)
∼
< (F,A).

(3)
⋃
i∈I

(Gi, Bi)
∼
< (F,A), if Bi ∩Bj = ∅ ∀i, j ∈ I.

Proof. It can be seen from Propositions 3.4, 3.6 and 3.10. ¤

Proposition 3.12. Let(F1, A1) and(F2, A2) be twoSX−modules over anX−moduleM
such that(F2, A2) be softX−submodule of(F1, A1). Let M̃ be anX−module andf :
M → M̃ is anX−homomorphism. Then(f(F1), A1) and(f(F2), A2) areSX−modules

overM̃ , and(f(F2), A2)
∼
< (f(F1), A1).

Proof. Sincef : M → M̃ is anX−homomorphism, therefore,f(F1(ε)) andf(F2(δ))
areSX−modules ofM̃ ∀ε ∈ A1 and∀ δ ∈ A2. This implies that both(f(F1), A1) and

(f(F2), A2) areSX−modules overM̃ . If (F2, A2)
∼
< (F1, A1), then indeed it follows that

F2(δ) andf(F2(δ)) are theX−submodules ofF1(δ) andf(F1(δ)) ∀δ ∈ A2, respectively.

Therefore, by Definition 3.9, we immediately conclude that(f(F2), A2)
∼
< (f(F1), A1).

¤
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4. I SOMORPHISM THEOREM OF SOFT BCK-M ODULES

In this section, we introduce the notion of softX−homorphisms and softX−isomo-
rphisms ofX−modules and establish the isomorphism theorems onSX−modules.

Definition 4.1. (Soft X−Hommorphism)
Let (F1, A1) ∈ SX(M1) and(F2, A2) ∈ SX(M2), φ : M1 → M2, & θ : A1 → A2 be
any two mappings. Then(φ, θ) is said to be a softX−homomorphism (SX−homomorphi-
sm) if it satisfies the following conditions:

(1) φ : M1 → M2 is anX−homomorphism;
(2) θ : A1 → A2 is surjective;
(3) φ(F1(ε)) = F2(θ(ε)), ∀ε ∈ A1.

In this case, we say(F1, A1) is softX−homomorphic to(F2, A2), and it is denoted by
(F1, A1) ' (F2, A2).

In this definition, ifφ is anX−isomorphism andθ is a bijection, then we say that(φ, θ)
is a softX−isomorphism and that(F1, A1) is softX−isomorphic to(F2, A2), denoted by
(F1, A1) ∼= (F2, A2).

Proposition 4.2. Let (F1, A1) be aSX−module over anX−moduleM1 and consider
the S−set(F2, A2) over anX−moduleM2. If (F1, A1) ' (F2, A2) as anS−set, then
(F2, A2) ∈ SX(M2).

Proof. Let (φ, θ) : (F1, A1) → (F2, A2) be anX−homomorphism. Now,∀ δ ∈ A2 ∃ ε ∈
A1 such thatg(ε) = δ. Therefore,F2(δ) = F2(g(ε)) = f(F1(ε)) is anX−submodule of
the moduleM2. This implies(F2, A2) ∈ SX(M2). ¤

Proposition 4.3. Let(F1, A1) ∈ SX(M1) and(F2, A2) ∈ SX(M2). If (φ, θ) : (F1, A1) →
(F2, A2) is anSX−homomorphism and(F ′, A′)

∼
< (F1, A1), then(F2, θ(A′))

∼
< (F2, A2).

Proof. Indeed clear, since for allε ∈ θ(A′) ⊂ A2, F2(ε) is a softX−submodule of
M2. ¤

We conclude this section by presenting the isomorphism theorems ofSX−modules.

Theorem 4.4. (1st Iso-Theorem ofSX−modules)
Let (F1, A1) ∈ SX(M1) and (F2, A2) ∈ SX(M2). If (φ, θ) : (F1, A1) → (F2, A2) is
an SX−homomorphism andkerφ ⊂ F (ε) for all ε ∈ A1. Then the following conditions
hold:

(1) If I(ε) = F (ε)/kerφ, J(x) = φ(F (ε)), ε ∈ A1, then(I,A1) ∼= (J,A1).
(2) (I,A1) ∼= (F2, A2), providedθ is a bijection.

Proof. (1) From [1],kerφ is anX−submodule ofM1 and therefore,M1/ kerφ forms an
X−module. Also, sincekerφ is anX−submodule ofF1(ε), therefore,F1(ε)/ kerφ is also
anX−module, for allε ∈ A1. Indeed,F1(ε)/ kerφ is anX−submodule ofM1/ kerφ.
This implies that(I,A1) is aSX−module overM1/ kerφ. Now for all ε ∈ A1, it is easy
to see thatJ(ε) = φ(F1(ε)) = F2(θ(ε)) is anX−submodule ofM2. Therefore,(J,A1) is
aSX−module overM2.
Define φ̄ : M1/ kerφ → M2 by φ̄(m + kerφ) = φ(m); for all m ∈ M1. Then
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φ̄ : M1/ kerφ → M2 is anX−isomorphism.
Let iθ : A1 → A1 defined byiθ(ε) = ε be an identity mapping. Theniθ is indeed a
bijection. Now, we havēφ(I(x)) = φ̄(F1(ε)/ kerφ) = φ(F1(ε)) = J(ε) = J(iθ(ε)).
Consequently,(φ̄, iθ) is a softX−isomorphism i.e.(I, A1) ∼= (J,A1).

(2) Defineφ̄ : M1/ kerφ → M2 by φ̄(m + kerφ) = φ(m); for all m ∈ M1. Then
φ̄ is anX−isomorphism fromM1/ kerφ to M2. Sinceθ is a bijection andφ̄(I(ε)) =
φ̄(F (ε)/ kerφ) = φ(F (ε)) = H(θ(ε)), we conclude that(I,A1) ∼= (F2, A2). ¤

Theorem 4.5. Let(F, A) be inSX(M). If (F1, A1) and(F2, A2) areSX−submodules of
(F, A), then(P1, A1) ' (Q1, A1) and(P2, A2) ' (Q2, A2), whereP1(ε) = F1(ε)/(M1∩
M2), Q1(ε) = (F1(ε) + M2)/M2, P2(ε) = F2(ε)/(M1 ∩ M2), Q2(ε) = (F2(ε) +
M1)/M1, M1 =

⋂
ε∈A1

F1(ε) andM2 =
⋂

ε∈A2
F2(ε).

Proof. Let us denoteK =
〈⋃

ε∈A1
F1(ε)

〉
and L =

〈 ⋃
ε∈A2

F2(ε)
〉
. Then, M1 =⋂

ε∈A1
F1(ε) is anX−submodule ofM . It is clear thatM1 is also anX−submodule

K so thatM1 ∩M2 is anX−submodule ofK and hence,(P1, F1) is aSX−module over
K/(M1 ∩M2). It is trivial that(Q1, F1) is anSX−module over(K + M2)/M2.
Now, define a mappingf : K/(M1∩M2) → (K+M2)/M2 byf(k+(M1∩M2)) = k+M2

and id : F1 → F1 by id(ε) = ε. Thenf from K/(M1 ∩ M2) to (K + M2)/M2 is an
X−homomorphism, whereid is a bijection andf(P1(ε)) = f(F1(ε)/(M1 ∩ M2)) =
(F1(ε) + M2)/M2 = Q1(ε) = Q1(id(ε)). This shows that(P1, A1) ' (Q1, A1) .
(P2, A2) ' (Q2, A2) can be proved similarly. ¤

Theorem 4.6. (2nd Iso-Theorem ofSX−modules)
Let (F, A) be inSX(M). If (F1, A1) and (F2, A2) are SX−submodules of(F,A) such
thatF1(ε) = M1 for all ε ∈ A1, then(P1, A1) ∼= (Q1, A1), whereP1(ε) = F1(ε)/(M1 ∩
M2), Q1(ε) = (F1(ε) + M2)/M2, M2 =

⋂
ε∈A2

F2(ε).

Proof. Indeed, if we replaceK = M1 = F1(ε) for all ε ∈ A1 in Theorem 4.5, the proof
of the theorem can be similarly furnished. ¤

Theorem 4.7. (3rd Iso-Theorem ofSX−modules)
Let (F,A) be inSX(M). If (F1, A1) and(F2, A2) are SX−submodules of(F,A), such
thatA1 ∩A2 6= ∅ andF2(ε) ⊂ F1(ε)∀ε ∈ A1 ∩A2, then

(P, A1 ∩A2) ∼= (Q,A1 ∩A2),

where,P (ε) = (F (ε)/M2)/(M1/M2), Q(x) = F (ε)/M1 with M1 =
⋂

ε∈(A1∩A2)

F1(ε)

andM2 =
⋂

ε∈(A1∩A2)

F2(ε).

Proof. It is indeed clear thatM1 andM2 areX−submodules ofM , andM2 is anX−subm-
odule ofM1. Therefore,(M/M2)/(M1/M2) forms anX−module (from [1]) and(P,A1∩
A2) is a softX−submodule over it. Also,(Q,A1 ∩ A2) is aSX−module overM/M1.
Now define the mappingf : (M/M2)/(M1/M2) → M/M1 by

f((m + M2) + (M1/M2)) = m + M1 ∀m ∈ M
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and an identity mappingid : A1 ∩ A2 → A1 ∩ A2 by id(ε) = ε. One can see thatf is an
X−isomorphism therefore

f(P (ε)) = f((F (ε)/M2)/(M1/M2)) = F (ε)/M1 = Q(id(ε)).

Hence, from Definition 4.1,(P, A1 ∩A2) ∼= (Q,A1 ∩A2). ¤

5. EXACTNESS OF SOFT BCK-M ODULES

In the current section, all nonempty sets are considered asX−modules.

Definition 5.1. (Soft X−Exactness)
Let (F1, A1), (F2, A2) and(F3, A3) be inSX(M1), SX(M2) andSX(M3), respectively.

Then a sequence(F1, A1)
(φ1,θ1)−→ (F2, A2)

(φ2,θ2)−→ (F3, A3) of SX−homomorphisms is
said to be softX−exact (SX−exact) at(F2, A2), if the following conditions are satisfied:

(1) M1
φ1−→ M2

φ2−→ M3 is exact.

(2) A1
θ1−→ A2

θ1−→ A3 is exact.

Proposition 5.2. Let(F1, A1), and (F2, A2) be inSX(M1), andSX(M2), respectively.

If (F1, A1)
(φ1,θ1)−→ (F2, A2) −→ 0. is SX−exact, then(φ1, θ1) is SX−homomorphism.

In particular, if 0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2) −→ 0 is SX−exact, then(φ1, θ1) is a

SX−isomorphism.

Proof. From Definition 5.1, it follows thatM1
φ1−→ M2

φ2−→ 0 and A1
θ1−→ A2

θ1−→
0 areX−exact. Therefore,(φ1, θ1) areX−epimorphisms, which implies(φ1, θ1) is an
X−homomorphism.

In particular, if0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2) −→ 0 is SX−exact, then again from

Definition 5.1,0 −→ M1
φ1−→ M2

φ2−→ 0 and0 −→ A1
θ1−→ A2

θ1−→ 0 areX−exact. This
implies that(φ1, θ1) areX−isomorphisms, and hence(φ1, θ1) is aSX−isomorphism. ¤

Definition 5.3. Let M = 0 andA = 0, then(F1, A1) = 0. We call(F1, A1) is a zero-
SX−module.

Proposition 5.4. Let(F1, A1), (F2, A2) and(F3, A3) be inSX(M1), SX(M2) andSX(M3),

respectively. If(F1, A1)
(φ1,θ1)−→ (F2, A2)

φ2,θ2)−→ (F3, A3) is SX−exact with(φ1, θ1)
X−epimorphism and(φ2, θ2) X−monomorphism, then(F2, A2) is a zero-SX−module.

Proof. Indeed in this case, we have the following diagram.

A1rθ1dF1A2rθ2dF2A3dF3M1rφ1M2rφ2M3 (5. 1)

The X−exactness ofAi’s andMi’s and the fact that(φ1, θ1) areX−epimorphism and
(φ2, θ2) areX−monomorphism, forcesA2 = 0 = M2. This completes the proof. ¤

Here we recall from [1], that ifN is anX−submodule of anX−moduleM , thenM/N
forms anX−module called quetientX−module.



On Soft BCK-Modules 77

Theorem 5.5. Let (F1, A1) and(F2, A2) be in twoSX(M1) andSX(M2), respectively.

For anyM1 ⊂ M2, A1 ⊂ A2 andM1 ⊂ F2(ε) whereε ∈ A2. If (F1, A1)
(φ1,θ1)−→ (F2, A2)

is SX−homomorphism, then0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2)

(φ2,θ2)−→ (I, A2/A1) −→ 0 is
SX−exact, whereI(ε + A1) = F2(ε) = M1 for all ε ∈ A2.

Proof. Since for allε ∈ A2, M1 ≤ F2(ε) ≤ M2, therefore,F2(ε)/M1 ≤ M2/M1 ∀ε ∈
A2. Next, we define in a natural wayX−homomorphismsφ2 : M2 → M2/M1 and
θ2 : A2 → A2/A1 by;

φ2(m2) = m2 + M1 and θ2(a2) = a2 + A1 ∀m2 ∈ M2 & a2 ∈ A2.

It is clear that in this case,

0 −→ M1
φ1−→ M2

φ2−→ M2/M1 −→ 0

and

0 −→ A1
θ1−→ A2

θ2−→ A2/A1 −→ 0

areX−exact.
Finally, we see thatφ2(F2(ε)) = F2(ε) + M1 = I(ε + A1) = I(θ2(ε)) for all ε ∈ A2.

This implies

0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2)

(φ2,θ2)−→ (I,A2/A1) −→ 0

is SX−exact ¤

We conclude the paper with the following result, discussing the transitivity of two
SX−exact sequences.

Theorem 5.6. Let (Fi, Ai) be aSX−module over BCK-modulesMi for i = 1, 2, 3, 4, 5,
respectively. If

0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2)

(φ2,θ2)−→ (F3, A3) −→ 0

and

0 −→ (F3, A3)
(φ3,θ3)−→ (F4, A4)

(φ4,θ4)−→ (F5, A5) −→ 0

areSX−exact. Then

0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2)

(φ3φ2,θ3θ2)−→ (F4, A4)
(φ4,θ4)−→ (F5, A5) −→ 0

is SX−exact.

Proof. We have from the hypothesis of the theorem

0 −→ M1
φ1−→ M2

φ2−→ M3 −→ 0

and

0 −→ M3
φ3−→ M4

φ4−→ M5 −→ 0

areSX−exact. This clearly implies that

0 −→ M1
φ1−→ M2

φ3φ2−→ M4
φ4−→ M5 −→ 0
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is SX−exact.
Similarly, from the hypothesis

0 −→ A1
θ1−→ A2

θ3θ2−→ A4
θ4−→ A5 −→ 0

is SX−exact.
Sinceφ2(F2(ε)) = F3θ2(ε)) for all ε ∈ A2 andφ3(F3(ε)) = F4θ3(ε)) for all ε ∈ A3. We
haveφ3φ2(F2(ε)) = φ3(F3θ2(ε))) = F4θ3θ2(ε)) for all ε ∈ A2. This implies

0 −→ (F1, A1)
(φ1,θ1)−→ (F2, A2)

(φ3φ2,θ3θ2)−→ (F4, A4)
(φ4,θ4)−→ (F5, A5) −→ 0

is SX−exact. ¤
Acknowledgments: The authors are grateful to the reviewers for their valuable sugges-

tions to improve the presentation of the manuscript.
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[9] K. Iséki and S. Tanaka,An introduction to the theory of BCK-algebras, Math. Japonica23, (1978) 1–26.

[10] Y. B. Jun,Soft BCK/BCI-algebras, Comp. and Math. with Applications56, (2008) 1408–1413.
[11] A. Kashif and M. Aslam,Homology theory of BCK-modules, Southeast Asian Bulletin of Mathematics

(SEAMS)38, (2014) 61–72.
[12] P. K. Maji and A. R. Roy,An application of soft set in decision making problem, Comp. and Math. with

Applications44, (2002) 1077-1083.
[13] P. K. Maji, R. Bismas and A. R. Roy,Soft set theory, Comp. and Math. with Applications45, (2003)

555-562.
[14] D. Molodtsov,Soft set theory: first results, Comp. and Math. with Applications37, (1999) 19-31.
[15] H. A. Othman,On fuzzy infra-semiopen sets, Punjab. Univ. J. Math. Vol.48, No. 2 (2016) 1–10.
[16] Z. Pawlak,Rough sets, Int. J. Inform. Comput. Sci.11, (1982) 341-356.
[17] Z. Perveen, M. Aslam and A. B. Thaheem,On BCK-modules, South Asian Bulletin of Mathematics30,

(2006) 317–329.
[18] M. Riaz and K. Naeem,Measurable soft mappings, Punjab Univ. J. Math. Vol.48, No. 2 (2016) 19–34.
[19] S. Roy and T. K. Samanta,A note on a soft topological space, Punjab Univ. J. Math. Vol. 46, No. 1 (2014)

19–24.
[20] L. A. Zadeh,Fuzzy sets, Inform. Control8, (1965) 338-353.


