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Abstract. For product manufacturing, control charts are important tools.
Different types of control charts are used to monitor different measures of
product characteristics. Among the numerous charts, the popular one is
the Hotelling’sT 2 chart. It is designed while taking into account the most
sensitive measures such as sample covariance matrix and sample mean
vector. However, the chart becomes ineffective in the presence of outliers.
This work proposes a new robust chart that overcomes the problems as-
sociated with other control charts. Our chart uses robust scale estimator,
Qn instead of the covariance matrix and Winsorized modified one step
M-estimator (WMOM) in place of the sample mean vector. The robust
chart could be removed without losing anything in the explanation. There
are two main performance measurements, false alarm and probability of
detection outliers. The results indicate that robust chart’s performance is
superior to that of the conventional control chart.

AMS (MOS) Subject Classification Codes: 35S29; 40S70; 25U09
Key Words: Robust Location EstimatorMOM and Robust Scale EstimatorQn Hotelling’s

T 2 Control Chart.

1. INTRODUCTION

The production process has many characteristics; the quality of the product heavily de-
pends upon these characteristics. Therefore, it is important to pay close attention to monitor
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the complicated production process. Due to the diversity of the characteristics along with
their impact on the overall product’s quality, statistics are computed in different ways in
order to make the production process better. One of the most famous and effective ways to
monitor processes is using Control charts.

These control charts act as a statistical tool that has the ability to monitor the accom-
plishment and progress of the entire production process. In real time, the quality of the
products does not solely depend on one factor. On the contrary, it is a contribution of dif-
ferent characteristics. Several characteristics should be monitored simultaneously, thus, we
use Hotelling’sT 2 and Shewhart-typeχ2 control charts.

The multivariate generalization of the conventional Student’st-statistic is known as the
Hotelling’sT 2. The formula is given below.

T 2 = n(X − µ0)T S−1(X − µ0) (1.1)

In the formula above, the scatterS, the sample covariance matrix; it provides us with
information regarding the relationship between observation vectors of different variables.
The values that lie in the main diagonal ofS matrix are the variance of each variable,
whereas the other elements that are part of theS matrix denote the covariance between
different pairs of variables. The distance between the process center and the observation is
measured by Hotelling’sT 2statistics observation vector’s values [1].

The individual multivariate control chart will come into action and the formula for
Hotelling,sT 2 will be as follows:

T 2
i = (Xi −X)T S

(−1)
(Xi −X) i = 1, ...., n (1.2)

HereX andSrepresent the arithmetic mean vector and the covariance matrix estimators
for the given sample.

The Hotelling’sT 2 method is considered to be among the common methods in the
multivariate statistical control charts [2, 3]. It might be able to produce efficient results
when the data come from normal distribution, but it fails when outliers become part of the
’measurements of characteristics.’ Thus, in this, we have replaced the variance covariance
and arithmetic mean 5 withQn covariance and Winsorized modified one step M-estimator
(WMOM).

In order to investigate and test the performance of this new robust control chart, we
first generate the data from standard normal distribution and later on we put the outliers
in accord with the contaminated normal model. This type of model relies on the types of
variables such as dependent variables along with independent variables. Probability of de-
tecting outliers and false alarm rate are the two measurements that judge the robustness of
the control chart.
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The conventional Hotelling’sT 2 chart depends upon the conventional variance covari-
ance and arithmetic mean matrix which makes them sensitive to the outliers. Therefore, in
our modified control chart, we have used the robust estimators instead of the conventional
means in order to overcome this problem. Consequently, many statisticians used these es-
timators to lessen the extreme values effect on the production process. For example, in [4,
5], the authors replaced the conventional arithmetic mean and variance co-variance with
trimmed mean and trimmed covariance, respectively. In [6], the authors came up with the
idea of using Hodges-Lehmann location estimator and Shamos-Bickel-Lehman’s scale esti-
mator. In 1994, robust location estimator was used as the median by [7]. An alternative for
the conventional chart was proposed by [8]. According to their work, the trimmed mean
vector was used instead of the arithmetic mean and the sample trimmed covariance was
used in place of the sample variance covariance matrix. [9, 10] worked on the same model.

Furthermore, other statisticians used the minimum volume ellipsoid (MVE) and mini-
mum covariance determinant (MCD) estimators in order to create alternative charts such as
[11-13].

Likewise, Hanif et al. in [14] used trimmed means and deciles instead of the usual mean
in the first phase of the conventional Hotelling’sT 2 chart. This was done to develop the
efficiency of the chart. Both the trimmed mean and decile depend upon the simulation
and the results showed that the performance of the trimmed mean and decile HotellingT 2

charts is better than that of the classical Hotelling’sT 2 chart.

Winsorized covariance and Winsorized mean were used by [15]. Median absolute de-
viation (MADn) andSn are the estimators that have the highest breakdown points. These
estimators are good for the criterion inMOM. The results showed that these Hotelling’sT 2

control charts outperformed the conventional Hotelling’sT 2 chart.

Shabbak and Midi in [16] came up with a different methods to develop the performance
of control charts. Their control chart used minimum co-variance determinant and minimum
volume ellipsoid. There are many other researches who assessed the performance of their
multivariate control charts based on the signals, and yet, they did not give much heed to
whether those signals are outliers or not. These researches proposed the idea to evaluate
control charts not only based on correct positions, but also on the number of outliers found.
The idea was the upper control limit (UCL); this limit was established based on the median
along with the median absolute deviation (MAD). This idea did improve the detection of
the outliers, but it was affected by the swapping effect that occurs when outlier’s positions
are not taken into consideration. Nevertheless, a robust control chart is presented in order
to get over the drawbacks mentioned above. This generalized potential method tends to
produce better results.

AbuShawiesh et al. in [17] used the below robust alternatives to the conventional
Hotelling’sT 2 : T 2MVE, T 2MCDand median of Median Absolute Deviation (T 2MedMAD).
To compare the performances of these control charts, a simulation study is conducted. To
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determine the strength and the performance of these charts, two sets of real data are ana-
lyzed.

The contribution of this work is the introduction of a new control chart that overcomes
the problems associated with other control charts. Our chart uses the high breakdown robust
scale estimator,Qn instead of the covariance matrix and theWMOM in place of the sample
mean vector, which is suitable when there are asymmetrical data. Furthermore, the paper
suggests new and better technique to determine the control limits through an accustomed
function using different dimensions of the process and different sample sizes.

2. ROBUST LOCATION AND SCALE ESTIMATORS AND ROBUST CONTROL CHART

Take a random sample ofp variables from the distribution and let that be
Xij = {X1j , . . . , Xnj}, j = 1, . . . , p; Wilcox and Keselman in [18] defined theMOM
estimator as,

θ̂ =
n−i2∑

i=i1+1

X(i)j

nj − i1 − i2
(2.3)

Here,X(i)j : i− th to order statistics inj − th characteristic variable.
i1 : The number ofXij that satisfies the criterion
i2 : The number ofXij that satisfies the criterion

(Xij − µ̂j < −k ∗ (Qnj) (2.4)

(Xij − µ̂j > k ∗ (Qnj) (2.5)

nj = Number of observations in eachj − th variable
µ̂j = med{X1j , . . . , Xnj}, j = 1, . . . , p

Qn = d{|xi − xj |; i < j} (2.6)

Yahaya et al. in [20] reported that if different trimming criterion inMOM is used, it
results in a robust scale estimators such asQn = d{|xi − xj |; i < j}. These estimators
have the ability to improve false alarms probability of some statistics tests. Therefore, we
have usedQn instead ofMADn in the trimming criterion. InMOM estimator, the default-
ing robust scale estimator for the trimming criterionMADn is used.

Croux and Rousseeuw in [19] proposed the highly robust estimatorQn which is as
follows:

Qn = d{|xi − xj |; i < j} (2.7)

Here,d acts as a constant factor that is used to makeQn unbiased estimator for the value of

σ when the distribution is normal.h =
n

2
+1represents half of the number of observations.

Qn has the same properties ofSn, which is a definition that is equally good for50%
breakdown point and asymmetric distribution. In addition, we will notice that its influence
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function is very close and very competent when used with a Gaussian distribution, at al-
most82%. For more discussion about theQn , see [20].

Once the elimination of outliers is done for every sample through the criteria defined in
inequalities 2.4 & 2.5, the data are Winsorized as the following:
For each random variable,Xij = {X1j , . . . , Xnj}, j = 1, . . . , p the Winsorized sample is
made as below:

Wij =





X(i1+1)j , if Xij ≤ X(i1+1)j

Xij , if X(i1+1)j < Xij < X(n−i2)j

X(n−i2)j , if Xij ≥ X(n−i2)j

(2.8)

where
i1 : Denote to the smallest outliers in the data.
i2: Denote to the largest outliers in the data

Thus, the WinsorizedMOM for j-th variable and the estimated Winsorized covariance
matrix betweenWi andWj variables are defined as follows:

W j =
1

mj

mj∑

i=1

Wij (2.9)

The vector of WinsorizedMOM estimator is given below:

W =




W 1

.

.

.
W p




and

SWQn(Wi, Wj) =
1

(n− 1)
[

n∑

k=1

WkiWkj − nW iW j ] (2.10)

To create the alternative of the conventional Hotelling’sT 2 chart, we have used the Win-
sorizedMOM denoted byW instead of the usual mean vector and replaced the inverse of
the covariance matrix with the inverse of Winsorized covariance matrixS−1

WQn
. Thus, the

new robust chart that was used in this work is written as follows:

T 2
WQn

(Xi) = (Xi −W )T S−1
WQn

(Xi −W ) (2.11)

WhereS−1
WQn

: inverse of the sample covariance matrix.
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3. CONTROL LIMITS

Since we are not aware of the alternative Hotelling’sT 2 distribution, we will control
the upper control limit for every proposed alternative control chart. TheUCL can be deter-
mined by the simulation [11, 12, 21]. We generated 5000 data sets from theNp(0, Ip) at
the value of nominal false alarmα = 0.05. In the same phase, i.e. I, we calculate the robust
and conventional estimators for every data set. In phase II, we work on generating extra
observation for every data set. Then, we also calculate the robust and conventional charts
for these additional observations by using the estimators that were calculated in the previ-
ous phase. We calculate theUCL for the conventional Hotelling’sT 2 through the formula
defined in equation 1.2 whereas theUCL for the robust control chart is calculated by95th

percentile of the simulation values of robust statistics for 5000 replications.

4. SIMULATION DESIGN AND THE RESULTS

In order to highlight the merits and limitations of different control charts, they were
compared and investigated for their probability of detection and false alarm under different
conditions. The sample sizes weren=50, 100 and 150 observations and the numbers of
quality characteristics werep= 2, 5 and 10. Due to the fact that the characteristics variables
can be of both types, i.e. dependent as well as independent, this study incorporates all kinds
of variables.

(1− ε)Np(0, Ip) + εNp(µ1, Ip) (4.12)

The proportion of the outlier data is represented byεNp(µ1, Ip) andNp(0, Ip) as the out
of control and in control distribution, respectively. If we do not lose the generality, then the
value for the in control mean parameter is set to be zero and the value of the out of control
parameter is set to beµ1.µ1 took the value zero in case of no change, 3 in case of moderate
of leverage points and 5 in case of very high leverage points. Nonetheless, the identified
matrixIp, acts as the dispersion matrices, in both the distributions. This indicates that there
is no correlation among thep variables. In cases where the variables are dependent, the
data is generated according to the formula given below.

(1− ε)Np(0,
∑

0
) + εNp(µ1,

∑
0
) (4.13)

The proportion of the outliers data is represented byεNp(µ1, Ip) andNp(0, Ip) as the
out of control and in control distribution, respectively. If we do not lose the generality, then
the value for the in control mean parameter is set to be 0 and the value of the out of control
parameter is set to beµ1.

∑
0 is the covariance matrix for both out of control and in control

distribution.
∑

0 represents the homogenous covariance matrix and its size ispxp. It has a
high correlation between the variables, where all of the elements of the main diagonal are
1’s and the 0.9’s for the off diagonal [22-24].

Since this paper mainly focuses on the contamination and outlying of the observation,
we have considered the outliers with Gaussian distribution to check the performances of
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the control charts and to see whether there is any violation of the normality assumption.

In phase I, we estimate the control parameters along with the limits that are used to en-
hance the charts. The process is defined as below:

(1) Characteristic p took the values 2, 5 and 10. We generate this from the formula
defined in equation 4.12 and equation 4.13 in accord with the cases of independent
and dependent variability.

(2) Computation of both the robustness and conventional scale and location estimators
for every set of data used as an estimation of the in control parameters.

The phase II comprises the computation of the probability of detection of outliers and
false alarms according to the estimations that were computed in phase I.

(1) Computation of the conventional and robust Hotelling’sT 2 for every new obser-
vation that was randomly generated from the in control distribution using for-
mula 2.11. The location and scale estimators in the formula 2.11 are computed
in phase I.

(2) Computation of the conventional and robust Hotelling’sT 2 for every new obser-
vation that was randomly generated from the out of control distribution using for-
mula 2.11. The location and scale estimators in the formula 2.11 are computed in
phase I.

(3) Then, the statistics in steps 1 and 2 are compared with the limits that are calculated
during the simulation process.

(4) The probabilities of detecting outliers and false alarms represent the proportion of
the number of the statistical values that are greater than the limits.

(5) The simulation is excecuted using MATLAB 2009a.

Tables 1-3 demonstrate the results of the investigation. They are arranged according to
the number of characteristics variablesp. Every table consists of two cases; the indepen-
dent variables case, which is denoted by case (A) and the dependent variables case, which
is denoted by case (B). The group sizes are displayed in the first column; the second column
represents the proportion of outliers and the third column shows the shifted means vectors
values. The performances of the two methods are represented in the last column.T 2 and
T 2

WQn
are the procedures that represent the control chart of the customary Hotelling’sT 2

for the charts of historical data sets. They also represent the control charts for the alterna-
tive robust chart. The false alarm in the brackets and the probability of detection outliers
corresponding to each procedure are presented. When the values of the false alarms are
near to the nominal value,α=0.05, the chart shows stronger performance of false alarms. If
the probabilities are nearer to one, then the performance of the charts are stronger in terms
of detection outliers.

Table (1) demonstrates the bivariate case with independent variables. As shown by
the table, the performance of the robust chart is under control, in terms of false alarms.
Whereas, the performance of the conventional chart tends to decline as the rates of out-
liers are increased. Meanwhile, the mean is shifted, regardless of the sample size. The
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TABLE 1. The Detection of Outliers Probability and the Empirical Rates
of False Alarm for the Robust Chart, whenp=2, alpha=0.05.

Case n ε µ T 2
X−S

T 2
Xmom−Qn

A 50 0 (0,0) 0.059 0.052
0.1 (3,3) (0.029) 0.533 (0.019) 0.742

(5,5) (0.023) 0.794 (0.0.02) 1
0.2 (3,3) (0.028) 0.145 (0.017) 0.326

(5,5) (0.024) 0.135 (0.019) 0.964
100 0 (0,0) 0.056 0.05

0.1 (3,3) (0.02) 0.491 (0.025) 0.80
(5,5) (0.016) 0.747 (0.024) 1

0.2 (3,3) (0.021) 0.176 (0.013) 0.35
(5,5) (0.016) 0.171 (0.024) 0.979

150 0 (0,0) 0.055 0.045
0.1 (3,3) (0.021) 0.522 (0.024) 0.78

(5,5) (0.016) 0.806 (0.024) 1
0.2 (3,3) (0.021) 0.175 (0.02) 0.32

(5,5) (0.016) 0.175 (0.02) 0.968
B 50 0 (0,0) 0.059 0.047

0.1 (5,5) (0.029) 0.459 (0.029) 0.738
0.2 (5,5) (0.028) 0.147 (0.019) 0.488

100 0 (0,0) 0.056 0.041
0.1 (5,5) (0.023) 0.429 (0.029) 0.774
0.2 (5,5) (0.023) 0.173 (0.029) 0.534

150 0 (0,0) 0.055 0.038
0.1 (5,5) (0.024) 0.457 (0.025) 0.746
0.2 (5,5) (0.022) 0.174 (0.019) 0.482

probability of detecting outlier for the conventional chart is less than the probability of de-
tecting outliers for the robust chart. In some cases, the probability of the detection outlier
for the robust chart is up to 1. Thus, we conclude that in bivariate case and independent
variables, the performance of robust chart is better when compared with the performance
of the conventional charts. Likewise, in terms of the detection outliers, the robust chart’s
performance is superior to the conventional chart’s performance except when both theµ
andε have smaller values.

Despite the fact that the performance of the robust chart declines in case of dependent
variables, they are still able to control the false alarm rates. The rates of the conventional
chart detection outliers are smaller when compared to the rates of the detection outliers of
the robust chart. This implies that the robust chart outperformed the conventional control
chart.
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TABLE 2. The Detection of Outliers Probability and the Empirical Rates
of False Alarm for the Robust Chart, whenp=5, alpha=0.05.

Case n ε µ T 2
X−S

T 2
Xmom−Qn

A 50 0 (0,0,0,0,0) 0.051 0.046
0.1 (3,3,3,3,3) (0.03) 0.405 (0.026) 0.81

(5,5,5,5,5) (0.031) 0.468 (0.025) 1
0.2 (3,3,3,3,3) (0.032) 0.099 (0.035) 0.255

(5,5,5,5,5) (0.033) 0.101 (0.037) 0.986
100 0 (0,0,0,0,0) 0.053 0.05

0.1 (3,3,3,3,3) (0.027) 0.364 (0.027) 0.865
(5,5,5,5,5) (0.026) 0.442 (0.025) 1

0.2 (3,3,3,3,3) (0.026) 0.119 (0.038) 0.23
(5,5,5,5,5) (0.025) 0.109 (0.036) 0.981

150 0 (0,0,0,0,0) 0.054 0.039
0.1 (3,3,3,3,3) (0.029) 0.417 (0.021) 0.857

(5,5,5,5,5) (0.028) 0.507 (0.021) 1
0.2 (3,3,3,3,3) (0.030) 0.118 (0.021) 0.337

(5,5,5,5,5) (0.029) 0.120 (0.021) 0.971
B 50 0 (0,0,0,0,0) 0.051 0.038

0.1 (5,5,5,5,5) (0.039) 0.176 (0.018) 0.247
0.2 (5,5,5,5,5) (0.03) 0.086 (0.02) 0.15

100 0 (0,0,0,0,0) 0.053
0.1 (5,5,5,5,5) (0.038) 0.153 (0.016) 0.258
0.2 (5,5,5,5,5) (0.036) 0.091 (0.021) 0.147

150 0 (0,0,0,0,0) 0.054 0.027
0.1 (5,5,5,5,5) (0.038) 0.182 (0.018) 0.229
0.2 (5,5,5,5,5) (0.037) 0.094 (0.016) 0.124

Table (2) displays the results when the value ofp =5. The robust chart has stronger
performance than the performance of the conventional chart in terms of the detection of
outliers and false alarms in most cases of variables. However, in the case of the dependent
variables, and despite that it is good in terms of false alarms, the robust along with the
conventional control chart fail to detect outliers. The reason behind this failure is that the
rates of detection of outliers are very low.

The results when the value ofp=10 is shown in Table (3). In case of independent vari-
ables, the false alarm probabilities are in control for the robust charts, but the performance
deteriorates when the proportion of outliersε andµ increase in terms of probability of
detection. Nonetheless, conventional chart control on the false alarm anyway the change
in the proportion of outliersε. Despite the fact that the probabilities of false alarm values
increase far from the nominalα, the modified charts have quite high values of probabilities
for detecting outliers. Lastly, the robust charts are able to control false alarm probability
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TABLE 3. The Detection of Outliers Probability and the Empirical Rates
of False Alarm for the Robust Chart, whenp=10, alpha=0.05.

Case n ε µ T 2
X−S

T 2
Xmom−Qn

A 50 0 (0,0,0,0,0,0,0,0,0,0) 0.049 0.048
0.1 (3,3,3,3,3,3,3,3,3,3) (0.031) 0.244 (0.04) 0.655

(5,5,5,5,5,5,5,5,5,5) (0.032) 0.259 (0.038) 1
0.2 (3,3,3,3,3,3,3,3,3,3) (0.033) 0.082 (0.048) 0.21

(5,5,5,5,5,5,5,5,5,5) (0.032) 0.082 (0.055) 0.949
100 0 (0,0,0,0,0,0,0,0,0,0) 0.057 0.057

0.1 (3,3,3,3,3,3,3,3,3,3) (0.041) 0.247 (0.035) 0.808
(5,5,5,5,5,5,5,5,5,5) (0.038) 0.265 (0.032) 1

0.2 (3,3,3,3,3,3,3,3,3,3) (0.042) 0.106 (0.043) 0.211
(5,5,5,5,5,5,5,5,5,5 (0.040) 0.106 (0.0541) 0.96

150 0 (0,0,0,0,0,0,0,0,0,0) 0.055 0.044
0.1 (3,3,3,3,3,3,3,3,3,3) (0.033) 0.294 (0.036) 0.837

(5,5,5,5,5,5,5,5,5,5) (0.034) 0.314 (0.036) 1
0.2 (3,3,3,3,3,3,3,3,3,3) (0.035) 0.107 (0.043) 0.203

(5,5,5,5,5,5,5,5,5,5) (0.034) 0.108 (0.048) 0.942
B 50 0 (0,0,0,0,0,0,0,0,0,0) 0.049 0.023

0.1 (5,5,5,5,5,5,5,5,5,5) (0.034) 0.077 (0.02) 0.091
0.2 (5,5,5,5,5,5,5,5,5,5) (0.032) 0.063 (0.014) 0.056

100 0 (0,0,0,0,0,0,0,0,0,0) 0.047 0.03
0.1 (5,5,5,5,5,5,5,5,5,5) (0.038) 0.106 (0.025) 0.102
0.2 (5,5,5,5,5,5,5,5,5,5) (0.04) 0.08 (0.025) 0.068

150 0 (0,0,0,0,0,0,0,0,0,0) 0.045 0.025
0.1 (5,5,5,5,5,5,5,5,5,5) (0.036) 0.099 (0.019) 0.098
0.2 (5,5,5,5,5,5,5,5,5,5) (0.034) 0.078 (0.019) 0.062

under independent case, but it fails in the case of dependent variables.

Figures 1-3 represents the case of independent variables (case A) when the number of
characteristicsp=2, 5 and 10. We note that the new modified chart has stronger performance
than the conventional chart in detecting the outliers, particularly whenµ=5, regardless of
the rate of the contaminated data. Whereas, there is a slight decline in the performance of
the new modified chart whenµ=3, andε=0.1, and heavy decline whenµ=3, andε=0.2.

In the case of dependent variables (case B), through Figures 4 to 6, there was a signif-
icant decline in the performance of the detection of the outliers data. This applies to the
traditional and the new robust charts although there is a simple superiority in the perfor-
mance of the new robust charts especially whenp=2, 5. While in the case ofp=10, we note
that the new chart was not superior to the traditional chart, which indicates that the new
chart is not suitable in this case.
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FIGURE 1. The Outliers Detection Rates in Case A (p=2)

FIGURE 2. The Outliers Detection Rates in Case A (p=5)

5. PERFORMANCE OF THE MODIFIED CHART

Tables 1-3 show that in terms of false alarms, the robust Hotelling’sT 2 charts outper-
formed the conventional control chart even when the number of variables is increasing and
outliers are presented. The values of probabilities of detection outliers in the conventional
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FIGURE 3. The Outliers Detection Rates in Case A (p=10)

FIGURE 4. The outliers detection rates in case B (p=2)

FIGURE 5. The outliers detection rates in case B (p=5)

control charts were not better than the probabilities values of detection outliers for the ro-
bust charts. Therefore, we can say that the robust chart outperformed the conventional
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FIGURE 6. The outliers detection rates in case B (p=10)

Hotelling’s T 2 chart. In addition, the modified Hotelling’sT 2 charts’ performance im-
proves as the sample sizes increase because there are enhancements for the robust charts in
terms of probability of detection outliers when sample sizen increases. On the contrary,
the performance of the conventional control chart in the outliers’ detection declines once
the samples sizen starts to increase. In addition, with the increase of the sample sizesn,
the rates of false alarm start to decrease and this implies that the modified Hoteling’sT 2

performance starts to decline. For the rates of false alarm, increasing the number of vari-
ables is important, but it is not imperative for the probability of detection outliers, while the
performance and results of the conventional control chart are bad in terms of probability
detection outliers and false alarm.

The performance of the robust control chart is better when compared with the perfor-
mance of conventionalT 2 chart in case (B). The probability of detection outliers is smaller
in the conventional control charts when compared to the robust Hotelling’sT 2 control
charts. Moreover, an increase in the sample sizen results in increase in the probability of
detection outlier and decrease in the values of false alarms. The increase in the number of
variablesp and subsequently the decrease in the probability of detection outliers imply that
the performance of the modified Hotelling’sT 2 is not affected by the increasing number of
variables.

Lastly, in the capability for outliers’ detection, we can say that the modified robust
Hotelling’s T 2 performance is better when compared to the conventional Hotelling’sT 2

chart.

The obtained results were compared with the results forT 2
wMADn

, T 2
wSn

andT 2
wTn

in
[9], where the procedure of the simulation is approximately the same. The comparison
illustrates the improvement of the proposed control chart when the number of characteris-
tics variablesp increases especially whenp=5 and 10, where we noticed that case A has
stronger performance in terms of false alarms when the sample sizesn= 50, 100 andp=10
whereas the mentioned robust charts are out of control. Seemingly, whenp equals 5, the
chart displays the same behavior. This implies that the performance of the robust control
chart is so well. On the other hand, the proposed chart has stronger performance than the
performance of the three mentioned charts in detecting outliers regardless of the values of
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p, nand the shifted meanµ.

To investigate the proposed chart, another comparison has been performed in [12]. They
used other types of robust estimators in their proposed charts such as the minimum vol-
ume ellipsoid (MVE) estimators, minimum covariance determinant (MCD) estimators and
reweightedRMCDestimators. The obtained results showed inconsistency between the per-
centages of outliers’ detection and the overall false alarm rates. For example, for the values
of µ, ε and the sample sizesn, the false alarm rates dropped from the nominal value 0.05
mean while the probability of detection increased. However, the proposed chartT 2

Xmom−Qn

is consistent in terms of detecting outlier’s probability and controlling false alarm rates.
Even though the conventional HotelingT 2 chart performs well in terms of controlling false
alarm rates, it fails to achieve good probability of detection, especially in case of large
number of quality characteristics.

6. EMPIRICAL CASE

We used the example from [13] in order to compare and evaluate results of the perfor-
mance of both the conventional and modified control charts. Their data comprises of two
characteristics random variables, namely and on 30 different products taken from the pro-
duction process. In Vargas, Queensberry datasets two variables were used and we choose
the first characteristic values of the first twenty-five products. The observations of both
random variables are shown in Table (4). The table also shows the values of the new
Hotelling’sT 2 along with the conventionalT 2 chart statistics.

The scale and the location estimators are also shown in Table (4) presented in the ap-
pendix.

We calculated theUCL using the simulation for the robust charts, while the formula 2.4
to compute theUCL for the conventionalT 2 chart is used, because the vector X is required
for calculating the estimators. We set the value of allUCLs to be 10.81512 forα=0.05.
This case has false alarm probability with 25 observations. The final results show that in
the case of conventional chart, the production process is not in control at two observations
namely the second and twentieth observations, whereas the process is out of control only
on the 22th observation in case of robust charts.

7. CONCLUSION

This work proposed an effective Hotelling’sT 2 chart using the Winsorized covariance
matrix and WinsorizedMOM as the scale covariance matrix and the location vector, re-
spectively. In theMOM, the default-trimming criterionMADn was exchanged with another
maximum breakdown point scale estimators (Qn). The modified charts’ performance was
compared with the performance of conventional chart, in terms of probabilities of detect-
ing outliers and false alarms rates. Studies on the performance involve two cases namely
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the independent case (A) and the dependent variables case (B). The outcomes of the sim-
ulation indicated that the performance of the modified charts is under control for the false
alarm probabilities under most of conditions of the study, and starts to fail control once the
shifted mean vectorµ and outliers proportion increases. Moreover, this robust chart is able
to produce detection probability of around 1. The conventionalT 2 chart hardly reaches
strong performance in detecting the outliers only under the condition bivariatep=2 with
µ=2 andε=0.1. The highest rate in this case reaches the value of 0.806 based on the three
conditions of the sample sizes 50, 100 and 150. In other conditions, the conventional charts
failed to produce strong performance. On the other hand, increasingp value enhanced the
detection probability outliers for the proposed chart. In this case, the maximum value of
probability of detecting outliers for the conventional chart reaches 0.468. This means that,
the new robust charts has strong performance as the number of characteristics is increasing.

The authors declare that there is no conflict of interest regarding the publication of this
paper.
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APPENDIX

TABLE 4. The two variablesX1 andX2 of Vargas data set with the val-
ues ofT 2 statistics using the conventional and the Winsorized MOM
estimator.

Product No X1 X2 T 2
X−S

T 2
Xmom−Qn

1 0.567 60.558 0.650 0.98
2 0.538 56.303 13.004 54.57
3 0.530 59.524 0.169 1.246
4 0.562 61.102 1.539 3.63
5 0.483 59.834 1.264 1.713
6 0.525 60.228 0.215 0.183
7 0.556 60.756 0.783 1.556
8 0.586 59.823 0.842 1.744
9 0.547 60.153 0.076 0.0385
10 0.531 60.640 0.607 1.1648
11 0.581 59.785 0.684 1.5915
12 0.585 59.675 0.876 2.2038
13 0.540 60.489 0.348 0.5381
14 0.458 61.067 4.361 8.2798
15 0.554 59.788 0.094 0.5959
16 0.469 58.640 3.239 9.0668
17 0.471 59.574 1.889 2.9619
18 0.457 59.718 2.674 3.6645
19 0.565 60.901 1.154 2.3952
20 0.664 60.180 5.941 8.3775
21 0.600 60.493 1.619 2.2008
22 0.586 58.370 3.446 13.977
23 0.567 60.216 0.350 0.4265
24 0.496 60.214 0.911 1.10567
25 0.485 59.500 1.265 2.41786


