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Abstract. In this paper, we bring into focus a fractional order epidemic
model of a vector -born disease with direct transmission in a population
which is assumed to have a constant size over the period of the epidemic is
consider. In this article, we only study the numerical solutions of the con-
cerned model with the help of Laplace-Adomian decomposition method.
We obtain the solutions of the differential equations involved in the model
in the form of infinite series. The concerned series rapidly converges to
its exact value. Then, we compare our results with the results obtained by
Runge-kutta method in case of integer order derivative.
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1. INTRODUCTION

Vector -borne disease are contagious disease given birth by bacteria, viruses, protozoa
which are predominantly transferred by diseases transferring biological agents known as
vectors, which carry the diseases without being effected themselves. Malaria is the most
predominant vector born disease whose vector are the mosquitoes. The mosquitoes are
the vectors of many contagious diseases out of which dengue yellow fever , Japanese En-
cephalitic and West Nile Fever are the most predominant and given birth by west Nile
virus. Other vectors are the assassin bugs providing the chagas disease, fleas transferring
the plague from its normal hot to humans, or from human to human, and ticks which trans-
fer the most existing vector born disease in north America [9]. Many evidence show that in
the last20−30 years vector born disease have raised in new areas (Gulber and Marfin [12])
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or re-emerged after being contained in most parts of the world except Africa in1950′s and
1960′s. Many factors causing the upsurge of vector borne disease have been constantly
highlighted and debated in [14, 8].

The idea of mathematical modeling of spread of disease was presented for the first time
D. Bernoulli in 1766, which gave birth to the start of modern epidemiology. For study
of mathematical models of some physical and biological phenomenons, we refer [11, 10,
3]. In the beginning of 20th century, Ross and Hamer have also presented the modeling
of infectious disease. To explain the behavior of epidemic models, they used the law of
mass action. After that Reed and Frost established Reed-Frost epidemic model, which give
the relationship between the susceptible, infected and immune individual in a community.
Mckendrick and Kermack [7], in1927 established a simple model known as SIR model
given by the following 




du(t)
dt

= −βu(t)v(t),

dv(t)
dt

= βu(t)v(t)− γv(t),

dw(t)
dt

= γv(t).

(1. 1)

So the total population at timet divided into three subtypes, which are susceptible, infected
and recovered.
Wei et al [13], considered the system of differential equations given below, which give the
dynamics of the disease in the host population





ds(t)
dt

= b− λs(t)i(t)− λ1s(t)v(t)− µs(t),

di(t)
dt

= λs(t)i(t) + λ1s(t)v(t)− γi(t)− µi(t),

dr(t)
dt

= −γi(t)− µr(t),

After some modification and by using (H. R. Thiemes [13]) the following system was
presented





ds(t)
dt

= b− λs(t)i(t)− λ1s(t)v(t)− µs(t),

di(t)
dt

= λs(t)i(t) + λ1s(t)v(t)− γi(t)− µi(t),

dv(t)
dt

= λ2

(
b1

µ1
− v(t)

)
i(t)− µ1v(t),

(1. 2)

The above model (1. 1 ) was first solved by Biazar [7], by using Adomian decomposition
method, Refei et al[16], by using homotopy perturbation method, Refei et al[17], by using
variation iteration method, Fadi et al[5] and Abdul-Monim et al[6], by using differential
transform method. The extension of this model of fractional order was studied first time in
[18]. The use of fractional differential equations are basically related to biological system
. Also they describe the biphasic decline behavior of infection of disease at a slow rate.
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Rida et al [19], described the model (1. 1 ) of fractional differential equation as




Dα1u(t) = −βu(t)v(t),

Dα2v(t) = βu(t)v(t)− γv(t),

Dα3w(t) = γv(t),

with given initial conditions

u(0) = U1, v(0) = U2, w(0) = U3,

for this model the total initial conditions isU = U1 + U2 + U3.
In the light of the above background, in this article, we bring into face the following frac-
tional order extension of model (1. 2 ). In which the population of the vector is explained
by a system for the vulnerable and infected vector while the dynamics of the host is ex-
plained by an SIR model. The fractional order show the realistic biphasic decline behavior
of infection of disease with a slow rate. Thus the new fractional model is given by





cDαu(t) = β1 − λ1u(t)v(t)− λ2u(t)w(t)− µ1u(t),
cDαv(t) = λ1u(t)v(t) + λ2u(t)w(t)− γv(t)− µ1v(t),

cDαw(t) = λ3

(
β1

µ2
− w(t)

)
v(t)− µ2w(t),

(1. 3)

with given initial conditions,u(0) = N1, v(0) = N2, w(0) = N3,
where0 < α ≤ 1 . In the model (1. 3 ), the initial conditions are independent on each other
and satisfy the relationN = u(t) + v(t) + w(t) whereN show in the population the total
number of the individuals.
For the given model of fractional order, the numerical solutions are studied by using Ado-
mian decomposition method with Laplace transform. For the verification of our procedure,
we assigned random values to the initial conditions and parameters.
In 1980, Adomian decomposition method (ADM) was introduced by Adomian, which is
an effective method for finding numerical and explicit solutions of a wide and a system of
differential equations representing physical problems. This method works efficiently for
both initial value problems as well as for boundary value problem, for partial and ordinary
differential equations, for linear and non-linear equations and also for stochastic system
as well. In this method no perturbation or linearization is required. ADM has been done
extensive work to provide analytical solution of nonlinear equations as well as solving
fractional order differential equations. In this paper, we operate Laplace transform method,
which is a powerful techniques in engineering and applied mathematics. With the help of
this method we transform fractional differential equations into algebraic equations, then
solved this algebraic equations by ADM.

2. NOTATIONS AND PRELIMINARIES

Here, in this section, we recall some fundamental definitions and results from the frac-
tional calculus. For further detailed study, we refer to [4, 19, 9, 2, 15].
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Definition 2.1. The fractional integral of Riemann-Liouville type of orderα ∈ R+ of a
functionf ∈ L1([0, T ],R) is defined as

Iα
0+f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s) ds.

Definition 2.2. The Caputo fractional order derivative of a functionf on the interval[0, T ]
is defined by

cDα
0+f(t) =

1
Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) ds,

wheren = [α] + 1 and[α] represents the integer part ofα.

Definition 2.3. We recall the definition of Laplace transform of Caputo derivative as

L{cDαy(t)} = sαL{y(t)} −
n−1∑

k=0

sα−i−1y(k)(0), n− 1 < α < n, n ∈ N.

for arbitrary ci ∈ R, i = 0, 1, 2, . . . , n − 1, wheren = [α] + 1 and [α] represents the
integer part ofα.

3. THE LAPLACE ADOMIAN DECOMPOSITIONMETHOD

In this section, we discuss the general procedure of the model (1. 3 ) with given initial
conditions. Applying Laplace transform on both side of the model (1. 3 ) as




L{cDαu(t)} = L{β1 − λ1u(t)v(t)− λ2u(t)w(t)− µ1u(t)},
L{cDαv(t)} = L{λ1u(t)v(t) + λ2u(t)w(t)− γv(t)− µ1v(t)},

L{cDαw(t) = L{λ3

(
β1

µ2
− w(t)

)
v(t)− µ2w(t)},

which implies that




sαL{u(t)} − sα−1u(0) = L{β1 − λ1u(t)v(t)− λ2u(t)w(t)− µ1u(t)},
sαL{v(t)} − sα−1v(0) = L{λ1u(t)v(t) + λ2u(t)w(t)− γv(t)− µ1v(t)},

sαL{w(t)} − sα−1w(0) = L{λ3

(
β1

µ2
− w(t)

)
v(t)− µ2w(t)}.

(3. 4)

Now using initial conditions and taking inverse Laplace transform in model (3. 4 ), we have




u(t) = N1 + L−1

[
1
sα
L{β1 − λ1u(t)v(t)− λ2u(t)w(t)− µ1u(t)}

]
,

v(t) = N2 + L−1

[
1
sα
L{λ1u(t)v(t) + λ2u(t)w(t)− γv(t)− µ1v(t)}

]
,

w(t) = N3 + L−1

[
1
sα
L{λ3

(
β1

µ2
− w(t)

)
v(t)− µ2w(t)}

]
.

(3. 5)

Assuming that the solutions,u(t), v(t), w(t) in the form of infinite series given by

u(t) =
∞∑

i=0

un(t), v(t) =
∞∑

i=0

vn(t), w(t) =
∞∑

i=0

wn(t), (3. 6)
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and the nonlinear terms involved in the model areu(t)v(t), u(t)w(t), are decompose by
Adomian polynomial as

u(t)v(t) =
∞∑

i=0

Pn(t), u(t)w(t) =
∞∑

i=0

Qn(t), v(t)w(t) =
∞∑

i=0

Rn(t), (3. 7)

wherePn(t), Qn(t), Rn(t) are Adomian polynomials defined as

Pn(t) =
1

Γ(n + 1)
dn

dλn

[
n∑

k=0

λkuk(t)
n∑

k=0

λkvk(t)

] ∣∣∣∣
λ=0

,

Qn(t) =
1

Γ(n + 1)
dn

dλn

[
n∑

k=0

λkuk(t)
n∑

k=0

λkwk(t)

] ∣∣∣∣
λ=0

Rn(t) =
1

Γ(n + 1)
dn

dλn

[
n∑

k=0

λkvk(t)
n∑

k=0

λkwk(t)

] ∣∣∣∣
λ=0

.

Using (3. 6 ),(3. 7 ) in model (3. 5 ), we get

L(u0) =
N1

s
, L(v0) =

N2

s
, L(w0) =

N3

s
,

L(u1) =
β1

sα+1
+
−λ1

sα
L(P0)− λ2

sα
L(Q0)− µ1

sα
L(u0),

L(v1) =
−λ1

sα
L(P0)− λ2

sα
L(Q0)− γ

sα
L(v0)− µ1

sα
L(v0),

L(w1) =
λ3

sαµ1
β2L(v0)− λ3

sα
L(R0)− µ2

sα
L(w0),

...

(3. 8)

L(un+1) =
β1

sα+1
− λ1

sα
L(Pn)− λ2

sα
L(Qn)− µ1

sα
L(un),

L(vn+1) =
λ1

sα
L(Pn) +

λ2

sα
L(Qn)− γ

sα
L(vn)− µ1

sα
L(vn),

L(wn+1) =
λ3

µ1sα
β2L(vn)− α

sα
L(Rn)− λ2

sα
L(Wn).

Taking inverse transform of (3. 8 ), we get the solution ofu0, v0, w0 , substituting these
values to obtainu1, v1, w1 and finally the solution in the form of infinite series as

u(t) = u0 + u1 + u2 + u3 + . . .

v(t) = v0 + u1 + v2 + v3 + . . .

w(t) = w0 + w1 + w2 + w3 + . . . .

(3. 9)

4. CONVERGENT OF THE METHOD

The solutions obtained in (3. 9 ) which are rapidly and uniformly convergent to the
exact solutions. To check the convergence of the series (3. 9 ), we use classical techniques,
(see [1]). For sufficient conditions of convergence of this method , we give the following
theorem by using idea [2, 15]



18 Fazal Haq, Kamal Shah, Asaf Khan, Muhammad Shahzad and Ghaus ur Rahman

Theorem 4.1. Let X
′

andY
′

be two Banach spaces andA : X
′ → Y

′
be a contractive

nonlinear operator such that
for all x, x

′ ∈ X
′
, ||A(x)−A(x

′
)|| ≤ k||x− x

′ ||, 0 < k < 1.
Then by the use of Banach contraction principle,A has a unique pointx such thatAx = x,
wherex = (u, v, w). The series given in(3. 9 ), can be written by applying Adomian
Decomposition method as:

xn = Axn−1, xn−1 =
n−1∑

i=1

xi, n = 1, 2, 3, · · · ,

and assume thatx0 = x0 ∈ Br(x) whereBr(x) = {x′ ∈ X
′
: ‖x′ − x‖ < r}, then, we

have

(i) xn ∈ Br(x);

(ii) lim
n→∞

xn = x.

Proof. : For (i), using mathematical induction forn = 1, we have

||x0 − x|| = ||A(x0)−A(x)|| ≤ k||x0 − x||.
Let the result is true forn− 1, then

||x0 − x|| ≤ kn−1||x0 − x||,
we have

||xn − x|| = ||A(xn−1)−A(x)|| ≤ k||xn−1 − x|| ≤ kn||x0 − x||.
Hence using(i) we, have

||xn − x|| ≤ kn||x0 − x|| ≤ knr < r,

which implies thatxn ∈ Br(x).
(ii) Since||xn − x|| ≤ kn||x0 − x|| and aslimn→∞ kn = 0.
So, we havelimn→∞ ||xn − x|| = 0 ⇒ limn→∞ xn = x. ¤

5. NUMERICAL CONCLUSION

Now in this section, we find numerical solutions of (3. 9 ) , considered the population is
in equilibrium with a wild type virus, the to fond the numerical solution is in the form of
infinite series by LADM, the following values are assigned to the parameters involved in
the model

N1 = 3, N2 = 4, N3 = 5, β1 = 0.1, β2 = 0.5, λ1 = 0.2,

λ2 = 0.4, λ3 = 0.6, µ1 = 0.01, µ2 = 0.02, γ = 0.3.

Thus using the aforesaid parameters values, we calculate the terms of the series as
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u0 = 3, v0 = 4, w0 = 5, u1 = −8.33
tα

Γ(α + 1)
− 0.281

t2α

Γ(2α + 1)
,

v1 = 3.56
tα

Γ(α + 1)
+ 6.28

t2α

Γ(2α + 1)
,

w1 = −10.4
tα

Γ(α + 1)
,

u2 = 0.1
tα

Γ(α + 1)
+ 7.7850

t3α

Γ(3α + 1)
− 6.44

t4α

Γ(4α + 1)
− 0.4010

t3α+1

Γ(3α + 2)

− 0.125
t4α+1

Γ(4α + 2)
+ 36.37

t2α

Γ(2α + 1)

v2 = −1.257
t3α

Γ(3α + 1)
+ 3.52

t4α

Γ(4α + 1)
− 0.673

t4α+1

Γ(4α + 2)
− 1.8

t2α

Γ(2α + 1)

w2 = −3.8
tα

Γ(α + 1)
+ 19.08

t3α

Γ(3α + 1)
+ 0.636

t5α+1

Γ(5α + 2)
+ 0.987

t3α

Γ(3α + 1)

+ 10.78
t2α

Γ(2α + 1)
,

and so on.

All other terms can be similarly obtained by using the above fashion. For the analytical
solution, we choose only few terms, which provide enough accurate numerical solutions.
More the terms more will be accurate the solutions. In next lines, we calculate analytical
solutions by taking only first three terms. Therefore the solutions after three terms become





u(t) = 3− 8.23
tα

Γ(α + 1)
+ 7.7850

t3α

Γ(3α + 1)
− 6.44

t4α

Γ(4α + 1)
− 0.4010

t3α+1

Γ(3α + 2)

− 0.125
t4α+1

Γ(4α + 2)
+ 42.65

t2α

Γ(2α + 1)

v(t) = 4 + 3.56
tα

Γ(α + 1)
− 1.257

t3α

Γ(3α + 1)
+ 3.52

t4α

Γ(4α + 1)
− 0.673

t4α+1

Γ(4α + 2)

+ 5.20
t2α

Γ(2α + 1)
,

w(t) = 5− 14.20
tα

Γ(α + 1)
+ 19.08

t3α

Γ(3α + 1)
+ 0.636

t5α+1

Γ(5α + 2)
+ 0.987

t3α

Γ(3α + 1)

+ 10.78
t2α

Γ(2α + 1)
.

(5. 10)
Figure (1)-(3) shows the plot of the solutions ( 5. 10 ) obtained by using Laplace adomain
decomposition method. These figures shows that the population of each class tends to
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decreases as the values ofαi increases for short interval of time. In addition, we given a
comparison of RK4 and LAD methods in Fig. (4) forαi = 1 which shows that both the
methods agree for short interval of time.
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Fig. (1) The plot shows the dynamics ofu(t) class for different values ofαi(i = 1, 2, 3).
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Fig. (2) The plot shows the dynamics ofv(t) class for different values ofαi(i = 1, 2, 3).
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Fig. (3) The plot shows the dynamics ofw(t) class for different values ofαi(i = 1, 2, 3).
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Fig. (4) The plot shows the dynamics ofu(t), v(t) andw(t) for αi = 1(i = 1, 2, 3) using
RK4 method.

6. CONCLUSION

In this, article, we have developed a numerical method been coupled of Laplace trans-
form and Adomian Decomposition method. The analytical solutions have been obtained
in the form of rapidly convergence series. Also the method has been compared with the
Runge-Kutta method. The results have close agreement with that of the afore said method.
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