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Abstract. In this paper, we first utilize the least squares strategy for the
(2n)2-observations to fit bivariate cubic polynomial forn ≥ 2. At that
point the(2n)2-point approximating subdivision scheme is built. The pro-
posed scheme can be utilized for displaying distinctive items as a part of
three dimensional space. It can likewise be utilized for fitting informa-
tion focuses as a part of 3-dimensional space. Visual exhibitions and ap-
plications of the plan have likewise been introduced to demonstrate the
execution of the scheme.
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1. INTRODUCTION

Computer-Aided Geometric Design (CAGD) is used for the analysis or optimization of
design in most branches of industry and since the value of this field is rising every day and
plays important role in design of cars, airplanes and electronic systems, as well as in many
recent engineering processes. It allows mathematical results to represent curves/surfaces
and is often used in computer graphics, engineering and computer algebra.

In computer graphics, a subdivision surface is a method of representing a smooth sur-
face. In late 1970s, subdivision surfaces were introduced and in the fields of computer
graphics, solid modeling and CAD, they have captivated much intention. There exists a
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variety of smoothing techniques in this field, some of which originated for the classical
B-splines methods.

The two types of subdivision schemes are approximating and interpolating. No global
system of equations demands to be solved so that these schemes are local. For the model-
ing of curves and surfaces in computer graphics field, subdivision field become a popular
method.

A very well known technique, the least squares method is used for figuring of frame-
works and to fix data. Nowadays this technique is commonly used for the numerical deter-
mination of parameters to estimate statistical characteristics of data and to fit a function to
a set of the data. This technique has different types. The simplest type is called ordinary
least squares and the advanced one is weighted least squares. Alternating least square and
partial least square techniques are new additions to this method.

Fang et al. [2] proposed a generalized B-spline surface subdivision scheme of arbitrary
order with a tension parameter. To generate various surfaces of revolution the tensor prod-
uct subdivision scheme can be used and generated by classical analytic curves that can be
exactly represented by generalized B-spline curves. To correct the shape of subdivision
surfaces, the tension parameter can be used. Tan et al. [8] proposed a new binary 4-point
subdivision scheme. They exposed that the limit curve is at leastC3 continuous by using
the sign of subdivision scheme.

Mustafa et al. [3] proposedl1-regression based subdivision schemes to hold on noisy
data properly. This article was aboutl1-regression linked with re-weighted least squares
for data recovery. Mustafa et al. [4] also modeled the 3-dimensional objects by least square
subdivision scheme. Mustafa and Bari [5] also worked on the wide-Ranging families of
subdivision schemes for fitting data to subdivide models. By fitting local least squares
polynomials, Dyn et al. [1] proposed univariate, stationary, and linear subdivision schemes
in initial effort to design subdivision schemes for refining noisy data. Some numerical
experiments that express the limit functions developed by these schemes from initial noisy
data were also provided.

Shi and Liang [6] proposed a novel integration method to rebuild local surface exactly,
the local weighted least squares (LWLS) surface was fitted in background neighborhood
which contains sufficient information and the shifting operation was done in a parallel tiny
neighborhood which contains corresponding overlapping points. Hence, a simple proce-
dure was designed to describe and merge those corresponding overlapping points. Vilca et
al. [7] presented bivariate Birnbaum-Saunders regression model. The dependence structure
between observations derived from the bivariate normal distribution can be used to evaluate
correlated log-lifetimes of two units by that bivariate regression model. We are going to
construct the non-tensor product subdivision scheme by least square approach to design the
surface models.

This paper is organized as follows: In Section 2, an algorithm is presented to gener-
ate(2n)2-point non-tensor product subdivision scheme. In Section 3, some geometrical
shapes have been produced by the proposed schemes. Conclusion and acknowledgement
is presented in Section 4.
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2. LEAST SQUARES METHOD TO FIT BIVARIATE CUBIC POLYNOMIAL TO

(2n)2-OBSERVATIONS

The bivariate cubic polynomial to the dataxr = r, ys = s,−n+1 6 r, s 6 n, n > 2 is

f(x, y) = η1 + η2x + η3y + η4x
2 + η5xy + η6y

2 + η7x
3 + η8x

2y +
η9xy2 + η10y

3. (2. 1)

A general bivariate polynomial function with respect to the observations(xr = r, ys =
s, fr,s) is given by

fr,s ≈ f(r, s) = η1 + η2r + η3s + η4r
2 + η5rs + η6s

2 + η7r
3 + η8r

2s +

η9rs
2 + η10s

3.

Wheref(r, s) is observed value andfr,s is exact value. Now we will call least squares
approach for the selection of polynomial that minimizesR, i.e. the sum of the squares of
differences betweenf(r, s) andfr,s. Differentiating

R =
n∑

r=−n+1

n∑
s=−n+1

[fr,s − (η1 + η2r + η3s + η4r
2 + η5rs + η6s

2 + η7r
3

+η8r
2s + η9rs

2 + η10s
3]2,

with respect toη1, η2,. . . , η10, setting them to 0, we obtain ten normal equations. After
simplifying and solving these system of linear equations, we get the values of unknowns

η1 =
n∑

r=−n+1

n∑
s=−n+1

1
4n2(16 n4 − 8n2 + 1)(4n2 − 9)

(224n6 − 240r2n4 −

240s2n4 − 480rn4 − 480sn4 + 840r3n2 + 360r2sn2 + 360rs2n2 + 840s3n2

−16n4 − 840r2n2 − 576rsn2 − 840s2n2 + 1188rn2 + 1188sn2 − 210r3 −
810r2s− 810rs2 − 210s3 − 658n2 + 585r2 + 1296rs + 585s2 − 663r −
663s + 270)fr,s,

η2 =
n∑

r=−n+1

n∑
s=−n+1

−1
4(16n6 − 56n4 + 49n2 − 9)n2(4n2 − 1)

(−1440rn6 +

1680r3n4 + 720rs2n4 + 480n6 − 1800r2n4 − 432rsn4 − 360s2n4 + 4776rn4

+576sn4 − 3500r3n2 − 1080r2sn2 − 2340rs2n2 − 1668n4 + 3990r2n2 +
2484rsn2 + 1170s2n2 − 4492rn2 − 1872sn2 + 770r3 + 2430r2s + 1620rs2

+1851n2 − 1965r2 − 3402rs− 810s2 + 1981r + 1296s− 663)fr,s,
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η3 =
n∑

r=−n+1

n∑
s=−n+1

−1
4(16n6 − 56n4 + 49n2 − 9)n2(4n2 − 1)

(−1440n6s + 720

r2sn4 + 1680s3n4 + 480n6 − 360r2n4 − 432rsn4 − 1800s2n4 + 576rn4 +
4776sn4 − 2340r2sn2 − 1080rs2n2 − 3500s3n2 − 1668n4 + 1170r2n2 +
2484rsn2 + 3990s2n2 − 1872rn2 − 4492sn2 + 1620r2s + 2430rs2 + 770s3

+1851n2 − 810r2 − 3402rs− 1965s2 + 1296r + 1981s− 663)fr,s,

η4 =
n∑

r=−n+1

n∑
s=−n+1

−15
4(16n6 − 56n4 + 49n2 − 9)n2(4n2 − 1)

(16n6 − 48r2n4 −

120rn4 − 24sn4 + 280r3n2 + 72r2sn2 + 40n4 − 336r2n2 − 72rsn2 + 266
rn2 + 78sn2 − 70r3 − 162r2s− 95n2 + 159r2 + 162rs− 131r − 54s +
39)fr,s,

η5 =
n∑

r=−n+1

n∑
s=−n+1

−9
2(n2 − 1)n2(16n4 − 8n2 + 1)

(−8rsn2 − 6rn2 − 6sn2 +

30r2s + 30rs2 + 8n2 − 15r2 − 52rs− 15s2 + 21r + 21s− 8)fr,s,

η6 =
n∑

r=−n+1

n∑
s=−n+1

−15
4(16n6 − 24n4 + 9n2 − 1)n2(4n2 − 9)

(16n6 − 48s2n4 −

24rn4 − 120sn4 + 72rs2n2 + 280s3n2 + 40n4 − 72rsn2 − 336s2n2 + 78
rn2 + 266sn2 − 162rs2 − 70s3 − 95n2 + 162rs + 159s2 − 54r − 131s +
39)fr,s,

η7 =
n∑

r=−n+1

n∑
s=−n+1

35
2(4n4 − 5n2 + 1)(4n2 − 9)n2

(−6rn2 + 10r3 + 3n2 −

15r2 + 11r − 3)fr,s,

η8 =
n∑

r=−n+1

n∑
s=−n+1

45
2(16n6 − 24n4 + 9n2 − 1)n2

(−2sn2 + 6r2s + n2 − 3r2 −

6rs + 3r + 2 s− 1)fr,s,

η9 =
n∑

r=−n+1

n∑
s=−n+1

45
2(4n4 − 5n2 + 1)n2(4n2 − 1)

(−2rn2 + 6rs2 + n2 − 6rs

−3s2 + 2 r + 3 s− 1)fr,s,

η10 =
n∑

r=−n+1

n∑
s=−n+1

35
2n2(16 n6 − 56 n4 + 49 n2 − 9)

(−6 sn2 + 10 s3 + 3 n2 −

15s2 + 11 s− 3)fr,s.
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Now by substituting the values ofη1, η2, ...,η10 in ( 2. 1 ) and after some simplifications,
we get the following unique bivariate cubic polynomial.

f (x, y) =
1

Φn

n∑
r=−n+1

n∑
s=−n+1

{
c1 + (c2 + c5y + c9y

2)x + (c4 + c8y)x2 + c7x
3+

c3y + c6y
2 + c10y

3
}

fr,s, (2. 2)

where

Φn = 256n10 − 960n8 + 1008n6 − 340n4 + 36n2,

c1 = 224n8 − 240n6r2 − 240n6s2 − 480n6r − 480n6s + 840n4r3 + 360n4r2s

+360n4rs2 + 840n4s3 − 240n6 − 600n4r2 − 576n4rs− 600n4s2 + 1668
n4r + 1668n4s− 1050n2r3 − 1170n2r2s− 1170n2rs2 − 1050n2s3 − 642
n4 + 1425n2r2 + 1872n2rs + 1425n2s2 − 1851n2r − 1851n2s + 210r3 +
810r2s + 810rs2 + 210s3 + 928n2 − 585r2 − 1296rs− 585s2 + 663r +
663s− 270,

c2 = 1440n6r − 1680n4r3 − 720n4rs2 − 480n6 + 1800n4r2 + 432n4rs + 360n4

s2 − 4776n4r − 576n4s + 3500n2r3 + 1080n2r2s + 2340n2rs2 + 1668n4 −
3990n2r2 − 2484n2rs− 1170n2s2 + 4492n2r + 1872n2s− 770r3 − 2430sr2

−1620rs2 − 1851n2 + 1965r2 + 3402rs + 810s2 − 1981r − 1296s + 663,

c3 = 1440 n6s− 720n4r2s− 1680n4s3 − 480n6 + 360n4r2 + 432n4rs + 1800n4

s2 − 576n4r − 4776n4s + 2340n2r2s + 1080n2rs2 + 3500n2s3 + 1668n4 −
1170n2r2 − 2484n2rs− 3990n2s2 + 1872n2r + 4492n2s− 1620r2s− 2430
rs2 − 770s3 − 1851n2 + 810r2 + 3402rs + 1965s2 − 1296r − 1981s + 663,

c4 = −240n6 + 720n4r2 + 1800n4r + 360n4s− 4200n2r3 − 1080n2r2s− 600n4

+5040n2r2 + 1080n2rs− 3990n2r − 1170n2s + 1050r3 + 2430r2s + 1425
n2 − 2385r2 − 2430rs + 1965r + 810s− 585,

c5 = 576n4rs + 432n4r + 432n4s− 2160n2r2s− 2160n2rs2 − 576n4 + 1080n2r2

+2448n2rs + 1080n2s2 − 2484n2r − 2484n2s + 4860r2s + 4860rs2 + 1872
n2 − 2430r2 − 8424rs− 2430s2 + 3402r + 3402s− 1296,

c6 = −240n6 + 720n4s2 + 360n4r + 1800n4s− 1080n2rs2 − 4200n2s3 − 600n4

+1080n2rs + 5040n2s2 − 1170n2r − 3990n2s + 2430rs2 + 1050s3 + 1425
n2 − 2430rs− 2385s2 + 810r + 1965s− 585,

c7 = −1680n4r + 2800n2r3 + 840n4 − 4200n2r2 + 3500n2r − 700r3 − 1050n2

+1050r2 − 770r + 210,
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c8 = 360n4(1− 2s) + 2160n2r2s− 1080n2r2 − 2160n2rs + 1080n2r + 2340n2s

−4860r2s− 1170n2 + 2430r2 + 4860 rs− 2430r − 1620s + 810,

c9 = 360n4(1− 2r) + 2160n2rs2 − 2160n2rs− 1080n2s2 + 2340n2r + 1080n2s

−4860rs2 − 1170n2 + 4860rs + 2430s2 − 1620r − 2430s + 810,

and

c10 = −1680n4s + 2800n2s3 + 840n4 − 4200n2s2 + 3500n2s− 700s3 −
1050n2 + 1050s2 − 770s + 210.

2.1. Subdivision surface scheme.Here we will present(2n)2-point approximating sub-
division scheme to fit the data as well as for the modeling of distinct objects.
Takingn = 2 and by evaluating equation ( 2. 2 ) at individual points(x, y) =( 1

4 , 1
4 ), ( 3

4 , 1
4 ),

( 1
4 , 3

4 ), ( 3
4 , 3

4 ). Finally f
(

1
4 , 1

4

)
=fk+1

2i,2j , f
(

3
4 , 1

4

)
= fk+1

2i+1,2j , f
(

1
4 , 3

4

)
= fk+1

2i,2j+1,

f
(

3
4 , 3

4

)
= fk+1

2i+1,2j+1, fr,s = fk
i+r,j+s, we get 16-point approximating subdivision

scheme having four rules to fit a surface by an initial quad mesh.

fk+1
2i,2j = −103

800
fk

i−1,j−1 +
233
1600

fk
i−1,j +

1
50

fk
i−1,j+1 −

293
3200

fk
i−1,j+2 +

233
1600

fk
i,j−1

+
581
1600

fk
i,j +

673
3200

fk
i,j+1 +

81
800

fk
i,j+2 +

1
50

fk
i+1,j−1 +

81
800

fk
i+2,j +

3
50

fk
i+1,j+1 −

27
1600

fk
i+1,j+2 −

293
3200

fk
i+2,j−1 −

27
1600

fk
i+2,j+1 +

673
3200

fk
i+1,j

− 51
1600

fk
i+2,j+2,

fk+1
2i+1,2j = − 293

3200
fk

i−1,j−1 +
81
800

fk
i−1,j −

27
1600

fk
i−1,j+1 −

51
1600

fk
i−1,j+2 +

1
50

fk
i,j−1 +

673
3200

fk
i,j +

3
50

fk
i,j+1 −

27
1600

fk
i,j+2 +

233
1600

fk
i+1,j−1 +

581
1600

fk
i+1,j +

673
3200

fk
i+1,j+1 +

81
800

fk
i+1,j+2 −

103
800

fk
i+2,j−1 +

233
1600

fk
i+2,j +

1
50

fk
i+2,j+1 −

293
3200

fk
i+2,j+2.

fk+1
2i,2j+1 = − 293

3200
fk

i−1,j−1 +
1
50

fk
i−1,j +

233
1600

fk
i−1,j+1 −

103
800

fk
i−1,j+2 +

81
800

fk
i,j−1 +

673
3200

fk
i,j +

581
1600

fk
i,j+1 +

233
1600

fk
i,j+2 −

27
1600

fk
i+1,j−1 +

3
50

fk
i+1,j +

673
3200

fk
i+1,j+1 +

1
50

fk
i+1,j+2 −

51
1600

fk
i+2,j−1 −

27
1600

fk
i+2,j

+
81
800

fk
i+2,j+1 −

293
3200

fk
i+2,j+2,
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fk+1
2i+1,2j+1 = − 51

1600
fk

i−1,j−1 −
27

1600
fk

i−1,j +
81
800

fk
i−1,j+1 −

293
3200

fk
i−1,j+2

− 27
1600

fk
i,j−1 +

3
50

fk
i,j +

673
3200

fk
i,j+1 +

1
50

fk
i,j+2 +

81
800

fk
i+1,j−1

+
673
3200

fk
i+1,j +

581
1600

fk
i+1,j+1 +

233
1600

fk
i+1,j+2 −

293
3200

fk
i+2,j−1

+
1
50

fk
i+2,j +

233
1600

fk
i+2,j+1 −

103
800

fk
i+2,j+2.

wherefk+1
i,j = ( i

2k+1 , j
2k+1 ) andfk

i,j = ( i
2k , j

2k ) are control points at levelk + 1 andk
respectively.

Remark 2.2. For different values ofn (i.e. n = 3, 4, 5, 6, . . .) in the bivariate polyno-
mial ( 2. 2 ) and by adopting similar procedure, we get a family of non tensor product
approximating subdivision schemes called(2n)2-point scheme based on bivariate cubic
polynomial.

2.3. Generalization and variants. Here we offer the speculation and variations of the
(2n)2-point approximating subdivision scheme. In the past section, we have minimized the
entirety of squares of the errors. A more broad methodology is to minimize the weighted
aggregate of the squares of the error assuming control over all information focuses. On the
off chance that this entirety is indicated byR andf(x, y) is bivariate cubic polynomial then

R =
n∑

r=−n

n∑
s=−n

wrws(fr,s − f(r, s))

wherewr andws are certain numbers and are called weights. The weights are endorsed
by relative exactness of information focuses. On the off chance that all the information
focuses are precise, we setwr = ws = 1 for all r ands.
We can get summed up subdivision plan by minimizingR and utilizing the same method-
ology received as a part of past section. The diverse varieties of the proposed scheme can
likewise be determined by utilizing distinctive degree bivariate polynomials.
The generalization and variations of the proposed plans can likewise be gotten by utilizing
different sorts of technique for least squares, for example, iterative weighted least squares,
moving least squares, improved moving least square, adaptive moving least square, orthog-
onal distance fitting, iterative least square and robust moving least squares.

3. NUMERICAL EXAMPLES

We are going to present the applications of the(2n)2-point approximating subdivision
scheme. The scheme is only suitable for the modeling of 3D data lying on the rectangular
polygonal mesh. The scheme recursively refines the rectangular polygonal mesh and in the
limit it gives smooth and pleasant shape.
There are two major steps to refine the rectangular polygonal mesh.

• Subdivision rule
• Topological rule (i.e. connectivity rule)

The subdivision rules help to insert/introduce new points in the mesh by using the neighbor-
ing points. While the topological rules tell us how to connect the newly computed points.
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These rules also help to make new faces then guide us to connect new faces to get refine
mesh. These two rules are repeatedly apply on the mesh to get denser mesh. Then by
applying shading and texturing on the refined mesh, we get smooth 3D model.
A sketch of an object in the form of quadrilateral mesh has been considered. Then this
sketch has been iteratively refined by 16-point(n = 2) scheme then finally a smooth object
has been obtained. More explanation can be seen in Figure 1.

• The sketch of an object called initial mesh is shown in Figure 1(a). Here points
joined by straight lines are called edges. Four edges make a quadrilateral face
called regular face. These regular faces make a regular quadrilateral mesh.

• The result after the first iterative step of 16-point approximating subdivision scheme
is shown in Figure 1(b). Here we observe that new mesh is denser than the initial
mesh.

• The result after the second iterative step of 16-point approximating scheme is
shown in Figure 1(c). Here we also observe that new mesh is even more denser
than the mesh after first iterative level.

• The refined mesh/limit surface is obtained after sufficiently large number of itera-
tive steps of 16-point scheme as shown in Figure 1(d).

4. CONCLUSION

The general procedure to develop the family of(2n)2-point approximating subdivision
scheme has been introduced. In this procedure, least squares technique has been used as an
initial component then subdivision rules have been developed. The well known topological
rules have been combined with subdivision rules to get approximating subdivision scheme.
The standard procedure has been introduced to implement the subdivision scheme. These
schemes are suitable for modeling of the 3D data lying on the rectangular grid/mesh. The
validity of the scheme has been checked by an example.
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