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Abstract. In this paper, we establish connections between the Hyers—
Ulam stability of the first order linear dynamic system and its dichotomy.
The main tool for proving our results is the spectral decomposition theo-
rem on time scales.
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1. INTRODUCTION

The study of stability problems for various functional equations was triggered by an
intriguing and famous talk presented by Ulam in the fall of 1940, at Wisconsin Univer-
sity. In his talk, Ulam discussed a number of important unsolved mathematical problems.
Among them, a question concerning the stability of homomorphisms seemed too abstract
for anyone to reach any conclusion. The question was following(cf. [27, 28]):

Let G, be a group and7; be a metric group with metrid(.,.). For a givene > 0, can
37
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there be found > 0 such that if a functiorf : G; — G, satisfies the inequality

d(f(zy), f(x)f(y)) <e,Va,y€ G,

then there exists a homomorphigm G, — G5 such that
d(g(z), f(z)) <4,V x € Gr.

If the answer is yes, then we say that the functional equation for homomorphism is stable
on (G1, Gs).

In the following year, Hyers was able to give a partial solution to Ulam’s question and
that was the first significant breakthrough and step toward more solutions in this area. For
the case wheré&/;, and G, are assumed to be Banach spaces, Hyers [11] was the first
mathematician who brilliantly answered to the question by direct approach and therefore
this stability phenomena was named as “Hyers—Ulam Stability”.

In 1978, Rassias extended the partial answer by Hyers in his paper [24] by using direct
approach. In fact, he generalized Hyers answer, in more stronger way. This exciting result
of Rassias attracted the attention of a large number of mathematicians across the glob and
now this area has become a very active area of research and is known as Hyers—Ulam—
Rassias stability. Since 1980’s numerous number of papers dealing with the stability of
different type of functional equations have been published, see [3,4,7,12-16].

However, among the functional equations, Obloza seems to be the first mathematician
who has investigated the Hyers—Ulam stability of linear differential equations (see [21,22]).
Thereafter, Alsina and Ger published their paper which handles the Hyers—Ulam stability
of the linear differential equatiom (¢) = y(t). They proved that if a differentiable function
y(t) is a solution of the inequalitly (t) —y(t)| < e for somes > 0 and for allt € (a, o),
then there exists a constansuch thaty(t) — ce’| < 3¢ for all t € (a,00), wherea € R
(cf. [1]). Note thaty,(t) = ce' is one-parameter family of solutions of(t) = y(t).

These results were generalized for second and higher order linear differential equations by
different mathematicians, e.g see( [17, 20, 26]). Recently in 2016t &i. generalized all

these results tath order linear homogeneous and non-homogeneous differential equations
with non-constant coefficients using open-mapping approach (see [19]).

Serious work on the stability problem of differential equations has been initiated since
2000's and so far different classes of differential equations have been investigated for sta-
bility, with different approaches, we recommend [8, 10, 18, 23, 25,29-32, 34].

Recently, Buseet al. [5] established a relationship between Hyers—Ulam stability and
dichotomy, i.e., they proved that x m complex linear system is Hyers—Ulam stable if
and only if it is dichotomic, i.e., its associated matrix has no eigenvalues on the imaginary
axis. Thereafter, Barbet al. in [2] extended this relationship to the discrete case.

The main purpose of this paper is to unify the results of [2] and [5] i.e. we give a rela-
tionship between the Hyers—Ulam stability and dichotomy of the first order linear dynamic
systemz®(t) = Gz (t), t € T, using the idea of time scale. Details about the time scale
analysis is given in next section.

2. PRELIMINARIES

The idea of time scale analysis was introduced by Hilger [9], in order to unify the
discrete and continuous analysis. Here, we recall the main definitions of time scales.

The arbitrary non—empty closed subset of real numbers is called a time scale denoted
by T. The forward jump operatar : T — T, backward jump operatgr: T — T and the
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graininess functiom : T — [0, o) are respectively defined as:

o(t)=inf{s €T :s>t}, p(t) =sup{s €T :s<t}, u(t)=0o(t) —t.
A points € T is called left scattered and left dense if- p(s) andp(s) = s, respectively.
If s < o(s) ando(s) = s, then such a point € T is termed right scattered and right

dense, respectively. The skt is known as the derived form of time scdleand is defined

as B T\(p(supT),supT], if supT < oo,
T {T, if supT = oo.
A functiong : T — R is said to be right—-dense continuous if it is continuous at all right-
dense points il and its left—sided limit exists at all left—dense point§irnwhereR is the
set of real numbers. A function: T — R is called regressive if + n(t)g(t) # 0 for all
t € T* and if1+u(t)g(¢) > 0, then the functior is termed positively regressive. The sets
of all right—dense continuous, regressive and right-dense continuous, positively regressive
functions are denoted by =(T) andR #(T) ™", respectively.
The delta derivative of the functiop: T — R at¢ € T~ is defined by

A= m Y0 =96
s—t, s#o(t) O'(t) — S
The A—integral of the rd-continuous functign: T — R is defined by

/ )AL= G() — Gla), YarbeT,

where the rd—continuous functig@his an anti—derivative of, i.e. G = gonT>.

Definition 2.1. If g € R#(T) satisfiednf;c1 |1 + u(t)g(t)| > 0, theng is called strongly
regressive.

Definition 2.2. If G € Rx#(T), then generalized exponential functieg(r,u) on T is
defined as

ec(r,u) = exp (/ Xu(t)G(t)At> Vrou€eT,

with cylindrical transformation

,ifu(t) #0,

() v

G(t), if u(t) =0.

Definition 2.3. Let T be an unbounded time scale such that for apy¥ T, we have

1 /f log |1
Ec(T) = {m eC: Sh_)rr;O sup =— 5 / ugigs)wAs < 0} ,

S0

Log(1 + pu(t)G(t))
Xu)G(t) = {

and
Er(T):={k e RVQ €T:3qe Twithqg > Q suchthatl + u(s)x =0}.
We define the set of exponential stabilityToas:
BE(T) = Ec(T) U Er(T).
Lemma 2.4. [33] Let T be a time scale angd be a positive number such thagt €
R#(T)T. Then for the corresponding scalar systef = [z the following inequality

holds
eg(u,v) < eBu—v) forallu > v.
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Let ¢ be the characteristic polynomial of the regressive maitiand letS(G) :=
{k1, K2, ...,k }, kK < m be its spectrum, where eagh, x,, . . ., kj are regressive. There
exist integersy, ¢o, ..., ¢, > 1 such that

gae(k) = (k=K1 K —kK2)? ... (k—Kp)*, c1+ca+-+cp=c.

Leti = 1,2,...,k andZ; := ker(G — «;I)™:. Clearly Z; is aneg(t, 0)—invariant sub-
space ofC™ anddim(Z;) > 1. So for Time Scalel’ we have the following Spectral
Decomposition Theorem.

Theorem 2.5. [33] For eachz € C™, there exist; € Z; (1 = 1,2,..., k) such that
eq(t,0)z =eq(t,0)z1 +eq(t,0)ze + - - +eq(t,0)z,, teT.

Moreover, ifz;(t) := eq(t,0)z, thenz;(t) € Z; V¢ € T and there exist™—-valued
polynomialh;(t) with degree less than or equal to;, — 1 such that

zi(t) = ewi(t,0)hi(t), te€T,i=1,2,... k.
Proof. From Cayley—Hamilton theorem and using the fact that
ker[gh(G)] = ker[g(G)] @ ker[h(G)],

whenever complex valued polynomialsindh are relative prime and it follows that

C"=Z2102:% & Z. (2.1)
Letz € C™, foreachi € {1,2,...,k} there exists a unique € Z; such that

z=z1+2+-+ 2z,
and then
eq(t,0)z = eq(t,0)z1 + eq(t,0)z2 + - - + eq(t,0)z, te€T.

Leth;(t) = ecwi(t, 0)2;(t). A simple calculation shows that
eon(t,0)(G — ki)™ zieq(t,0)

o (A proy
The last equality follows becausg(t) belongs toZ; for eacht € T. Thenh,; is aC™-
valued polynomial having degree less thapn O

3. EXPONENTIAL DICHOTOMY

Let us decomposg into three sets:

1 f° log |1
Ec(T):=qk€C: (limsup / lim MAS <0p,
S—oo S — S0 Jso u—p(s) U

1 5 log |1
EX(T) = {/@ eC: (limsup T / lin} )MAS> > 0}
S—o0 T 20 Jgg UTHIS

) 1 S log|l+uk|
E(T) := {lﬁ eC: (h;nﬁsolip Fg— /50 ugﬁs)fAs =0,.

Clearly,C = Ec(T) U EZ (T) U EX(T).

and

Consider a linear system
2 (t) = Gx(t); x(to) = o, t, to €T, 29 € C™, (@)
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whereG is a regressive matrix of ordet.

Definition 3.1. The systen(G) is called
e Exponentially stable if all the eigenvalueg@fire strongly regressive ani(G) C
Ec(T).
e Expansive ifS(G) C EZ(T).
e Dichotomic ifS(G) N E(T) = ¢.

Remark 3.2. Let us consideC™ = Y (G) @ Yo(G) @ Y. (G),

where
k
Y.(G) = @ ker(G — k;1)™,
i=1,k;€Ec(T)
k
Yo(G) = @ ker(G — k;1)™,

Y. (G) = @ ker(G — k;1)™.
i=1,k; €EEF (T)
The subspaceg; (G) andY,,(G) are called stable and unstable subspaces pfespec-
tively. Now ifG is a dichotomic matrix, thely (G) = {0} and soC™ = Y,(G) & Y,.(G).

Theorem 3.3. The following three statements regarding systém are equivalent.
(1) Systen{G) is dichotomic.
(2) There exists a projectiol, positive constantd/;, N, and regressive functions (posi-
tive) —v1, ve such that
@) llea(t, s)Vz|| < Nie_y, (t, )| Vx|, Vo € C™, for everyt > s,with ¢, s € T.
(i) leg(t, s)(I — V)x|| < Naey,(t,s)||(I — V)z||, Vz € C™, for everyt < s and
t, seT.
3) For each right—dense continuous and bounded functionT — C™, the unique solu-
tion of the equation

WA(t) = GW(t) + w(t), t >0, (G,w)
is bounded with initial condition belonging 1,(G).

Proof. (1) = (2) System(G) is dichotomic. By Remark 3.™ = Y;(G) @ Y, (G) i.e.
everyxz € C™ can be written as = x5 + z,, with z, € Y,(G) andz, € Y,(G). Let

VY : C"™ — C™ defined byVz = z,. ObviouslyV is a projection and by using Theorem
2.5, we can easily verify that (i) and (ii) are satisfied fé > 0, N, > 0 and positive
regressive functions v, anduvs.

(2) = (1) Suppose on contrary th&F) is not dichotomic. Sothere exidtg {1,2, ..., k}
such thats; € E2(T). Letxg € C™ suchthattg =0+0+---+0+2;,+0+---+0,
wherez; # 0. Here two cases arises (&) € Y;(G) or (b) x; € Y, (G).

Case (a). If z; € Y,(G) theneg(t,s)Vxo = eq(t,s)z; and thus by Theorem 2.5,
eq(t,s)Vxo = ey, (t,s)p(t),Vt € T, wherep;(t) is a finite degree polynomial with
deg(p;) < my; — 1. Hence,

llea(t, s)Vaol| = llex, (¢, $)pr (D] = llp (D],

i.e. we can not find constanis;, N, and positive regressive functionrsv;, vy which
satisfies (i), thus we arrived at a contradiction.
Case (b).If z; € Y,,(G) theneg(t, s)(I — V)zo = eq(t, s)x; and thus by Theorem 2.5,
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eq(t,s)(I —V)xo = ey, (t,s)q(t),Vt € T, whereg(¢) is a finite degree polynomial with
degree less than or equalig — 1. Thus we have

llea(t, s)(I = V)aoll = llex, (8, s)au(®)]] = [l (@],

i.e. in this case again we can not find constaxi{s N» and positive regressive functions
—uv1, v Which satisfies (ii).

Thus in both cases we arrived at contradiction so we accept{@)as dichotomic.

(1) = (8) Since systeniG) is dichotomic, thus the map

t— W(t) = /0 eq(t,o(s))Vw(s)As — /too eq(t,o(s))(I —V)w(s)As,

is a solution of(G, w)(see [6]). Consider the second integral, from (ii), we have

/ llea(to(s)(I - V)w(s)|[As < / Noeuy (t, () 1T = V|||l s
t t
N o0
= AT Villelle [ eaento(s)As
2 t
N- .
= 2L Vflellaelens (08)  Jim e, (1,T))
2 — 00
N-
= I = Vll[wlle(1 - 0)
2

Ny
= — |l =V|[||lollw-
V2

Also

IN

/ llea (t, o(s)) V()] | As / Nie—u, (t,0(3) V]| [[w]locAs
0 0

N ¢
— - IIVIIIIWIIOO/ —vie_y, (t,0(s))As
(% 0

N-
= e 4,0) ~ ey 10
Ny
= — VIl (0~ 1)
1
Ny
= 71||VH||WH00-

So,

N N-
sup [W (t)] < (1|V| + 2||I—V||) sup |w(t)].
t>0 U1 V2 t>0

Hence, the equatiofG, w) has a bounded solution. Also,
W) = —/ ec(0,0(8))(I — V)w(s)As
0

_ /0 " eoa(0(s),0)(I — V)w(s)As,

and thus¥ (0) € Y,, becaus¢’,, is a closed subspace.
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Now we need to prove uniqueness. Suppdg¢.) andiWs(.) be the solutions of G, w)
onT. Then

Wi(t) = ealt,0)21 + /O eat, o(s))w(s)As, £ >0,
and
Walt) = eq(t, 0)z5 + /O ea(t, o(s))w(s)As, £ >0,

with z1, 23 € Y,,. SinceW,(t) — Wa(t) = eq(t,0)(z1 — 22), Wi(.) — Wa(.) is bounded
onT and sinc€@G) is dichotomic, so;; — 22 € Y,. On the other hand, by the assumption,
we havez, zo € Y,,. Thisyieldsz; — z; € Y,, ButY, NY,; = {0} and therefore; = z,.

(3) = (1) Suppose on contrary that the systé) is not dichotomic. Then there exists
l € {1,2,...,k} such thats; € E2(T). Letzy € C™ such thattg = 04+ 0+ --- +
0+2;,+0+--- 40, wherez; # 0, then by using Theorem 2.5, we hawe(¢t,0)xg =

er, (t,0)x;, YVt € T. Letw(t) := (1+ u(t)xi)es, (t,0)z; fort > 0,t € T and takezy € Y,
such that the map

t—eq(t,0)z0 + /0 eq(t,o(s))w(s)As,

is bounded ofT. But forw(t) := (1 4 u(t)ki)es, (t,0)z;, we have
t
eq(t,0)z0 +/ ec(s,0(s))w(s)As = eq(t,0)z0 +
0

| ecttolo @+ ume (5. 00mas
= eqg(t,0)z9 +
/0 ea(t,a(s))z(1 4 u(s)ki)es, (s,0)z;As

= eq(t,0)z +

/0 e, (t,0(8)) (1 + p(s)kr)ex, (s,0)zAs

" eml(ts)
/0 T (o) L T HSIRen (5, 0)ziAs

= eqg(s,0)z0 + /t e, (t, 8)es, (s,0)x;As
= eq(t,0)z + e,.?l (t,0)tay.
If zo = 0, then we have a contradiction because the map
t— e, (t,0)tx

is unbounded. I&, # 0, we know thaty, € Y,, and using the definition df,, there exist
N > 0 and regressive functiomsuch that

llea(t,0)z0]] > Ney(t,0),Vt >0,

i.e. in this case again the solution will be unbounded and thus we arrived at a contradiction.
O
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4. EXPONENTIAL DICHOTOMY AND HYERS-ULAM STABILITY

We can see d-approximate solution of® () = Gx(t) as an exact solution d¢f7, w)
corresponding tau(-) bounded bys. Thus with the help of Theorem 3.3, we give the
definition of Hyers—Ulam stability as:

Definition 4.1. Leté be any positive real number. The systéR) is Hyers—Ulam stable
if and only if there exists a non—negative constAnsuch that for everf™—valued right—
dense continuous map = w(t) bounded byy on T, and everyx € C™ there exists
xo € C™ such that

sup |lea(t, 0)(z — xo) +/0 ec(t,o(s))w(s)As|| < K.

t>0

Theorem 4.2. The systeniG) is Hyers—Ulam stable if and only if it is exponentially di-
chotomic.

Proof. Necessity:Suppose that the systgi@) is not dichotomic i.eY(G) # {0}. Then,
there existss; in S(G), with k; € E2(T). Letd > 0 be fixed and sew(t) = (1 +
p(s)ki)ew, (t,0)ug, with |ug|| < d. Obviously, the functiom is right-dense continuous

and bounded by. By assumption, the regressive matéxor the systen{G) is Hyers—
Ulam stable. Hence, the solution

W(t) = ea(t,0)(z — z0) +/O eo(t, o(s))w(s)As, 7, 7o € C™,

of the Cauchy problem

{ WAt) = GW () + w(t),t >0 (Goo0,20)

W(0) =z — xo,
is bounded by<§.
By using the spectral decomposition theorem, there exisis: anm matrix—valued
polynomial P;(t) having the degree at most; — 1, such that
Ve (t,0) = e, (t,0)Pi(t), Vi > 0. 4. 2)

Then the map

Y {eg(t, 0)(z — 70) + /Ot e(;(t,a(s))w(s)As} 3, @ EC™,

should also be bounded k0.
On the other hand,

v [ealt,0)a —au) + sl o(9)u(s)s]

= e, (t,0)P;(t)(x — x0) + /0 Ve (t,o(s))w(s)As,
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and
/Veg(t,a(s))w(s)As = /Veg(ﬁ,a(s))(l—|—,u(s)m)e,w(s,0)qus
0 0

= Aemﬁﬁﬁmﬁvwﬂﬂ+M@MJHG*U@DWAS

_ /t em(t78)em(570)(1 +/~”(S)Hi)
0 (1+ p(s)rq)

= em(t,O)/O Pi(t — o(s))ugAs
= €k, (t’ O)qz (t)a

whereg;(t) = fot P;(t — o(s))ugAs is a polynomial as well. Now choosing an appropriate
vectorug # 0,

deg[P;(t)(x — wo)] < deg[P;(t)] = deg[P;(t)uo] < 1+ deg[P;(t)] = deg[q:(t)].

Therefore the solutiofV (¢) = ey, (t,0)P;(t)(x — zo) + e, (t,0)q:(t) is unbounded and
we have a contradiction.

Sufficiency: Letw : T — C™ be a right—dense continuous function, wijth||., < 6. By
Theorem 3.3, the solutioW (-) starting from the subspad§, (G) of (G, w, ) is unique
and bounded. Let, = W(0) € Y,,(G) and sinc€G) is dichotomic, the map

Pi(t — o(s))ugAs

t»—>/0 eq(t,o(s))Vw(s)As — /too ec(t,o(s))(I —V)w(s)As,

is a bounded solution o of (G, w, z¢). Then,

4ol

||eg(t,0)uo+/0 ec(t,o(s))w(s)As||

||/0 ec(t,o(s))Vw(s)As — /too ea(t,o(s))(I — V)w(s)As||

N N
(T2 220 - v s
1 V2

The desired assertion follows by choosiRig= <N1||V + %HI — V||) andzg = z —

IN

U1

UuQ- O

Example 4.3. Show that the systent (t) = Gz(t), t € T has the Hyer—Ulam stability
on time scalél, whereG is the2 x 2 matrix defined by:

¢-(33):

Solution:; Since the eigenvalues of the coefficient matrix afe= 2 andxs = —3, we
can see that the matri¥ is regressive whep(t) # —1/2,1/3. The regressive matri&
is dichotomic due taS(G) N E2(T) = ¢. In this case, the matrix exponential function
eg(t,o(s)) is given as:

[ e—s(t,o(s)) 0
ea(t,o(s)) = ( 0 ea(t, o(s)) )
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So by using Theorems 2.5 and 3.3, it can be easily shown that

supHe(;(t,O)mo—i—/O ca(t, o(s))w(s)As|| < K.

t>0

So the regressive matrix is Hyers—Ulam stable.

5. CONCLUSION

In this paper, we unified the results of Hyers—Ulam stability and exponential dichotomy
of first order linear differential and difference equations by using time scale i.e. we show
that the first order linear dynamic systdif¥) is Hyers—Ulam stable if and only if it is
dichotomic. This relationship is proved in terms of boundedness of solution of the Cauchy
problem(G, w, zg).
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