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1. INTRODUCTION

The study of stability problems for various functional equations was triggered by an
intriguing and famous talk presented by Ulam in the fall of 1940, at Wisconsin Univer-
sity. In his talk, Ulam discussed a number of important unsolved mathematical problems.
Among them, a question concerning the stability of homomorphisms seemed too abstract
for anyone to reach any conclusion. The question was following(cf. [27,28]):
Let G1 be a group andG2 be a metric group with metricd(., .). For a givenε > 0, can
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there be foundδ > 0 such that if a functionf : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) ≤ ε, ∀ x, y ∈ G1,

then there exists a homomorphismg : G1 → G2 such that

d(g(x), f(x)) ≤ δ,∀ x ∈ G1.

If the answer is yes, then we say that the functional equation for homomorphism is stable
on (G1, G2).

In the following year, Hyers was able to give a partial solution to Ulam’s question and
that was the first significant breakthrough and step toward more solutions in this area. For
the case whereG1 and G2 are assumed to be Banach spaces, Hyers [11] was the first
mathematician who brilliantly answered to the question by direct approach and therefore
this stability phenomena was named as “Hyers–Ulam Stability”.

In 1978, Rassias extended the partial answer by Hyers in his paper [24] by using direct
approach. In fact, he generalized Hyers answer, in more stronger way. This exciting result
of Rassias attracted the attention of a large number of mathematicians across the glob and
now this area has become a very active area of research and is known as Hyers–Ulam–
Rassias stability. Since 1980’s numerous number of papers dealing with the stability of
different type of functional equations have been published, see [3,4,7,12–16].

However, among the functional equations, Obloza seems to be the first mathematician
who has investigated the Hyers–Ulam stability of linear differential equations (see [21,22]).
Thereafter, Alsina and Ger published their paper which handles the Hyers–Ulam stability
of the linear differential equationy

′
(t) = y(t). They proved that if a differentiable function

y(t) is a solution of the inequality|y′(t)−y(t)| ≤ ε for someε ≥ 0 and for allt ∈ (a,∞),
then there exists a constantc such that|y(t) − cet| ≤ 3ε for all t ∈ (a,∞), wherea ∈ R
(cf. [1]). Note thatyc(t) = cet is one-parameter family of solutions ofy

′
(t) = y(t).

These results were generalized for second and higher order linear differential equations by
different mathematicians, e.g see( [17, 20, 26]). Recently in 2016, Liet al. generalized all
these results tonth order linear homogeneous and non-homogeneous differential equations
with non-constant coefficients using open-mapping approach (see [19]).

Serious work on the stability problem of differential equations has been initiated since
2000’s and so far different classes of differential equations have been investigated for sta-
bility, with different approaches, we recommend [8,10,18,23,25,29–32,34].

Recently, Buşeet al. [5] established a relationship between Hyers–Ulam stability and
dichotomy, i.e., they proved thatm × m complex linear system is Hyers–Ulam stable if
and only if it is dichotomic, i.e., its associated matrix has no eigenvalues on the imaginary
axis. Thereafter, Barbuet al. in [2] extended this relationship to the discrete case.

The main purpose of this paper is to unify the results of [2] and [5] i.e. we give a rela-
tionship between the Hyers–Ulam stability and dichotomy of the first order linear dynamic
systemx∆(t) = Gx(t), t ∈ T, using the idea of time scale. Details about the time scale
analysis is given in next section.

2. PRELIMINARIES

The idea of time scale analysis was introduced by Hilger [9], in order to unify the
discrete and continuous analysis. Here, we recall the main definitions of time scales.

The arbitrary non–empty closed subset of real numbers is called a time scale denoted
by T. The forward jump operatorσ : T → T, backward jump operatorρ : T → T and the
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graininess functionµ : T → [0,∞) are respectively defined as:

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point s ∈ T is called left scattered and left dense ifs > ρ(s) andρ(s) = s, respectively.
If s < σ(s) andσ(s) = s, then such a points ∈ T is termed right scattered and right
dense, respectively. The setTz is known as the derived form of time scaleT and is defined
as

Tz =
{

T\(ρ(sup T), sup T], if sup T < ∞,

T, if sup T = ∞.

A function g : T → R is said to be right–dense continuous if it is continuous at all right-
dense points inT and its left–sided limit exists at all left–dense points inT, whereR is the
set of real numbers. A functiong : T → R is called regressive if1 + µ(t)g(t) 6= 0 for all
t ∈ Tz and if1+µ(t)g(t) > 0, then the functiong is termed positively regressive. The sets
of all right–dense continuous, regressive and right-dense continuous, positively regressive
functions are denoted byRF (T) andRF (T)+, respectively.

The delta derivative of the functiong : T → R at t ∈ Tz is defined by

g∆(t) = lim
s→t, s 6=σ(t)

g(σ(t))− g(s)
σ(t)− s

.

The∆–integral of the rd-continuous functiong : T → R is defined by
∫ b

a

g(t)∆t = G(b)−G(a), ∀ a, b ∈ T,

where the rd–continuous functionG is an anti–derivative ofg, i.e. G∆ = g onTz.

Definition 2.1. If g ∈ RF (T) satisfiesinft∈T |1 + µ(t)g(t)| > 0, theng is called strongly
regressive.

Definition 2.2. If G ∈ RF (T), then generalized exponential functioneG(r, u) on T is
defined as

eG(r, u) = exp
(∫ r

u

χµ(t)G(t)∆t

)
∀ r, u ∈ T,

with cylindrical transformation

χµ(t)G(t) =





Log(1 + µ(t)G(t))
µ(t)

, if µ(t) 6= 0,

G(t), if µ(t) = 0.

Definition 2.3. LetT be an unbounded time scale such that for anys0 ∈ T, we have

EC(T) :=

{
κ ∈ C : lim

S→∞
sup

1
S − s0

∫ S

s0

lim
u→µ(s)

log |1 + uκ|
u

∆s < 0

}
,

and

ER(T) := {κ ∈ R|∀ Q ∈ T : ∃ q ∈ T with q > Q such that1 + µ(s)κ = 0} .

We define the set of exponential stability onT as:

E(T) = EC(T) ∪ ER(T).

Lemma 2.4. [33] Let T be a time scale andβ be a positive number such thatβ ∈
RF (T)+. Then for the corresponding scalar systemz∆ = βz the following inequality
holds

eβ(u, v) ≤ eβ(u−v) for all u ≥ v.
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Let qG be the characteristic polynomial of the regressive matrixG and letS(G) :=
{κ1, κ2, . . . , κk}, k ≤ m be its spectrum, where eachκ1, κ2, . . . , κk are regressive. There
exist integersc1, c2, . . . , ck ≥ 1 such that

qG(κ) = (κ− κ1)c1(κ− κ2)c2 . . . (κ− κk)ck , c1 + c2 + · · ·+ ck = c.

Let i = 1, 2, . . . , k andZi := ker(G − κiI)mi . ClearlyZi is aneG(t, 0)–invariant sub-
space ofCm anddim(Zi) ≥ 1. So for Time ScaleT we have the following Spectral
Decomposition Theorem.

Theorem 2.5. [33] For eachz ∈ Cm, there existzi ∈ Zi (i = 1, 2, . . . , k) such that

eG(t, 0)z = eG(t, 0)z1 + eG(t, 0)z2 + · · ·+ eG(t, 0)zk, t ∈ T.

Moreover, ifzi(t) := eG(t, 0)zi, thenzi(t) ∈ Zi ∀ t ∈ T and there existsCm–valued
polynomialhi(t) with degree less than or equal tomi − 1 such that

zi(t) = eκi(t, 0)hi(t), t ∈ T, i = 1, 2, . . . , k.

Proof. From Cayley–Hamilton theorem and using the fact that

ker[gh(G)] = ker[g(G)]⊕ ker[h(G)],

whenever complex valued polynomialsg andh are relative prime and it follows that

Cm = Z1 ⊕Z2 ⊕ · · · ⊕ Zk. (2. 1)

Let z ∈ Cm, for eachi ∈ {1, 2, . . . , k} there exists a uniquezi ∈ Zi such that

z = z1 + z2 + · · ·+ zk,

and then

eG(t, 0)z = eG(t, 0)z1 + eG(t, 0)z2 + · · ·+ eG(t, 0)zk, t ∈ T.

Let hi(t) = eªκi(t, 0)zi(t). A simple calculation shows that

h∆
i

mi
(t) =

eªκ(t, 0)(G− κiI)mizieG(t, 0)
(1 + µκi)mi

= 0.

The last equality follows becausezi(t) belongs toZi for eacht ∈ T. Thenhi is aCm-
valued polynomial having degree less thanmi. ¤

3. EXPONENTIAL DICHOTOMY

Let us decomposeC into three sets:

EC(T) :=

{
κ ∈ C :

(
lim sup

S→∞

1
S − s0

∫ S

s0

lim
u→µ(s)

log |1 + uκ|
u

∆s

)
< 0

}
,

E+
C (T) :=

{
κ ∈ C :

(
lim sup

S→∞

1
S − s0

∫ S

s0

lim
u→µ(s)

log |1 + uκ|
u

∆s

)
> 0

}

and

E0
C(T) :=

{
κ ∈ C :

(
lim sup

S→∞

1
S − s0

∫ S

s0

lim
u→µ(s)

log |1 + uκ|
u

∆s

)
= 0

}
.

Clearly,C = EC(T) ∪ E+
C (T) ∪ E0

C(T).

Consider a linear system

x∆(t) = Gx(t); x(t0) = x0, t, t0 ∈ T, x0 ∈ Cm, (G)
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whereG is a regressive matrix of orderm.

Definition 3.1. The system(G) is called

• Exponentially stable if all the eigenvalues ofG are strongly regressive andS(G) ⊂
EC(T).

• Expansive ifS(G) ⊂ E+
C (T).

• Dichotomic ifS(G) ∩ E0
C(T) = φ.

Remark 3.2. Let us considerCm = Ys(G)⊕ Y0(G)⊕ Yu(G),
where

Ys(G) =
k⊕

i=1,κi∈EC(T)

ker(G− κiI)mi ,

Y0(G) =
k⊕

i=1,κi∈E0
C(T)

ker(G− κiI)mi ,

Yu(G) =
k⊕

i=1,κi∈E+
C (T)

ker(G− κiI)mi .

The subspacesYs(G) andYu(G) are called stable and unstable subspaces ofG, respec-
tively. Now ifG is a dichotomic matrix, thenY0(G) = {0} and soCm = Ys(G)⊕ Yu(G).

Theorem 3.3. The following three statements regarding system(G) are equivalent.
(1) System(G) is dichotomic.
(2) There exists a projectionV, positive constantsN1, N2 and regressive functions (posi-
tive)−v1, v2 such that
(i) ‖eG(t, s)Vx‖ ≤ N1e−v1(t, s)‖Vx‖, ∀x ∈ Cm, for every t ≥ s, with t, s ∈ T.
(ii) ||eG(t, s)(I − V)x|| ≤ N2ev2(t, s)||(I − V)x||, ∀ x ∈ Cm, for everyt ≤ s and
t, s ∈ T.
3) For each right–dense continuous and bounded functionω : T → Cm, the unique solu-
tion of the equation

W∆(t) = GW (t) + ω(t), t ≥ 0, (G,ω)
is bounded with initial condition belonging toYu(G).

Proof. (1) ⇒ (2) System(G) is dichotomic. By Remark 3.2,Cm = Ys(G)⊕ Yu(G) i.e.
everyx ∈ Cm can be written asx = xs + xu with xs ∈ Ys(G) andxu ∈ Yu(G). Let
V : Cm → Cm defined byVx = xs. ObviouslyV is a projection and by using Theorem
2.5, we can easily verify that (i) and (ii) are satisfied forN1 > 0, N2 > 0 and positive
regressive functions−v1 andv2.

(2) ⇒ (1) Suppose on contrary that(G) is not dichotomic. So there existsl ∈ {1, 2, . . . , k}
such thatκl ∈ E0

C(T). Let x0 ∈ Cm such thatx0 = 0 + 0 + · · · + 0 + xl + 0 + · · · + 0,
wherexl 6= 0. Here two cases arises (a)xl ∈ Ys(G) or (b)xl ∈ Yu(G).
Case (a). If xl ∈ Ys(G) then eG(t, s)Vx0 = eG(t, s)xl and thus by Theorem 2.5,
eG(t, s)Vx0 = eκl

(t, s)pl(t), ∀ t ∈ T, wherepl(t) is a finite degree polynomial with
deg(pl) ≤ ml − 1. Hence,

||eG(t, s)Vx0|| = ||eκl
(t, s)pl(t)|| = ||pl(t)||,

i.e. we can not find constantsN1, N2 and positive regressive functions−v1, v2 which
satisfies (i), thus we arrived at a contradiction.
Case (b). If xl ∈ Yu(G) theneG(t, s)(I − V)x0 = eG(t, s)xl and thus by Theorem 2.5,
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eG(t, s)(I −V)x0 = eκl
(t, s)ql(t),∀ t ∈ T, whereql(t) is a finite degree polynomial with

degree less than or equal toml − 1. Thus we have

||eG(t, s)(I − V)x0|| = ||eκl
(t, s)ql(t)|| = ||ql(t)||,

i.e. in this case again we can not find constantsN1, N2 and positive regressive functions
−v1, v2 which satisfies (ii).

Thus in both cases we arrived at contradiction so we accept that(G) is dichotomic.
(1) ⇒ (3) Since system(G) is dichotomic, thus the map

t 7→ W (t) :=
∫ t

0

eG(t, σ(s))Vω(s)∆s−
∫ ∞

t

eG(t, σ(s))(I − V)ω(s)∆s,

is a solution of(G,ω)(see [6]). Consider the second integral, from (ii), we have

∫ ∞

t

||eG(t, σ(s))(I − V)ω(s)||∆s ≤
∫ ∞

t

N2ev2(t, σ(s))||I − V||||ω||∞∆s

=
N2

v2
||I − V||||ω||∞

∫ ∞

t

v2ev2(t, σ(s))∆s

=
N2

v2
||I − V||||ω||∞(ev2(t, t)− lim

T→∞
ev2(t, T ))

=
N2

v2
||I − V||||ω||∞(1− 0)

=
N2

v2
||I − V||||ω||∞.

Also
∫ t

0

||eG(t, σ(s))Vω(s)||∆s ≤
∫ t

0

N1e−v1(t, σ(s))||V||||ω||∞∆s

=
N1

−v1
||V||||ω||∞

∫ t

0

−v1e−v1(t, σ(s))∆s

=
N1

−v1
||V||||ω||∞(e−v1(t, 0)− e−v1(t, t))

=
N1

−v1
||V||||ω||∞(0− 1)

=
N1

v1
||V||||ω||∞.

So,

sup
t≥0

|W (t)| ≤
(

N1

v1
||V||+ N2

v2
||I − V||

)
sup
t≥0

|ω(t)|.

Hence, the equation(G,ω) has a bounded solution. Also,

W (0) = −
∫ ∞

0

eG(0, σ(s))(I − V)ω(s)∆s

= −
∫ ∞

0

eªG(σ(s), 0)(I − V)ω(s)∆s,

and thusW (0) ∈ Yu becauseYu is a closed subspace.
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Now we need to prove uniqueness. SupposeW1(.) andW2(.) be the solutions of(G,ω)
onT. Then

W1(t) = eG(t, 0)z1 +
∫ t

0

eG(t, σ(s))ω(s)∆s, t ≥ 0,

and

W2(t) = eG(t, 0)z2 +
∫ t

0

eG(t, σ(s))ω(s)∆s, t ≥ 0,

with z1, z2 ∈ Yu. SinceW1(t)−W2(t) = eG(t, 0)(z1 − z2), W1(.)−W2(.) is bounded
onT and since(G) is dichotomic, soz1 − z2 ∈ Ys. On the other hand, by the assumption,
we havez1, z2 ∈ Yu. This yieldsz1 − z2 ∈ Yu But Yu ∩ Ys = {0} and thereforez1 = z2.
(3) ⇒ (1) Suppose on contrary that the system(G) is not dichotomic. Then there exists
l ∈ {1, 2, . . . , k} such thatκl ∈ E0

C(T). Let x0 ∈ Cm such thatx0 = 0 + 0 + · · · +
0 + xl + 0 + · · · + 0, wherexl 6= 0, then by using Theorem 2.5, we haveeG(t, 0)x0 =
eκl

(t, 0)xl,∀ t ∈ T. Letω(t) := (1+µ(t)κl)eκl
(t, 0)xl for t ≥ 0, t ∈ T and takez0 ∈ Yu

such that the map

t 7→ eG(t, 0)z0 +
∫ t

0

eG(t, σ(s))ω(s)∆s,

is bounded onT. But for ω(t) := (1 + µ(t)κl)eκl
(t, 0)xl, we have

eG(t, 0)z0 +
∫ t

0

eG(s, σ(s))ω(s)∆s = eG(t, 0)z0 +
∫ t

0

eG(t, σ(s))(1 + µ(s)κl)eκl
(s, 0)xl∆s

= eG(t, 0)z0 +∫ t

0

eG(t, σ(s))xl(1 + µ(s)κl)eκl
(s, 0)xl∆s

= eG(t, 0)z0 +∫ t

0

eκl
(t, σ(s))(1 + µ(s)κl)eκl

(s, 0)xl∆s

= eG(t, 0)z0 +∫ t

0

eκl
(t, s)

1 + µ(s)κl
(1 + µ(s)κl)eκl

(s, 0)xl∆s

= eG(s, 0)z0 +
∫ t

0

eκl
(t, s)eκl

(s, 0)xl∆s

= eG(t, 0)z0 + eκl
(t, 0)txl.

If z0 = 0, then we have a contradiction because the map

t 7→ eκl
(t, 0)txl

is unbounded. Ifz0 6= 0, we know thatz0 ∈ Yu and using the definition ofYu there exist
N > 0 and regressive functionv such that

‖eG(t, 0)z0‖ ≥ Nev(t, 0),∀ t ≥ 0,

i.e. in this case again the solution will be unbounded and thus we arrived at a contradiction.
¤



44 Akbar Zada, Syed Omar Shah, Samreen Ismail and Tongxing Li

4. EXPONENTIAL DICHOTOMY AND HYERS–ULAM STABILITY

We can see aδ–approximate solution ofx∆(t) = Gx(t) as an exact solution of(G,ω)
corresponding toω(·) bounded byδ. Thus with the help of Theorem 3.3, we give the
definition of Hyers–Ulam stability as:

Definition 4.1. Let δ be any positive real number. The system(G) is Hyers–Ulam stable
if and only if there exists a non–negative constantK such that for everyCm–valued right–
dense continuous mapω = ω(t) bounded byδ on T, and everyx ∈ Cm there exists
x0 ∈ Cm such that

sup
t≥0

||eG(t, 0)(x− x0) +
∫ t

0

eG(t, σ(s))ω(s)∆s|| ≤ Kδ.

Theorem 4.2. The system(G) is Hyers–Ulam stable if and only if it is exponentially di-
chotomic.

Proof. Necessity:Suppose that the system(G) is not dichotomic i.e.Y0(G) 6= {0}. Then,
there existsκi in S(G), with κi ∈ E0

C(T). Let δ > 0 be fixed and setω(t) = (1 +
µ(s)κi)eκi(t, 0)u0, with ||u0|| ≤ δ. Obviously, the functionω is right–dense continuous
and bounded byδ. By assumption, the regressive matrixG or the system(G) is Hyers–
Ulam stable. Hence, the solution

W (t) = eG(t, 0)(x− x0) +
∫ t

0

eG(t, σ(s))ω(s)∆s, x, x0 ∈ Cm,

of the Cauchy problem

{
W∆(t) = GW (t) + ω(t), t ≥ 0

W (0) = x− x0,
(G,ω, x0)

is bounded byKδ.
By using the spectral decomposition theorem, there exists anm × m matrix–valued

polynomialPi(t) having the degree at mostmi − 1, such that

VeG(t, 0) = eκi(t, 0)Pi(t), ∀ t ≥ 0. (4. 2)

Then the map

t 7→ V
[
eG(t, 0)(x− x0) +

∫ t

0

eG(t, σ(s))ω(s)∆s

]
, x, x0 ∈ Cm,

should also be bounded byKδ.
On the other hand,

V
[
eG(t, 0)(x− x0) +

∫ t

0

eG(t, σ(s))ω(s)∆s

]

= eκi(t, 0)Pi(t)(x− x0) +
∫ t

0

VeG(t, σ(s))ω(s)∆s,
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and
∫ t

0

VeG(t, σ(s))ω(s)∆s =
∫ t

0

VeG(t, σ(s))(1 + µ(s)κi)eκi
(s, 0)u0∆s

=
∫ t

0

eκi
(s, 0)eκi

(t, σ(s))(1 + µ(s)κi)Pi(t− σ(s))u0∆s

=
∫ t

0

eκi
(t, s)eκi

(s, 0)(1 + µ(s)κi)
(1 + µ(s)κi)

Pi(t− σ(s))u0∆s

= eκi
(t, 0)

∫ t

0

Pi(t− σ(s))u0∆s

= eκi
(t, 0)qi(t),

whereqi(t) =
∫ t

0
Pi(t− σ(s))u0∆s is a polynomial as well. Now choosing an appropriate

vectoru0 6= 0,

deg[Pi(t)(x− x0)] ≤ deg[Pi(t)] = deg[Pi(t)u0] < 1 + deg[Pi(t)] = deg[qi(t)].

Therefore the solutionW (t) = eκi
(t, 0)Pi(t)(x − x0) + eκi

(t, 0)qi(t) is unbounded and
we have a contradiction.
Sufficiency: Let ω : T → Cm be a right–dense continuous function, with‖ω‖∞ ≤ δ. By
Theorem 3.3, the solutionW (·) starting from the subspaceYu(G) of (G, ω, x0) is unique
and bounded. Letu0 = W (0) ∈ Yu(G) and since(G) is dichotomic, the map

t 7→
∫ t

0

eG(t, σ(s))Vω(s)∆s−
∫ ∞

t

eG(t, σ(s))(I − V)ω(s)∆s,

is a bounded solution onT of (G,ω, x0). Then,

‖W (t)‖ = ‖eG(t, 0)u0 +
∫ t

0

eG(t, σ(s))ω(s)∆s‖

= ‖
∫ t

0

eG(t, σ(s))Vω(s)∆s−
∫ ∞

t

eG(t, σ(s))(I − V)ω(s)∆s‖

≤
(

N1

v1
‖V‖+

N2

v2
‖I − V‖

)
δ.

The desired assertion follows by choosingK =
(

N1
v1
‖V‖+ N2

v2
‖I − V‖

)
andx0 = x −

u0. ¤

Example 4.3. Show that the systemx∆(t) = Gx(t), t ∈ T has the Hyer–Ulam stability
on time scaleT, whereG is the2× 2 matrix defined by:

G =
( −3 0

0 2

)
.

Solution: Since the eigenvalues of the coefficient matrix areκ1 = 2 andκ2 = −3, we
can see that the matrixG is regressive whenµ(t) 6= −1/2, 1/3. The regressive matrixG
is dichotomic due toS(G) ∩ E0

C(T) = φ. In this case, the matrix exponential function
eG(t, σ(s)) is given as:

eG(t, σ(s)) =
(

e−3(t, σ(s)) 0
0 e2(t, σ(s))

)
.
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So by using Theorems 2.5 and 3.3, it can be easily shown that

sup
t≥0

||eG(t, 0)x0 +
∫ t

0

eG(t, σ(s))ω(s)∆s|| ≤ Kδ.

So the regressive matrixG is Hyers–Ulam stable.

5. CONCLUSION

In this paper, we unified the results of Hyers–Ulam stability and exponential dichotomy
of first order linear differential and difference equations by using time scale i.e. we show
that the first order linear dynamic system(G) is Hyers–Ulam stable if and only if it is
dichotomic. This relationship is proved in terms of boundedness of solution of the Cauchy
problem(G,ω, x0).
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[5] C. Buşe, O. Saierli and A. Tabassum,Spectral characterizations for Hyers–Ulam stability, Electronic Jour-

nal of Qualitative Theory of Differential Equations,30, (2014) 1-14.
[6] W. A. Coppel,Dichotomies in stability theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New

York, 629, (1978).
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