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Abstract. In harmonic analysis, wavelets are useful and important tools
for analyzing problems and equations. As far as we know, the wavelet
applications for solving differential equations are limited to solving either
ODE or PDE by numerical means. In this paper, the new mother wavelets
with two independent variables are designed in accordance with differen-
tial invariants. A new method based on the wavelets is proposed and, new
mother wavelets are introduced, while the corresponding wavelet trans-
forms are calculated and applied to differential equations. A lot of meth-
ods such as the wavelet-Galerkin method, the wavelet method of moment
lead to approximate or numerical solutions. Our method can be used for
ODEs and PDEs from every order and accordingly the analytic solutions
are obtained.
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1. INTRODUCTION

A Norwegian mathematician, Marius Sophus Lie (1842, 1899), largely created the the-
ory of continuous Lie symmetry groups and applied it to the study of geometry and differ-
ential equations [4]. These symmetry groups are invertible point transforms of both depen-
dent and independent variables of the differential equations. The symmetry group methods
provide an ultimate tool for analyzing the differential equations; it is very important to
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udnderstand them and construct solutions of differential equations. Several applications
and contributions of Lie groups in the theory of differential equations have been discussed
in the literature [4], [13] and [14]. The most important ones are the reduction of the or-
der of ODEs, the construction of invariant solutions, the mapping of the solutions to other
solutions, and the detection of linearizing transforms (for many other applications of Lie
symmetries see [14], [15]).

Differential equations have been appeared in mathematical modelling of scientific fields
[2], [8]. Nowadays, a lot of methods have been proposed for solving and analyzing these
equations, for example, see [10], [11] and [18]. Meanwhile, the symmetry groups meth-
ods and wavelets have many applications [19]. The wavelets are important functions with
special properties in functional and harmonic analysis. In 1909, Alphered Haar (a Hun-
garian mathematician) introduced the first wavelet [7]. In signal-and-image processing, the
wavelets can be used as a new tool and are also called the numerical microscopes. They
have the desirable advantages of multi-resolution properties and various basis functions,
which have great potential for solving and analyzing partial differential equations (PDEs).
Multi-dimensional wavelets are very important for applying the wavelet methods to higher-
order PDEs with two or more independent variables. Multi-dimensional wavelets, such as
those from the tensor product of 1D wavelets, have been widely studied, but the wavelets
are proposed here -besides being multi-dimensional- are different.

In 1992, the numerical analysis with wavelets first came to the notice of researchers and,
since the topics has gained increasing attention [9]. The wavelets now have numerous ap-
plications in some fields of science and technology such as seismology, image-processing,
signal-processing, coding theory, biosciences, financial mathematics, fractals and other ar-
eas [1]. The application of integral transforms for solving the ODEs and PDEs can be traced
back to Leonhard Euler (in 1744), Pierre-Simon Laplace (in 1785) and Joseph Fourier (in
1822). In 1809, Laplace applied his transform to solve the density of a substance diffusing
indefinitely in space. The use of Laplace and Fourier transforms for solving differential
equations inspired our work (for more information about the Fourier transform method
(FTM), we refer the reader to [6] and [17]). As far as we know, the application of wavelets
for solving ODEs and PDEs is limited to numerical solutions under special conditions.

In this paper, we build new wavelets with two variables that depend on the differential
invariants of Differential equations. Therefore, we can use their transforms for solving
differential equations. Indeed, for solving PDEs with two independent variables, we pro-
pose a new method based on the wavelets with two independent variables in accordance
with differential invariants. This method is called the wavelet transform method (WTM).
Because of the need to use differential invariants in the construction of our wavelets, we
briefly explain the Lie symmetry method that will be applied for obtaining the differential
invariants. We will show the performance of WTM by implementing some examples.

The remainder of this paper is organized as follows. In section 2, we recall some needed
results to construct the differential invariants, mother wavelets, quasi-wavelets and wavelet
transforms. In section 3, wavelet transform method is proposed. In sections 4, the proposed
method will be demonstrated by examples. Finally, the conclusions and future works will
be presented.
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2. PRELIMINARIES

In this section, we recall some results [needed] to construct differential invariants, the
mother wavelets, and their transforms. First, we remember that the Lie symmetry method
can be applied for obtaining differential invariants and reducing the order of PDEs. After
that, the wavelets and their transforms are discussed. The related definitions and theorems
are considered. We refer the reader to [3], [7] and [16] for deeper discussions and the
detailed proofs of theorems from the wavelet theory.

2.1. The Lie symmetry method. In this section, we remind the general procedure for de-
termining symmetries for any system of PDEs (the best general references for these topics
are [15], [14] and [13]). To begin, let us consider the general case of a nonlinear system
of partial differential equations of nth-order in p independent and q dependent variables as
follows:

∆ν(x, u
(n)) = 0, ν = 1, · · · , l, (2. 1)

that involving x = (x1, · · · , xp), u = (u1, · · · , uq) and derivatives of u with respect to x
up to n, where u(n) represents all the derivatives of u of all orders from 0 to n. We also
consider a one-parameter Lie group of infinitesimal transforms that acts on the independent
and dependent variables of the system (2.1) as below:

(x̃i, ũj) = (xi, ui) + s(ξi, ηj) +O(s2), i = 1 · · · , p, j = 1 · · · , q,
where s is the parameter of the transform and ξi, ηj are the infinitesimals of the trans-
forms for the independent and dependent variables, respectively. The infinitesimal gen-
erator vector field v associated with the above group of transforms can be written as
v =

∑p
i=1 ξ

i∂xi +
∑q
j=1 η

j∂uj . A symmetry of a differential equation is a transform
which maps solutions of the equation to other solutions. The invariance of the system (2.1)
under the infinitesimal transforms leads to the invariance conditions (Theorem 2.36 of [3]):

Pr(n)v
[
∆ν(x, u

(n))
]
= 0, ∆ν(x, u

(n)) = 0, ν = 1, · · · , l,

where Pr(n) is said to be the nth order prolongation of the infinitesimal generator and
defined by Pr(n)v = v+

∑q
α=1

∑
J ϕ

α
J (x, u

(n))∂uαJ , where J = (j1, · · · , jk), 1 ≤ jk ≤ p,
1 ≤ k ≤ n and the sum is over all J’s of order 0 < #J ≤ n. If #J = k, coefficients
ϕαJ of ∂uαJ will only depend on k-th and lower order derivatives of u and ϕJα(x, u

(n)) =

DJ(ϕα −
∑p
i=1 ξ

iuαi ) +
∑p
i=1 ξ

iuαJ,i, where uαi := ∂uα/∂xi and uαJ,i := ∂uαJ/∂x
i.

The most advantage of using these infinitesimal symmetries lies in the fact that they
form a Lie algebra under the usual Lie bracket. In fact, the symmetry group methods con-
struct new solutions from known solutions. On the other hand, when a nonlinear system of
differential equations admits infinite symmetries, so it is possible to transform it to a linear
system. The great power of Lie group theory lies in the crucial observation that one can
replace the complicated, nonlinear conditions for the invariance of a subset or function un-
der the group transformations themselves by an equivalent linear condition of infinitesimal
invariance under the corresponding infinitesimal generators of the group action [14].

Example 2.2. We applied the Lie symmetry method on the heat equation. Consider the
equation for the conduction of heat in a one-dimensional rod ut = uxx, the thermal diffu-
sivity has been normalized to unity. Here there are two independent variables x and t and



152 Hamid Reza Yazdani and Mehdi Nadjafikhah

one dependent variable u. Let

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂x
.

be a generated vector field. We wish to determine all possible coefficents ξ, τ and ϕ, so
according to the invariant condition, we should have

Pr(2)v
[
∆ν(x, t, u

(2))
]
= 0, ∆ν(x, , t, u

(2)) = ut − uxx,

but, the second prolongation of v is

v + ϕx
∂

∂ux
+ ϕt

∂

∂ut
+ ϕxx

∂

∂uxx
+ ϕxt

∂

∂uxt
+ ϕtt

∂

∂utt
,

After calculation, we get
ϕt = ϕxx

which must be satisfied whenever ut = uxx. By equating the coefficients of the various
monomials in the first and second order partial derivatives of u, we find the determining
equations for the symmetry group of the heat equation to be the following:

2τu = 0, −2τx = 0,
τuu = 0, −ξu = −2τxu − 3ξu,

ϕu − τt = −tauxx + ϕu − 2ξx, −ξuu = 0,
ϕuu − 2ξxu = 0, −ξt = 2Φxu − ξxx, ϕt = ϕxx.

The solution of the determining equations is elementary. Therefore, we conclude that the
general infinitesimal symmetry of the heat equation has coefficient functions of the form

ξ = c1 + c4x+ 2c5t+ 4c6xt,
τ = c2 + 2c4t+ 4c6t

2,
ϕ = (c3 − c5x− 2c6t− c6x

2)u+ α(x, t).

where cis for (i = 1, ..., 6) are arbitrary constants and α(x, t) is an arbitrary solution of
the heat equation. Thus, the Lie algebra of infinitesimal symmetries of the heat equation is
spanned by the six vector fields

v1 = ∂x, v2 = ∂t, v3 = u∂u,
v4 = x∂x + 2t∂t, v5 = 2t∂x − xu∂u,
v6 = 4xt∂x + 4t2∂t − (x2 + 2t)u∂u.

and the infinte-dimensional subalgebra vα = α(x, t)∂u [14].

2.3. The wavelets. Wavelets are important functions in mathematics and other scientific
fields. In this section, we introduce them as functions belonging to L2(R2) (The space of
squared integrable functions with integral norm).

Definition 2.4. The function ψ is called wavelet if it satisfies the following admissible
condition:

Cψ =

∫
R2

|F (ψ)(ω)|2dω
|ω|

<∞

where F (ψ)(ω) is the Fourier transform of the wavelet ψ and given by:

F (ψ)(ω) =
1√
2π

∫
R2

exp(−ix · ω)ψ(x)dx
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Here Cψ is said to be the wavelet coefficient of ψ and ω = (ω1, ω2), while x = (x1, x2)
belongs to R2. For further informations and examples, we refer the reader to [3].

Definition 2.5. The wavelet ψ is called the mother wavelet if it satisfies the following
properties: ∫

R2

ψ(x)dx = 0, (2. 2)∫
R2

|ψ(x)|2dx <∞, (2. 3)

lim
|ω|→∞

F (ψ(ω)) = 0 (2. 4)

Note that the first property is equivalent to Cψ > 0 (the admissible condition) for the
mother wavelet ψ. For more details see [7].

Indeed, the mother wavelets have the admissible condition, n-zero moments and expo-
nential decay properties. The mother wavelet have two parameters: the translation parame-
ter b = (b1, b2) and the scaling parameter a > 0. The family wavelet related to the mother
wavelet ψ with parameters (a, b) is:

ψa,b(x) = ψ(
x− b

a
) = ψ(

x1 − b1
a

,
x2 − b2
a

)

If function ψ does not satisfy properties (2.2), (2.3), and (2.4) globally, while approxi-
mately satisfies (locally) some properties of mother wavelets, it is called quasi-wavelet (In
other words, quasi-wavelets are modified wavelets based on special properties for com-
putational purposes. In fact, quasi-wavelets are modified wavelets based on differential
invariants for solving differential equations). The quasi-wavelets have numerous applica-
tions in applied mathematics and other scientific fields for solving PDEs (for more details
and examples, see [20]). In this paper, we provide quasi-wavelets based on the differential
invariants of PDEs. We will analyze PDEs by these quasi-wavelets.

Definition 2.6. Suppose the mother wavelet ψ, the function f ∈ L2(R2), and parameters
(a, b) are given. Then, the corresponding wavelet transform is defined as follows

Wψ(f)(a, b) =
1√

|a|.Cψ

∫
R2

ψa,b(x).f(x)dx

Thus, the wavelet transform depends on the wavelet ψ, the function f , and parameters
(a, b).

Theorem 2.7. The wavelet transform is an operator from L2(R2) to L2(R3) that satisfies
in the following properties:

1 . Linearity: Wψ[αf(x) + βg(x)] = αWψ[f(x)] + βWψ[g(x)],
2 . Translation: Wψ[f(x− k)] =Wψ[f(x)](a, b− k), ∀k ∈ R2,
3 . Scaling: Wψ[

1√
s
f(xs )] =Wψ[f(x)](

a
s ,

b
s ),

4 . Wavelet shifting: Wψ(x−k)[f(x)] =Wψ[f(x)](a, b+ ak),
5 . Linear combination: Wαψ1+βψ2

[f(x)] = αWψ1
[f(x)] + βWψ2

[f(x)],
6 . Wavelet scaling: Wψ(x/s)√

(|s|)
[f(x)] =Wψ[f(x)](as, b).
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Proof. For proof and more details see [7].
Another way of stating Theorem 1 is to say that the wavelet transforms are isometries.

Therefore in the smooth manifold M, if the collection of wavelet tranforms and the isometry
group of M are denoted by W(M) and I(M) respectively, then W(M) is a Lie subgroup of
I(M) [3].

The admissible condition implies that the wavelet transform is invertible (on the other
hand, wavelet transforms are isometry). Indeed, the inversion formula for the wavelet
transform Wψ(f) as follows

f(x) = f(x1, x2) =
1

Cψ

∫
R+×R2

Wψf(a, b)ψa,b(x)
da db1 db2

a3

The inversion formula (also called the synthesis formula) can calculate the function f(x)
corresponds to the wavelet transform Wψ(f). Note that, these conceptions are generaliz-
able to Rn by suitable symbols and assumptions [12].

3. THE WAVELET TRANSFORM METHOD

The wavelet transform method (WTM) has the following steps:
1 . Apply equivalence algorithms (for example, the Lie symmetry method) on dif-

ferential equations and obtain differential invariants.
2 . Build suitable mother wavelets based on differential invariants.
3 . Multiply the mother wavelet with the both sides of the equation and take the

wavelet transform. Solve the reduced differential equation and obtain the wavelet
transform.

4 . By the inversion formula, calculate the analytical solution.
In the following, some WTM formulas are proposed.

Theorem 3.1. Let ∆ν(x, t, u
(m)) = 0 be the m-th order differential equation with two

independent variables (x, t) and ψ be a mother wavelet based on differential invariants (t
is taken as a constant, x is taken as a variable). Under these assumptions, we have:

1) Wψ(∂tu)(x, t) =
d
dtWψ(u)(x, t),

2) Wψ(∂
n
t u)(x, t) =

dn

dtnWψ(u)(x, t),
3) Wψ(∂xu)(x, t) = −W∂xψ(u)(x, t),
4) Wψ(∂

n
xu)(x, t) = (−1)nW∂nxψ

(u)(x, t).

Proof. Without loss of generality, we assume that (a = 1, b = 0).
1) We have:

Wψ(∂tu)(x, t) =
1√
cψ

∫
utψdx = 1√

cψ

∫
limh→0

u(x,t+h)−u(x,t)
h ψdx

= limh→0
1
h

{
1√
cψ

∫
u(x, t+ h)ψdx− 1√

cψ

∫
u(x, t)ψdx

}
= limh→0

ũ(x,t+h)−ũ(x,t)
h = d

dt ũ(x, t).

where ũ(x, t) =Wψ(x, t).
2) By induction on the derivation order of t -i.e. n and similar to the above-mentioned
procedure- we have

Wψ(∂
n
t u)(x, t) =

1√
cψ

∫
u
(n)
t ψdx = 1√

cψ
d
dt

∫
∂n−1u
∂tn−1 ψdx

= d
dt

{
d
dt

∫
∂n−2u
∂tn−2 ψdx

}
= ... = dn

dtn ũ(x, t).
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3) We know that
Wψ(∂xu)(x, t) =

1√
cψ

∫
uxψdx = ( 1√

cψ
.ψ.u]+∞

−∞ − 1√
cψ

∫
u∂ψ∂x dx

= − 1√
cψ

∫
u∂ψ∂x dx.

We assume that
limx,t→∞ u(x, t)∂ψ(x,t)∂x = 0,

for calculating this integral, we use the integral by part with U = ψ, dV = ∂u
∂x and we get

to W∂xψ(u)(x, t).
4) By following inducely the above procedure according to the derivation order of x -i.e.
n, we get:

Wψ(
∂nu
∂xn )(x, t) = ( 1√

cψ
.ψ d

n−1u
dxn−1 ]

+∞
−∞ − ( 1√

cψ
.∂ψ∂x .

dn−2u
dxn−2 ]

+∞
−∞

+...+ (−1)n 1√
cψ

∫
u∂

nψ
∂xn dx.

where for caculating the integral, we can use the integral by part with U = ψ, dV = ∂u
∂x

and assume that

limx,t→∞ u(1)(x, t)∂
(n−1)ψ(x,t)
∂x(n−1) = ... = limx,t→∞ u(n−1)(x, t)ψ(x, t) = 0,

thus, the last integral is W∂nxψ
(u)(x, t).

In practice we take the wavelet transform from both sides of differential equation (t is
taken as a constant, x is taken as a variable and a = 1, b = 0) and solve the reduced
equation according to ũ(x, t) and its t-derivations and obtain ũ(x, t). For the given mother
wavelet ψ(x, t) and the obtained wavelet transform ũ(x, t), we calculate u(x, t) from the
following formula (1D-inversion formula)

u(x, t) =

∫
ũ(x, t)ψ(x, t)dx (3. 5)

where u(x, t) is the desired analytic solution. In this way, the PDE is solved by WTM
based on ψ (in accordance with the differential invariants). In the following section, we
apply WTM on the heat, wave and KdV equations.

4. EXAMPLES

In this section, we demonstrate WTM by examples. We implement WTM on the heat,
wave and KdV equations and obtain the solutions. Finally, the WTM results will be pro-
posed.

Example 4.1. First, the Lie symmetry method is applied to the heat equation ut = uxx,
and the symmetry groups, vector fields and differential invariants are obtained (for more
detailed calculations and results of the Lie symmetry method implementation on the heat
equation, see [14]). The Lie symmetry method results for the heat equation proposed in the
following table:
Table 1. The Lie symmetry method results for the heat equation.

Symmetry groups V.F. dim(g) Differential invariants
Translation c∂x + ∂t 2 (x− ct), u

Scaling x∂x + 2t∂t + 2au∂u, 3 (x/
√
t), (u/ta)

Galilean boost 2t∂x − xu∂u 2 t, u exp(x2/4t)
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In table 1, the symmetry groups are the translation with factor (c), scaling with factor (a)
and the Galilean boost (respectively). For each differential invariant and symmetry group,
the adequate quasi-wavelets are proposed in table 2.
Table 2. The suitable quasi-wavelets for symmetry groups.

Symmetry groups Differential invariants Quasi-wavelets

Translation x− ct, u
exp(−t2/2) sin(π(x− ct)/2)
exp(−t2/2) cos(π(x− ct)/2)

Scaling (x/t), (x/
√
t), (u/ta)

exp(−t2/2) sin(x/t)
exp(−t2/2) cos(x/t)

Galilean boost t, u exp(x2/4t)
exp(−t2/2) sin(x/t)
exp(−t2/2) cos(x/t)

With only a little computation, it can be seen that the offered functions have approxi-
mately properties (2.2) and (2.3) of the mother wavelets. For example, we assume that
ψ1 := exp(−t2/2) sin(π(x− ct)/2), for properties (2.2), (2.3) we have:∫ 2

0

∫ 4

0

ψ1(x, t)dx dt = 0.0000809453, (4. 6)∫ 1

0

∫ 2

0

|ψ1(x, t)|2dx dt = 0.00032350. (4. 7)

and for ψ2 := exp(−t2/2) cos(π(x− ct)/2), the computation is as follows∫ 2

0

∫ 4

0

ψ2(x, t)dx dt = 0.0768912, (4. 8)∫ 1

0

∫ 2

0

|ψ2(x, t)|2dx dt = 0.01961003. (4. 9)

Therefore, these wavelets approximately satisfy the properties of mother wavelets (in their
periods) and so are called quasi-wavelets. (Note that, ψ1 and ψ2 are periodic functions
with Tt = 2, Tx = 4 and also ψ2

1 , ψ
2
2 are periodic functions with Tt = 1, Tx = 2, where Tt

and Tx are periods of quasi-wavelets in the variables t and x respectively).
Figures 1 and 2 show the graphs of quasi-wavelets and make some properties clear.
Now by these quasi-wavelets, we apply WTM on the heat equation. First, consider the

quasi-wavelet ψ1 as follows:

ψ1 := exp(
−t2

2
) sin(

π(x− 2t)

2
)

then by multiplying both sides of heat equation with ψ1 and taking the wavelet transform,
we have:

d

dt
ũ(x, t) = −π

2

4
ũ(x, t)

therefore

ũ(x, t) = F̃ (x) exp(−π
2

4
t) + K̃
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(A) The graph of ψ1 (B) The graph of ψ2

FIGURE 1. The graphs of quasi-wavelets

(A) The graph of ψ3 (B) The graph of ψ4

FIGURE 2. The graphs of quasi-wavelets

where K̃ and F̃ (x) (respectively) are the wavelet transform related to the constant K at R
and the function F of x. Thus the analytical solution from (3.5) is

u(x, t) = F (x) exp(−π
2

4
t) +K.

Second, consider the quasi-wavelet ψ2 as follows:

ψ2 := exp(
−t2

2
) cos(

π(x− 2t)

2
)

by multiplying both sides of the heat equation with ψ2 and taking the wavelet transform,
we get:

d

dt
ũ(x, t) = −π

2

4
ũ(x, t)
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therefore

ũ(x, t) = F̃ (x) exp(−π
2

4
t) + K̃

where K̃ and F̃ (x) are defined as the above. Thus the analytical solution is obtained from
(3.5) as follows

u(x, t) = F (x) exp(−π
2

4
t) +K.

By putting the solutions in the heat equation, F (X) can be obtained as follows:

F (x) = c1 cos(
πx
2 ) + c2 sin(

πx
2 ),

Thus, the final solution is

u(x, t) = exp(−π
2

4
t){c1 cos(

πx

2
) + c2 sin(

πx

2
)}+K.

where c1, c2, and K are real constants that can be found based on initial or boundary
conditions.

Third, let us ψ3 as follows

ψ3 := exp(
−t2

2
) sin(

x

t
)

after taking the wavelet transform under ψ3, we have:

d

dt
ũ(x, t) = − 1

t2
ũ(x, t)

therefore

ũ(x, t) = G̃(x) exp(
1

t
) + K̃

So, the analytical solution from (3.5) is

u(x, t) = G(x) exp(
1

t
) +K.

where K and G(x) are same the above and according to initial or boundary conditions
will be determined. By putting this solution in the heat equation, we get:

d2

dx2
G(x) +

1

t2
G(x) = 0

after solving this second order ODE, G(x) should be as below:

G(x) = c1 cos(
x

t
) + c2 sin(

x

t
).

Finally, the exact solution obtained as follows

u(x, t) = exp(
1

t
){c1 cos(

x

t
) + c2 sin(

x

t
)}+K.

where ci for (i = 1, ..., 4) are real constants.
For the quasi-wavelet ψ4 the procedure and results are similar.

Table 3 shows the results of wavelet transform method on the heat equation:



Solving Differential Equations by New Wavelet Transform Method Based on the Quasi-Wavelets and Differential Invariants159

Table 3. WTM on the heat equation.

Quasi-wavelet The wavelet tranform The analytical solution
ψ1, ψ2 F̃ (x) exp(−π2

4 t) + K̃ F (x) exp(−π2

4 t) +K

ψ3, ψ4 G̃(x) exp( 1t ) + K̃ G(x) exp( 1t ) +K

Example 4.2. As another example, we apply WTM on the 1D-wave equation as follows

utt = uxx

We know that this equation has the travelling wave solution (TWS) and so invariants under
the translation and dilation (for more details and calculations, we refere the reader to [3]).
So by using ψ1 and ψ2, we have

d2

dt2
ũ(x, t) = −π

2

4
ũ(x, t)

We should solve this ODE with characteristics method (for more details about methods for
solving ODEs, see [5]). After calculation we have:

ũ(x, t) = H̃(x){c1 cos(
πt

2
) + c2 sin(

πt

2
)}+ K̃

now from (3.5) the analytical solution is

u(x, t) = H(x){c1 cos(
πt

2
) + c2 sin(

πt

2
)}+K.

By putting this solution in the wave equation, we have

H(x) = c3 cos(
πt

2
) + c4 sin(

πt

2
).

Finally, the exact solution obtained as follows

u(x, t) = {c1 cos(
πt

2
) + c2 sin(

πt

2
)}.{c3 cos(

πt

2
) + c4 sin(

πt

2
)}.

where ci for (i = 1, ..., 4) are the real constants.

Table 4 shows the results of wavelet transform method for the wave equation:
Table 4. WTM on the wave equation.

Quasi-wavelet The wavelet tranform The analytic solution
ψ1, ψ2 F̃{c1 cos(πt2 ) + c2 sin(

πt
2 )}+ K̃ {c1 cos(πt2 ) + c2 sin(

πt
2 )}.H(x)

where H(x) = {c3 cos(πt2 ) + c4 sin(
πt
2 )}.

Example 4.3. Finally, we implemented WTM on the generalized version of the Kortewegde
Vries (KdV)

ut + uxxx = uxxxxx

We know that the KdV equation has TWS (for more detailed calculations and results, see
[14]). Thus, according to table 2, we can apply WTM by quasi-wavelets ψ1 and ψ2. First,
we apply WTM with ψ1, and we have

d

dt
ũ(x, t)− π3

8
ũ(x, t) =

π5

32
ũ(x, t),
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therefore
d

dt
ũ(x, t)− 13.44ũ(x, t) = 0,

by solving this ODE [5], we get

ũ(x, t) = Ĩ(x) exp(13.44t) + K̃

Now from (3.5), the analytical solution is

u(x, t) = I(x) exp(13.44t) +K.

For obtaining I(x), we should put u(x, t) in the KdV equation:

d5

dx5
I(x)− d3

dx3
I(x)− 13.44I(x) = 0.

by solving this 5-th order ODE, I(X) are obtained as follows

c1 exp(2.05x)− c2 exp(−2.05x) + c3 cos(1.78x) + c4 sin(1.78x) + c5.

where cis for (i = 1, ..., 5) are real arbitrary constants.
Now by employing ψ2, we have

d

dt
ũ(x, t) +

π3

8
ũ(x, t) = −π

5

32
ũ(x, t),

therefore
d

dt
ũ(x, t) + 13.44ũ(x, t) = 0,

for finding ũ(x, t), we should solve this ODE [5], after that we get

ũ(x, t) = J̃(x) exp(−13.44t) + K̃

Now from (3.5), the analytical solution is

u(x, t) = J(x) exp(−13.44t) +K.

By putting this solution in the KdV equation, we have

d5

dx5
J(x)− d3

dx3
J(x) + 13.44J(x) = 0.

after solving this 5-th order ODE, J(X) are obtained as follows

exp(1.44x){c1 cos(1.26x)+c2 sin(1.26x)}−exp(−1.44x){c3 cos(1.26x)+c4 sin(1.26x)}+c5.

where cis for (i = 1, ..., 5) are real arbitrary constants.

Table 5 shows the results of wavelet transform method for KdV equation:
Table 5. WTM on the KdV equation.

Quasi-wavelet The wavelet tranform The analytic solution
ψ1 ũ(x, t) = Ĩ(x) exp(13.44t) + K̃ u(x, t) = I(x) exp(13.44t) +K

ψ2 ũ(x, t) = J̃(x) exp(−13.44t) + K̃ u(x, t) = J(x) exp(−13.44t) +K

Note that, in spite of the higher order of KdV (order 5), the final analytical solution is
simple. The interesting point about WTM is that the final solution is often separable.
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5. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a novel method based on wavelets. Indeed, WTM has been
inspired from Fourier transform and Laplace transform methods. The idea of using integral
transforms for solving differential equations can be employed by wavelets. We produced
new quasi-wavelets with two variables in accordance with differential invariants. Next, we
calculated the correspondent wavelet transforms to apply them on differential equations
and reduced the degree of PDEs. Afterward, the PDEs were solved and the solutions were
obtained. Unlike the other applications of wavelets and wavelet transforms, WTM results in
analytical and exact solutions and is based on the multi-dimensional wavelets constructed
by differential invariants. Indeed, this is what sets our work different from other wavelet
applications. As seen before, the crucial step is to provide proper quasi-wavelets based on
differential invariants and, therefore this method can be used to solve the PDEs that equiva-
lence methods (like the Lie symmetry method) can be applied on those. In future works, we
will propose suitable quasi-wavelets for every differential invariant and symmetry group by
implementing WTM on other PDEs. Moreover, we hope to generalize WTM for solving
both linear and non-linear PDEs at every order and every number of independent variables.
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